

1

27490

KP-LAB

Knowledge Practices Laboratory

Integrated Project

Information Society Technologies

D5.6: Specifications for the Knowledge Matchmaker (V.2.0), the
Knowledge Synthesizer (V.1.0) and the Analytical and Knowledge

Mining Services (V.1.0)

Due date of deliverable: 31/01/09

Actual submission date:

Start date of project: 1.2.2006 Duration: 60 Months

Organisation legal name of lead contractor for this deliverable:
Technical University of Kosice (TUK)

 Final Draft

Project co-funded by the European Commission within
the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public ����
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

2

Contributor(s): Jan Paralic TUK Jan.Paralic@tuke.sk

Karol Furdik TUK kfurdik@stonline.sk
Peter Bednar TUK Peter.Bednar@tuke.sk
Frantisek Babic TUK frantisek.babic@tuke.sk
Jozef Wagner TUK jozef.wagner@gmail.com
Marek Schmidt UEP fregaham@gmail.com
Pavel Smrz UEP Pavel.Smrz@gmail.com
Nicolas Spyratos LRI-ORSAY Nicolas.Spyratos@lri.fr
Ekaterina Simonenko LRI-ORSAY Ekaterina.Simonenko@lri.fr
Vassilis Christophides ICS-FORTH christop@ics.forth.gr
Giorgos Flouris ICS-FORTH fgeo@ics.forth.gr
Dimitris Kotzinos ICS-FORTH kotzino@ics.forth.gr
Yannis Rousakis ICS-FORTH rousakis@ics.forth.gr

Editor(s): Karol Furdik TUK kfurdik@stonline.sk
Partner(s): TUK, UEP, LRI-ORSAY, ICS-FORTH
Work Package: WP5 − Semantic Web Knowledge Middleware
Nature of the
deliverable:

Report

Internal reviewers: Merja Bauters (METROPOLIA), Marina Scapola (DIBE)

Review
documentation:

http://www.kp-lab.org/intranet/work-packages/wp5/result/deliverable-
5.6/

3

Version history

Version Date Editors Description
0.1 30/10/2008 Karol Furdik, Initialization document, tasks and

responsibilities.
0.11 09/11/2008 Frantisek Babic,

Jozef Wagner
Content related to the Analytical
and Knowledge Mining Services.

0.12 27/11/2008 Giorgos Flouris Content related to the Knowledge
Synthesizer.

0.13 05/12/2008 Marek Schmidt,
Pavel Smrz

Content related to the Information
extraction services part.

0.2 09/12/2008 Karol Furdik Content related to the
Comprehension service. Integration
of all the inputs.

0.21 15/12/2008 Peter Bednar Context related to the "search
similar" service.

0.22 16/12/2008 Frantisek Babic,
Jozef Wagner

Updates of the Analytical and
Knowledge Mining Services part.

0.23 17/12/2008 Jan Paralic Review, comments, rewriting some
parts of document.

0.24 17/12/2008 Ekaterina Simonenko Input to the Analysis of logs service
(as a part of AKMS).

0.25 19/12/2008 Nicolas Spyratos Updates to the Analysis of logs
service (as a part of AKMS).

0.3 19/12/2008 Karol Furdik Integration of inputs, preparation of
a consolidated draft.

0.31 05/01/2009 Frantisek Babic Input to the Analytical and
Knowledge Mining Services part.

0.32 06/01/2009 Marek Schmidt,
Pavel Smrz

Input to the Information extraction
services part.

0.33 11/01/2009 Karol Furdik Integration of inputs, updates of
Comprehension service description.

0.34 12/01/2009 Giorgos Flouris Upgrade of specification part of the
Synthesizer and some minor
changes

0.35 12/01/2009 Jozef Wagner Upgrade of the Recommendation
services part

0.4 13/01/2009 Jan Paralic Consolidating the document based
on partners’ inputs, completing
some missing parts

0.41 16/01/2009 Karol Furdik Checking, minor updates of the
Motivating scenarios part.

0.5 17/01/2009 Jan Paralic Final draft, ready for internal
review

0.6 03/02/2009 Karol Furdik, Jan
Paralic

Revised parts about Knowledge
Matchmaker and AKMS, reflecting
remarks made by reviewers

4

0.7 05/02/2009 Giorgos Flouris Revised parts about Knowledge
Synthesizer, reflecting remarks
made by reviewers

1.0 05/02/2009 Jan Paralic Final version, covering all revisions
made by partners after internal
review

5

Executive summary

This deliverable presents specifications of three components responsible for
advanced manipulation with the knowledge stored in the KP-Lab Semantic Web
Knowledge Middleware (SWKM). It starts with motivating scenarios defined within
various Working Knots (WKs), extracting relevant functional requirements and
mapping them on the high-level requirements, of particular driving objectives and
user tasks (described in deliverable [D2.4]).

The first component is Knowledge Matchmaker (V2.0), which utilizes various text
mining, information extraction, and heuristic methods for advanced access to and
manipulation with shared knowledge artefacts according to the explicit meaning of
artefacts expressed by their textual content, as well as metadata, including semantic
tagging. This second version presents a set of completely new services supporting
miscellaneous functionalities such as support for semantic tagging process, search
for similar artefacts, information extraction capabilities, as well as recommendation
services.

Next two components are completely new. The Knowledge Synthesizer (V1.0) can
be used to combine information found in multiple sources; this feature is necessary
to allow automated merging of the conceptualizations modeled in independently
edited conceptualizations.

The Analytical and Knowledge Mining Services (V1.0) provide means for analyzing
participation and activities within past or running knowledge creation processes, as
well as for support of knowledge evolution analysis (e.g. via identification of critical
patterns in selected knowledge creation processes).

6

Table of Contents

TABLE OF CONTENTS ...6

1 INTRODUCTION...7

2 REQUIREMENTS..9

2.1 MOTIVATING SCENARIOS...9
2.1.1 Collaborative work with knowledge artefacts ..10
2.1.2 Advanced notification and recommendation ..13
2.1.3 Merging of knowledge artefacts (conceptualizations)..13
2.1.4 Analysis of knowledge creation processes..14

2.2 RELATION OF HIGH-LEVEL REQUIREMENTS, DRIVING OBJECTIVES AND USER TASKS TO THE

NEEDS OF THE SERVICES PROVIDED BY SWKM..16
2.2.1 Collaborative maintenance of semantically tagged artefacts...16
2.2.2 Notifications and recommendations during the collaborative knowledge creation
processes...17
2.2.3 Merging of multiple knowledge artefacts (conceptualizations)18
2.2.4 Analyzing the knowledge creation processes..19
2.2.5 Summary of the Requirements ..20

3 FUNCTIONAL AND ARCHITECTURAL DESIGN..21

3.1 KNOWLEDGE MATCHMAKER (V.2.0) ...21
3.1.1 Comprehension Service ..21
3.1.2 Information Extraction Service...25
3.1.3 Recommendation Service..26

3.2 KNOWLEDGE SYNTHESIZER (V.1.0) ...27
3.2.1 The Process of Merging in the Related Literature..30

3.3 ANALYTICAL AND KNOWLEDGE M INING SERVICES (V.1.0)...32
3.3.1 Services for support of participation and activity analysis of the knowledge creation
processes...33
3.3.2 Tools for support of visual analysis of logs ..34
3.3.3 Services for support of knowledge evolution analysis ..37

4 CONCLUSIONS AND FUTURE WORK ..41

BIBLIOGRAPHY...42

7

1 Introduction

Knowledge Matchmaker (V2.0), Knowledge Synthesizer (V1.0), and Analytical and
Knowledge Mining Services (V1.0) are the middleware modules of KP-Lab system,
proposed to support advanced collaborative and semantic-based manipulation of
shared knowledge artefacts that should enable the emerging of knowledge practices.
These modules provide a set of services that extend the basic SWKM functionality for
accessing and manipulating the ontology data towards the utilization within the end-
user KP-Lab tools.

Knowledge Matchmaker (V2.0) contains a set of services that support a collaborative
work within a group of participants involved in a knowledge creation process. By
utilizing the text mining, information extraction, and various heuristic methods, it
enables advanced access to and manipulation of shared knowledge artefacts according
to the explicit meaning of the artefacts expressed by their textual content, as well as
metadata, including semantic tags. The coordination of collaborative work and social
awareness between the group members are supported by advanced notification and
recommendation services, enabling automatic notification on modifications of
artefacts and/or particular actions provided by the participants. Particular services
supporting these functions were identified for the Knowledge Matchmaker (V2.0) as
follows:

- The Comprehension Service provides advanced classification, analysis, and
consistency check of semantically tagged knowledge artefacts. The heuristic
rules and frequency-based text analysis mechanisms are employed to support
meaningful collaborative work with shared knowledge artefacts as aiding to
acquire consistency in semantic tags, search and retrieval facilities, and
collaborative maintenance of various source materials and produced artefacts.

- The Information Extraction Service enables to support the user with
semantically tagged artefacts enabling her to search for related ones based on
these semantic descriptions. It also identifies entities and relations directly in
the content of the artefacts and allows reviewing suggested annotations
produced by the service and improving the extraction models based on the user
feedback.

- The Recommendation Service offers a possibility for a user, as a member of a
group aiming at collaborative knowledge creation, to subscribe for updates
concerning a specific knowledge artefact and/or for a specific periodicity of
notification.

Knowledge Synthesizer (V1.0) provides capabilities to analyze, integrate, and merge
the conceptualizations of knowledge artefacts expressed by the visual modeling
languages of different domains. The analysis of different models and explanations that
are produced by users includes, for example, uncovering similar (and dissimilar)
explanations or models, and identifying groups (or people) whose theories, models, or
explanations are very different (or very similar) to each other.

Analytical and Knowledge Mining Services (AKMS) provide supporting services for
analysis of knowledge creation processes in two different ways. First, AKMS
provides services for analyzing participation and activities within past or ongoing

8

processes. Secondly, AKMS supports also the knowledge evolution analysis
providing e.g. means for manual identification of critical patterns in knowledge
creation processes. Once defined, the AKMS serves with the possibility of proactive
identification of known critical patterns in selected ongoing processes.

The specification of these middleware modules and their respective services is based
on the analysis of requirements formulated in [D2.4] cooperatively by pedagogical
and professional experts and researchers as well as technical developers of the KP-
Lab project. The motivating scenarios and identified high-level requirements are
presented in the following chapter. Based on the analysis of the required functionality,
a design of the inner architecture, functionality, and interface of particular services for
the middleware modules is proposed and specified in detail in the chapter 3. Finally,
conclusions and suggestions for future work, including the proposals for
implementation and integration of the designed services into the KP-Lab end-user
tools, is presented in the chapter 4.

9

2 Requirements

This chapter contains a description of the motivating scenarios and high-level
requirements that demonstrate the need and role of the respective SWKM modules
and their services from an end-user perspective, as well as an employment and
functional integration of these services into the whole KP-Lab system.

The chapter starts with descriptions of motivating scenarios presented in the following
section 2.1 that are based on the outcomes of the Working Knots (WKs), being
a platform for collaborative design and discussion space that elicits and integrates the
requirements of pedagogical users with the approaches and solutions proposed by
technical partners of the KP-Lab project. Outline of the identified motivating
scenarios and the relevant WKs where the specifications of scenarios were formed,
are presented in Table 1.

Motivating scenario Working Knots referenced

WK1 Shared Space and Common Tools
WK2 Management and Analysis of Complex
Knowledge Structures

1. Collaborative work with
artefacts

WK5 Document Centered Collaboration
WK1 Shared Space and Common Tools 2. Advanced notification and

recommendation support WK6 Change Laboratory
3. Merging of knowledge
artefacts (conceptualizations)

WK2 Management and Analysis of Complex
Knowledge Structures
WK3 Process Management and Analysis 4. Analysis of processes in a

Knowledge practices
environment WK6 Change Laboratory

Table 1. Motivating scenarios and respective Working knots used for the scenarios’
specification

As next, in section 2.2 particular functional requirements, which resulted from
motivating scenarios, are extracted and categorized into smaller groups corresponding
to new SWKM modules. Moreover, there is also presented a mapping of identified
required functionalities to particular user tasks (UT), driving objectives (DO), and
high-level requirements (HLR), as they were described and elaborated in the D2.4
deliverable [D2.4].

2.1 Motivating scenarios
The motivating scenarios identified as outcomes of the respective WKs and outlined
in Table 1 are presented and described in more details in this section. The support for
collaborative work with knowledge artefacts is proposed by means of functions for
checking and maintenance of semantic tagging, semantic-based retrieval, advanced
clustering and classification. The collaborative knowledge creation is supported by
notification and recommendation functionality allowing personal, punctual, and

10

scheduled notification. Merging of knowledge artefacts proposes methods to support
the model management, especially by means of parallel editing of artefact’s
conceptualizations. Finally, the functions for analysis of knowledge creation processes
identify several information resources for monitoring and analysis of collaborative
knowledge practices on a global level.

2.1.1 Collaborative work with knowledge artefacts
The scenarios for collaborative manipulation with knowledge artefacts aiming at
creation of innovative knowledge practices were elaborated within the WK
Management and Analysis of Complex Knowledge Structures, namely in the
description of semantic tagging1. Actual implementation of these scenarios into the
KP-Lab user tools was discussed in the WK Shared Space and Common Tools. The
Semantic Tagging and Tag Vocabulary Editor tools are referenced in [D6.6] as main
user-side tools dedicated to provide this functionality for users. In addition, the
specification of usage scenarios for the Semantic wiki tool [SW_SUS], provided
within the WK Document Centered Collaboration, inherently contains explicit as well
as implicit references to the collaborative maintenance of shared knowledge artefacts
by means of semantic tagging and manipulating tag vocabularies.

Knowledge practices environment enables users to work on shared knowledge objects
in one place. It shall allow the participants of a knowledge creation process to
perceive and handle shared materials, knowledge representations and respective
processes in an integrated way, supporting a process of new and innovative
knowledge creation.

The semantic tagging [D5.3], [Bauters07] is a method that enables to organize shared
objects according to their explicitly expressed meaning and allows accessing the
artefacts in mutual semantic relations. The meaning of artefacts is represented by a set
of links, associations, with the concepts of a common and shared vocabulary – a
simple light-weight domain ontology (e.g. vocabulary or taxonomy) stored and
managed in the SWKM. This representation enables the users to share and access the
artefacts semantically, via semantic search (provided in faceted form within the user
interface) and similarity search (clustering). A combination of semantic tags with
analysis of textual content of the artefacts allows users to classify the knowledge
artefacts into pre-defined or ad-hoc created categories, identifying “semantically
similar” artefacts, grouping of artefacts with the similar meaning into clusters, and
extracting specific semantic relations between the artefacts.

The process of semantic tagging, if performed manually, requires additional efforts on
the side of participants of knowledge creation processes. To increase the usefulness of
tagging, the end-user KP-Lab tools (by invoking the services of the Knowledge
Matchmaker) will provide helpful suggestions and tag recommendations based on
analysis of artefact’s content and/or analysis of the semantic tags of a given tag
vocabulary. The tagging support is designed in a subtle manner, not to irritate the

1 http://www.kp-lab.org/intranet/design-teams/wk-management-and-analysis-of-complex-knowledge-
structures/semantic-tagging/annotating-knowledge-objects-with-semantic-tags/

11

users during the tagging process. Users can invoke the Knowledge Manager services
and decide if the provided recommendations are useful and acceptable or not.

The support for semantic tagging procedure, as it was designed in previous version of
the Knowledge Matchmaker [D5.3], required an extensive set of training data and that
is why it was difficult to maintain and adapt properly on the changes of the space of
shared knowledge artefacts. Current design is focused on the easy, transparent, and
automatic support for semantic tagging (by advanced clustering and classification
methods) as well as on the exploitation of the tagging in a Knowledge practices
environment for better accessing, retrieving, and grouping the shared artefacts.

Proposed supporting functionality for the process of semantic tagging assumes the
prerequisites as existence of a common vocabulary of tags and a full-text indexing of
the textual content of shared artefacts (which is already supported by the existing
search services [Search]). The following basic operations can then be identified to
support the collaborative semantic tagging and semantic maintenance of shared
artefacts:

- Assistance in the process of semantic tagging. Recommendation of tags that
semantically match with the textual content of the artefacts.

- Consistency check of the semantic tags. Evaluation of homogeneity,
similarities, and differences between the semantic tags inserted by different
users.

- Maintenance of the tag vocabulary. Proposal for adding / modification /
removal of a semantic tag from/to vocabulary, which can then be accepted or
cancelled by users’ choice.

The following partial scenarios can be considered for each of the above mentioned
operations.

Assistance during the process of semantic tagging. The users can obtain
recommendations of tags suitable for semantic description of a particular artefact
(despite the artefact is already tagged or not). Knowledge Matchmaker provides
services to analyze the textual content of the artefact, identify key terms in the text,
suggest corresponding tags, and analyze the similarities of already tagged artefacts.
Using information extraction capabilities, the service automatically recommends tag
synonyms used by other users thus making the tagging consistent between different
users and supporting collaboration. As mentioned before, this recommendation
functionality is designed in a subtle way and is purely optional. Users do not have to
accept any of the recommendations provided by the service, even invocation of the
assistance service in the user-side tool during the tagging process is not obligatory.
However, accepting the (some of) recommendations may help to keep the structure of
semantic tags consistent, minimizing deviations of the meaning of particular semantic
tags, and consequently ease the manipulation with knowledge artefacts as meaningful
semantically described pieces of information.

Recommendations can be based on several different vocabularies / tag structures that
are provided, for example, in multiple commenting threads [Bauters07]. Finally, users
can be notified about new / modified / newly tagged artefacts related to his/her
interests (specified by tags, similarity of tags, or a similarity of content from specific
artefacts). This functionality can be useful to keep the consistency of tagging in a

12

collaborative environment, and can also help if the set of tagged artefacts is large and
difficult to maintain manually.

Checking consistency of semantic tags. By re-classifying the set of already tagged
knowledge artefacts, users can check whether the artefacts are classified
homogeneously and consistently. Knowledge Matchmaker can compare and quantify
a similarity of tags inserted by different users [Bauters07] and can provide
recommendations for changes in tags for particular artefact, for example a suggestion
to add or remove some tags for given artefact. This functionality can help to keep the
semantic tagging consistent in a single domain, especially if several users perform the
tagging in a collaborative environment.

Proposal of changes for semantic tag vocabulary. Based on the analysis of structural
correlations between the tags of a given vocabulary, similarities of existing tagging
and textual content of the artefacts, and the availability of full-text indexes, the KP-
Lab system can propose keywords to be added into the vocabulary of semantic tags,
or possibly also removed from the vocabulary [LocSca08]. Users can immediately see
a temporary preview of the artefacts distributed according to the updated semantic
tags. This feature can help to keep the consistency of tags; moreover, it provides a
quick overview of main topics covered by the textual content of the knowledge
artefacts. It can also be used as an initial step to create the vocabulary of tags from
scratch [LocSca08].

Besides the semantic tagging, Knowledge Matchmaker can provide a support for
extended searching and/or grouping of search results according to the semantic and
textual properties of the knowledge artefacts. KP-Lab Search service [Search] already
provides support for combining of the semantic search and free text search and user
can arbitrary combine various search strategies based on the faceted search interface
[D6.6, Search tool]. These search strategies will be extended with the following
mechanisms provided by the Knowledge Matchmaker:

"Search similar" functionality. Users can select one or more knowledge objects and
find similar knowledge objects. Similarity can be based on a) textual content b)
metadata properties (i.e. author, creation date, etc.) or c) semantic annotations. This
service will return the list of knowledge objects together with the similarity scores
used to sort the search result.

Extension of search results, query expansion. Users can refine the search results by
selecting some of the semantic tags (e.g. as attributes of some of the retrieved
artefacts) and invoking a Knowledge Matchmaker service for re-classification and
search extension. This service will then provide a set of artefacts which are not
actually tagged by the selected tags, but which should belong to these tags according
to the textual content.

Both above-mentioned search functions can increase the quality (recall) of the
retrieval procedure, since they combine principles of semantic search and textual
analysis.

13

Note that Search architecture is divided to user interface integrated in the end-user
applications and back-up indexing and search services. This deliverable describes
extensions to the search services only and the corresponding user interface changes
will be specified in the ongoing versions of the [D6.6 Search Tool] deliverable.

2.1.2 Advanced notification and recommendation
When users work asynchronously on (often complex) knowledge creation processes,
proper means for subscription and notification about relevant events in the running
processes is one of the fundamental requirements. It may become more and more
difficult to keep track of what is going on and to decide which occurrences are
relevant to one’s own activities. Consequently, users should have the possibility to
decide on a personalized notification scheme, which allows them to specify the events
they want to be informed about, together with means and timing of notification, by
user-defined subscription criteria.

Notification mechanism designed and implemented within [D5.3] and [D5.4]
respectively, was based on topics only. Various discussions and experiences of users
within the working knots (WK Shared Space and Common Tools, WK Process
Management and Analysis, and WK Change Laboratory mainly) lead to additional
requirements, which have been described in form of use cases in the [D6.6]
deliverable published very recently (for details see [D6.6-SSpUMT]).

Based on these requirements user should be able to select any type of content items
(knowledge artefacts) within her/his actual content view and ask for being notified
about changes relevant to them (so called Punctual notification). Moreover, user will
be able to select also interval in which the notifications can be delivered to her/him in
digested form, i.e. daily, weekly or monthly (so called Scheduled notification).

In both types of notifications the delivery channel may be either e-mail, RSS feed,
mobile phone or a combination of them, as user prefers. All these settings are
specified in the user’s preferences, which are stored and can be changed whenever
user needs [D6.6-SSpUMT].

In DoW3.1 there was also envisaged Community Formation service, which was based
on the original topic-based notification idea. Since the requirements and needs for
such a kind of service were not presented in any of the Working Knots, this service
will not be designed and implemented in the upcoming version of Knowledge
Matchmaker. It can be reconsidered later on, if such requirement appears in some
Working Knot.

2.1.3 Merging of knowledge artefacts (conceptualizations)
Merging of knowledge artefacts (conceptualizations) is one of the operations that are
necessary for model management [Ber03]. This is especially true in scenarios of
collaboration (like collaborative knowledge creation practices), which often involve a
parallel editing of conceptualizations created by the collaborating parties. In the
context of the KP-Lab project [D6.6], two examples of recently developed tools for
supporting collaborative modelling activities centred around conceptualizations

14

expressed as RDF/S KBs [D5.3] are the Collaborative Semantic Tagging [SemTag],
in which learners collaboratively annotate various content items with semantic tags
(i.e., vocabulary terms), and the Collaborative Semantic Modelling [ColMol], in
which learners have additionally the possibility to structure the terms of their
vocabularies using various semantic relationships such as “is_A” and “has_part”.
These tools are developed to cover different needs and requirements of the learners
[D2.4].

Collaborative modelling activities may take several forms. A comprehensive analysis
and classification of the various dimensions characterizing collaborative modelling
activities was presented in [NCLM06]; in this deliverable, we are interested in one of
the possible dimensions, namely on scenarios of asynchronous collaboration, where
the users work on different local copies which are afterwards committed and merged.

Consider for example, the case where two (or more) users are independently engaged
in the development of a theory regarding the problem or phenomenon under
investigation. This could be made, for example, using the Visual Model Editor tool
[D6.6]. Following some period of independent work, the users may want at some
point to combine their theories (models) in an effort to explicate the similarities and
differences between the different conceptualizations. This is part of the process of
trialogical learning in which different (or even competing) theories and suggestions
are combined to produce an innovative outcome.

In this respect, support for merging different conceptualizations when the curator (if
any) or the users decide to do so is required. In order to support this operation, it
would be useful to have a tool that would allow the users to inspect the results of the
merging before actually executing it.

Another feature of the merging process is that its output provides useful insights
regarding the similarities between the information found in the various sources. This
feature, combined with the information that can be extracted by comparing the various
conceptualizations (using the Comparison Service, see [D5.3], [D5.4]), can prove
valuable in the analysis of the different produced models or theories and the eventual
understanding of their differences and similarities. Note here that the Comparison
Service is focused on identifying the differences, whereas the merging (provided by
Knowledge Synthesizer) focuses on explicating the similarities.

The need to support merging in the context of collaborative activities has arisen in the
working knot “Managing and Analysing Complex Knowledge Structures” (MACKS)
and has led to the decision that some advanced functions related to the merging of
models should be added in the next version of the Visual Model Editor (VME) and
Visual Modelling Language Editor (VMLE) [D6.6], [D2.4].

2.1.4 Analysis of knowledge creation processes
Knowledge creation type of processes, both in educational as well as professional
settings, frequently contain some predefined goals and are based on collaboration
between all included participants, using relevant resources and useful tools. Whole
process is monitored and all the performed actions and modifications (events) are

15

stored into various repositories to provide additional and important information about
completed and/or still ongoing processes. The summarized information is a very
useful tool for maintaining the knowledge creation processes and analyzing them.
Under summarized information we mean here various aggregations of available data,
e.g. number of participants involved and number of actions performed by each of
them; number of content items used / changes made / versions produced; number of
annotations defined / assigned / changed; number of comments added; number of to-
do items created / fulfilled or not fulfilled; number of chats, meetings, links, etc.

Requirements for such kind of functionality have been discussed in relevant Working
Knots, in particular in WK Shared Space and Common Tools, WK Process
Management and Analysis but also in WK Change Laboratory. Discussions in these
WK’s brought list of user requirements and expectations that were used for creation of
this technical specification. Analytical features that will be described in details below
will be integrated as part of KP-environment, and additionally can also be utilised in
M2T and ASDT.

Such kind of various aggregated information, which can be provided and by end user
tools presented e.g. in a form of different graphs, can be useful for different purposes,
e.g. for identification of division of work, identification of most active persons,
identification of well collaborating group of people. Similarly, other types of objects
may be put in the center of the analysis, e.g. different types of objects of activity, or
a combination of objects and subjects leading to some advanced social network
analysis facilities. For these purposes there are already specified some services within
the data export tool for analysis [D6.6-DEAT], which serves as a separate channel of
information gained from various KP-Lab repositories in order to produce selected data
for its analysis within specialized third party analytical and/or network visualization
tools.

Another approach to the analysis of knowledge creation processes is to consider the
processes as a series of different actions in a chronological order, possibly with
different levels of granularity, where some subsets of them may have crucial
importance. Such carefully (manually) selected subsets of actions will be called
critical patterns. These patterns usually lead to some critical moments in a knowledge
creation process, which can mean, for example, a significant progress, discovery of
new knowledge/approach, or in opposite they may indicate non-success of a particular
process or its immature finish. Such kind of patterns may also conceptually represent
interesting knowledge practices emerged within particular knowledge process – either
being positive (something like best practice), or negative (worst practices).

In such a way particular critical pattern from one process (i.e. particular sequence of
selected events) can be manually selected (in a suitable user interface) by the user and
stored as a new type of the knowledge object. Other users then can visualize patterns
and use pattern-matching service to find similar patterns in the historical or actual
data. Notification service can be integrated with the pattern-matching service to check
current processes and to notify the users about the relevant patterns identified in the
running process.

16

2.2 Relation of high-level requirements, driving objectives and
user tasks to the needs of the services provided by SWKM

Identification of motivating scenarios for the advanced semantic-based support of
collaborative knowledge creation processes, as it was presented in section 2.1, enables
addressing the functional requirements, as another step towards the specification of
particular modules and components providing the required functionality of the KP-
Lab system middleware. In particular, the relevant user tasks, driving objects, and
high-level requirements, as proposed and elaborated in the D2.4 deliverable [D2.4],
are identified and further described in this section to scaffold the functionalities
identified in the above-presented motivating scenarios.

2.2.1 Collaborative maintenance of semantically tagged artefacts
The above-mentioned scenarios for collaborative work with shared knowledge
artefacts (see section 2.1.1) imply a set of high-level functional requirements, defined
in [D2.4] to perform by comprehension, classification, and partly also by clustering
services. Particular activities for supporting the collaborative manipulation with
artefacts can be divided into three groups, where each group addresses a set of
specific high-level functional requirements.

1. Grouping and advanced classification of artefacts

• HLR1.1: “Users can create structure and share various artefacts in one place”,
which is part of DO1: “Users are provided with a collaborative environment
where they can work on shared artefacts” and UT1: “Organizing shared
artefacts and collaborative tools”.

• HLR4.1: “Users can categorize, classify and cluster artefacts in different
manners”, which is part of DO4: “Users can describe the semantics of artefacts
and their relations” and UT2: “Modifying the content of the shared artefacts
individually and collaboratively”.

Outlined high-level requirements cover the activities for advanced classification and
clustering of artefacts, based on a combination of textual analysis and semantic
tagging. The tag vocabularies can be extended by a lexicon of synonyms, rule based
word transformations, stemming mechanisms and other linguistic resources. After the
analysis of the textual content, the knowledge artefacts can be structured by
classification and clustering procedures that will match the words and statements from
analyzed texts with the linguistic resources (entries of the lexicon of synonyms, etc.).
A structure of artefacts related to the semantic tags and/or a structure of semantically
similar “chunks” of artefacts can be provided as an output of this procedure. The
advantage of this approach is no requirement for availability of prior training set and a
possibility to update the synonym lexicon in the case of need (especially if a standard
solution as, for example, WordNet will be used).

2. Support for semantic tagging

• HLR4.2: “Users can use semantic descriptions to collaboratively work on the
structure and meaning of artefacts as well as their relations”, which is part of
DO4 and UT2.

17

• HLR4.7: “Users are provided with functionality for suggestions of semantic
descriptions for artefacts and suggestions for amendments to the vocabularies
based on text-mining analysis”, which is part of DO4 and UT2.

• HLR7.6: “Users are able to semantically describe and analyze text-based
artefacts (or document sections) according to the structure and content of the
document”, which is part of DO7: “Users have the capability to create, use,
edit and revise various kinds of text-based artefacts collaboratively and in a
sustained manner” and UT2.

These high-level requirements include assistance activities during the process of
semantic tagging as suggesting and recommendations of potentially suitable
(semantic) tags based on content of the artefact, analysis of artefact’s textual content
and identification of key terms, checking of semantic tag consistency, and various
heuristic methods aiming at analysis and improvement of tag distribution.

The HLR4.2 requires the ability to describe relations between artefacts. The suitable
representation for a semantic tag would thus be a triple (tagged artefact, relation, other
resource representing other artefact or a meaning of the tag).

Moreover, as required by the HLR4.2, the designed service will propose changes and
improvements of the semantic tag vocabulary, by proposing keywords (extracted from
the texts of analyzed artefacts or obtained by quantitative analysis of existing tagging
structure) to be added into or possibly also removed from the vocabulary.

3. Search and semantic-based retrieval

• HLR1.4: “Users can search artefacts within and outside the shared
environment using full text, metadata or domain ontologies”, which is part of
DO1 and UT1.

• HLR1.5: “Users can create and work with selected subsets of artefacts (e.g. a
user might select all content items relevant for a certain task at hand)”, which
is part of DO1 and UT1.

• HLR8.6: “Users can search the content and metadata using full text and/or
semantic metadata search for planning and reflecting on activities”, which is
part of DO8: “Users can plan, organize and manage tasks collaboratively” and
UT3: “Management and organization of collaborative work processes”.

Users will be able to select one or more knowledge objects of activities and find
similar objects. Similarity can be based on a) text content b) metadata properties (i.e.
author, creation date, etc.) or c) semantic annotations. Moreover, users can refine the
search results by selecting some of the semantic tags (e.g. as attributes of some of the
retrieved artefacts) and invoking a Knowledge Matchmaker service for re-
classification and search extension.

2.2.2 Notifications and recommendations during the collaborative
knowledge creation processes

In order to allow smooth collaboration within the KP-Lab environment, users must be
able to follow and react on events and changes relevant to their own tasks and

18

obligations. Especially when cooperation takes place asynchronously, over longer
periods of time and tasks are complex, it becomes more and more difficult to keep
track of what is going on and to decide which occurrences are relevant to one’s own
activities. These activities are relevant to the following high-level requirements
[D2.4]:

• HLR8.4: “Users are provided with advanced awareness affordances and can
request notifications of users’ interactions (e.g. users can manage various
awareness levels and collaboration rules)”, which is part of DO8 and UT3.

• HLR5.5: “User are able to tailor and select what notifications to receive and in
what frequency to their mobile device”, which is part of DO5 “Users can
contribute to shared work from situated but distant places” and UT1.

I.e. users will have the possibility to decide on a personalized notification scheme,
which allows them to specify the events they want to be informed about and when, via
user defined subscription criteria. Users’ subscriptions are not only based on
traditional criteria such as type or initiator of an event, or ID of a knowledge object,
but also based on semantics of the event (e.g. regarding annotation of the knowledge
artefact in question, or change in the conceptual model used). User will also be able to
select also interval in which the notifications can be delivered to her/him, i.e. daily,
weekly or monthly and select suitable delivery channel (e-mail, RSS feed, mobile
phone or a combination of them), as user prefers.

2.2.3 Merging of multiple knowledge artefacts (conceptualizations)
As already mentioned, it is helpful, in the context of trialogical learning, to allow
users or knowledge workers to combine information from two or more different
information sources. These sources often have the form of conceptualizations of the
same phenomenon under investigation, which are created by different people (or
groups), in which case their merging would return the combined knowledge of the
group. Unlike the Comparison Service [D5.3], this process is used to uncover the
similarities (rather than the differences) between the various conceptualizations.

The merging process should return a conceptualization that consists of the common
information found in the sources. The user should be able to select the sources that he
will use for the merging and should have enough flexibility in order to be able to see
the information found in at least one of the conceptualizations, or the information
shared by all conceptualizations. This activity is related to the following high-level
requirements, driving objectives and user tasks from [D2.4]:

• HLR4.5: “Users are able to compare and integrate different knowledge
representations/visual models”, which is part of DO4: “Users can describe the
semantics of artefacts and their relations” and UT2: “Modifying the content of
the shared artefacts individually and collaboratively”. Note that, as already
mentioned, the comparison of knowledge representations/visual models is
supported through the Comparison Service, whereas the integration of
knowledge representations/visual models is supported through the Knowledge
Synthesizer Service.

• HLR6.3: “Users can share and integrate different visual modeling languages,
ontologies and vocabularies”, which is part of DO6: “Provide users with
possibilities to develop and use their own conceptual models” and

19

UT2: “Modifying the content of the shared artefacts individually and
collaboratively”. In this respect, the Knowledge Synthesizer supports the
integration of different visual modeling languages, ontologies and
vocabularies .

Furthermore, the ability to merge conceptualizations would allow the user to perform
a more thorough analysis on how the different groups view the phenomenon under
investigation, e.g., by uncovering commonalities or differences in the
conceptualizations, or by identifying groups (or people) whose perception is very
different (or very close) to the average perception and so on.

2.2.4 Analyzing the knowledge creation processes
Analytical and Knowledge Mining Services aim to provide users (incl. researchers,
teachers, students, tutors, mentors, experts, and knowledge workers) with (1)
summarized information about the activities going on in a particular workspace, as
well as (2) support discovery of interesting working / critical patterns indicating
interesting knowledge practices.

For the first type of supporting functions (1), the following high-level requirements
are relevant [D2.4]:

• HLR9.2: “Users are provided with customized summaries about the
knowledge objects available within the shared environment (e.g. users might
request an overview of the tasks completed within the last 2 weeks or the
interactions of people within a shared workspace)”, which is part of DO9
“Users are provided with history on content development and work process
advancement” and UT3.

• HLR13.6: “Users are provided with summative information on performed
actions (e.g. added comments, created tasks, modifications in metadata,
background materials for decisions, etc.)”, which is part of DO13 and UT5
“Investigation and development of knowledge practices”.

Users will be able to retrieve summarized information about their own (or others’)
behaviour in order to monitor and reflect on their own (or others’) working practices.
Content and format might vary depending on users’ needs. These will be various
aggregations of available data with respect to participants involved, type of actions
performed, content items used, etc.

For the second type of supporting functions (2), the following high-level requirements
are relevant [D2.4]:

• HLR1.2: “Users are able to view the artefacts and their relations from different
perspectives”, which is part of DO1 and UT1.

• HLR8.7 - Users are provided with a customized analysis of groups’ working
processes (e.g. identification of typical sequences of actions or interesting
rules), which is part of DO8 and UT3.

• HLR9.1 - Users can track the evolution and changes of knowledge objects and
find out their authors and contributors (sequences of performed steps in time,
incl. versioning), which is part of DO9 and UT3.

Information about the evolution of contents and work processes provides another,
completely different means to monitor ongoing and learn from past knowledge

20

creation processes. This is also a way how to reflect on the community’s practices and
developing them. Towards that end, it is important to identify relevant actions that led
to the advancement or evolution of a particular knowledge object (discussion
contributions, comments, linked artefacts, or changed conceptual models etc.) or to an
identified critical moment in the process. In these situations, semantic context of the
relevant actions will be taken into account as one dimension of analysis. Analytical
and Knowledge Mining Services will provide means to identify, describe and store
such kind of critical patterns on one hand side and look for them (resulting e.g. in
notifications) e.g. in running or other past processes.

2.2.5 Summary of the Requirements
Required
functionality

Description Service that provides the
functionality

Checking of semantic
tags’ consistency

Users can check the consistency of semantic
tags and obtain recommendations for
possible/potential changes of tags of an
artefact and/or of enhancements /
modifications in the tag vocabulary.

Knowledge Matchmaker,
Comprehension service

Checking of semantic
tag vocabulary,
proposal of changes

Users can check a structural consistency of
a vocabulary of semantic tags, and obtain a
proposal of changes for a given set of
artefacts.

Knowledge Matchmaker,
Comprehension service

Search / semantic-
based retrieval

Users can select one or more knowledge
objects and find similar objects based on
text content metadata properties or semantic
annotations. Users can refine the search
results by selecting some of the semantic
tags and invoking a service for re-
classification and search extension.

Knowledge Matchmaker,
Comprehension service,
Search service [Search]

Suggestion of semantic
descriptions

Users can identify entities and relations
directly in the content of the artefacts and
let the service produce these annotations in
a standard representation (RDFa).

Knowledge Matchmaker,
Information extraction service

Improve information
extraction models

Users can review suggested annotations
produced by the information extraction
service and improve in such a way the
extraction models based on the users’
feedback.

Knowledge Matchmaker,
Information extraction service

Merging of
Conceptualizations

Users performing an automated merging of
the information found in at least one, or all,
of some pool of conceptualizations

Knowledge Synthesizer

Analysis of Different
Conceptualizations

Users can identify the commonalties
between conceptualizations created by
different users, as an aid to the analysis of
the users’ understanding of the phenomenon
under investigation.

Knowledge Synthesizer

Customized analyses
of knowledge creation
processes

Users can retrieve summarized information
about the activities going on in a particular
workspace from various perspectives.

Analytical and Knowledge
Mining Services – event
aggregation service

Identification,
description and
discovery of critical
patterns

Users are provided with support for
discovering of interesting working / critical
patterns indicating interesting knowledge
practices.

Analytical and Knowledge
Mining Services – define
pattern and matching services

Table 2. Summary of the high-level functional requirements

21

3 Functional and Architectural Design

3.1 Knowledge Matchmaker (V.2.0)
The second prototype of the Knowledge Matchmaker contains further enhancements
of the clustering, categorisation, and notifications services as they were specified
according to the motivating scenarios and high-level requirements for supporting the
collaborative knowledge processes and work on semantically annotated (tagged)
artefacts. In particular, it provides the services and methods for semantic tagging
recommendations and consistency check, extended semantic-based retrieval
capabilities, information extraction services, as well as the notification and
recommendation services built on the History/Participation Awareness [HPA01] that
support personalised punctual and scheduled notification during the collaborative
knowledge creation.

3.1.1 Comprehension Service
The Comprehension service provides middleware functionality for collaborative work
with knowledge artefacts, especially focusing on the support of semantic tagging and
retrieval. Two main functional streams can be identified for the service, namely 1)
consistency checking and support of the semantic tagging process, and 2) semantic
search and retrieval. Text analysis capability, linguistic extensions of the vocabulary
of semantic tags, and analysis of structural correlations in the semantic tagging are the
common attributes of both functional streams.

The support for semantic tagging adapts methods of machine learning and text
analysis, namely heuristics based on linguistic analysis and investigation of
similarities and structural correlations of the semantic tags of artefacts (content items).
The analysis of the tag structure for a given set of artefacts includes heuristic rules for
assigning leaf tag nodes preferably to the inner tags of the taxonomy, suggestions for
tag updates based on frequency analysis of co-occurrences of semantic tags on
annotated artefacts, and investigation of the similarity of tag structures.

The Comprehension service encapsulates also the functionality for advanced
categorization, based on analysis of texts and semantic tags of the knowledge
artefacts. Linguistic analysis includes identification of key terms in the textual content
of the artefacts and further matching with the entries of the lexicon of synonyms,
linguistic rules, etc., to obtain suggestions of potentially suitable semantic tags. These
proposed tags are logically merged with the existing tags (both semantic and free tags,
while free tags are transformed to the semantic tags) that may already exist for the
input artefacts. The tags in the resulting set are marked by a flag describing a
recommended action in the semantic tag vocabulary (i.e. to add a new tag or to
modify an existing tag – with a possibility for users to discard or modify the provided
suggestions). The linguistic analysis is combined with the heuristic rules to provide
the methods for consistency check of the tags and recommendation of the potentially
suitable semantic tags for a given knowledge artefact.

22

The retrieval of artefacts, as shared knowledge objects, is also supported by the
Comprehension service (see search similar functionality described below). It is based
on the same principles and uses the same inner mechanisms as the tag consistency
check. It analyses the textual content and properties (e.g. a textual description),
metadata properties, and semantic tagging of a given artefact (or a set of artefacts) to
retrieve the knowledge artefacts that are most similar, by means of all the analyzed
information, to the given input artefact(s).

1. Consistency checking of the semantic tags

a) Checking the consistency of semantic tags for a given input artefact (or a set of
artefacts). The method provides suggestions/proposals based on investigating
structural relationships of semantic tags and annotated knowledge artefacts, using
various heuristics and statistical algorithms. These algorithms, however, cannot give
any relevant value judgments of the provided tag suggestions. Of course, it will be the
user who finally decides if something is appropriate or not. Based on the
implementation of the consistency checking in a user-side tool [D6.6] the user can
accept, modify, or decline the suggested tags provided by the method as an output.

The proposed method for semantic tag checking enables to select a proper algorithm
for evaluation of the tag structure. The algorithm is defined by the input mode as
follows:

- Heuristic rules that are based on examining the structure of already tagged
knowledge artefacts and comparing it with the structure of underlying tag
vocabulary. Tag nodes are weighted according to the position and mutual
relationships in the vocabulary hierarchy. The pre-defined heuristic rules then
prioritize the leaf tag notes for tagging, recommend proportional distribution of
tags and balanced tag-artefact structure. This mode can be useful if the tag
vocabulary is complex and hierarchically organized (for example, from general
to specific concepts).

- Frequency of co-occurrences of semantic tags on annotated knowledge
artefacts. Algorithm employed in this mode is based on similarity of tag
structures, which is combined with the similarity of texts. The method in this
mode examines the vector of tags and terms (keywords) extracted from the
textual content of an input artefact and compares it with the term and tag
vectors of other artefacts in the shared space. The similarity of the vectors then
enables to find the tags that should be added to or removed from the initial tag
set of the input artefact, according to the structural correlations given by the
statistical similarity of the vectors.

- Combination of the above algorithms. This mode is suitable if the
implementation of the method in a user-side tool does not allow to enter the
checking mode (e.g. in order not to disturb users with a selection of proper
checking algorithm during the tagging process) and/or the structure of tags can
not be examined to insert a specific checking mode automatically.

The signature of the method for semantic tag checking can be specified in the
following form:

23

SemanticTag[] checkTagging(URI artefactURI, String mode)

input: artefactURI: URI of the artefact whose semantic tags will be checked;
 mode: identifier of the algorithm used for consistency check of tagging:

{“ heuristic rules”, “ frequency”, or “combination”}.

output: a set of semantic tags recommended for the input artefact as an update,
according to the specified algorithm. Based on the implementation of the
method on a user-side tool, the user can accept, modify, or decline the
recommended tags.

Variant of the checkTagging method for checking a group of artefacts:

SemanticTags[][] checkTagging(String[] artefactURIs ,
String mode)

The proposed method for checking the consistency of semantic tags is primarily
focused to support the collaborative work with knowledge artefacts, enabling to keep
the structure of semantic tags consistent in a collaborative knowledge evolution
environment. Since the method does not require any training data2, it can also be
considered as an effective technique for classification of already tagged artefacts into
the space of concepts (tags, terms) of a given tag vocabulary. Using automated
heuristic and statistical algorithms, it helps to organize the knowledge artefacts in the
shared space in a systematic way. In addition, the suggested tags returned by the tag
consistency checking method to the user enable to discover “hidden” relationships
between an artefact and the concepts of tag vocabulary, and this way the method helps
to build qualitatively new knowledge structures or views. The method is proposed to
be implemented as an inherent module of the Semantic Tagging tool [D6.6] and can
also be employed in the tools that enable a collaborative manipulation with shared
knowledge artefacts of various types, e.g. Shared Space, Semantic Multimedia
Annotation [D6.6], or Semantic wiki [SW_SUS].

b) Checking the vocabulary of semantic tags and proposal of changes. The method
recommends actions as adding new tags, modification of tag names and/or of tag
hierarchy, removal of particular tags, in a given tag vocabulary according to the
analysis of textual content and tag structure of input knowledge artefacts. Algorithms
employed in this method are similar as these used in the above-described method for
tag consistency check. They include extraction of a vector of tags and key terms from
the input artefacts and evaluation of their similarity to the tags from the vocabulary.
Based on this comparison, the tags in the vocabulary are labeled by recommended
action (i.e. add / modify / delete) and are returned as an output of the method. It is,
however, necessary to emphasize that the method is non-destructive, since it provides
only suggestions for changes. User can then decide if (or which of) the
recommendations will be accepted and which will be discarded. Actual persistent
modification of the tag vocabulary is not provided by this method; however, it can be
performed by simple rewriting of the “old” tag vocabulary by the tag structure
returned by this method.

2 Here we are referring to the classification services designed for the first prototype of the Knowledge
Matchmaker [D5.3], which was based on the text mining algorithms requiring quite extensive training
data set.

24

The signature of the method for checking the tag vocabulary is proposed in the
following form:

TagVocabulary[] checkTagVocabulary(String URI
TagVocabularyURI, String[] artefactURIs)

input: tagVocabularyURI: URI of the tag vocabulary to be checked and used for

semantic tags of input artefacts, referenced by the second input parameter;
 artefactURIs: URIs of semantically tagged artefacts - the semantic tags of

these artefacts will be used as a reference for checking the tag vocabulary and
proposal of changes.

output: the resulting tag vocabulary with the changes proposed according to the

analysis of tagging of the input artefacts.

The described method for checking the tag vocabulary is inverse to the previously
presented method of tags consistency checking. However, the purpose of this method
is the same, i.e. to help users maintain the consistency of semantic tag structure and in
such a way to support the collaborative work with knowledge artefacts. It is proposed
to employ this method in a tool for design and management of semantic tag
vocabulary, namely in the Tag Vocabulary Editor [D6.6]. As a support of the
semantic tagging process, the method may also be used within the Semantic Tagging
tool [D6.6] and/or in the user-side tools for collaborative work with semantically
enriched artefacts, e.g. the Semantic wiki [SW_SUS].

2. Search similar

This functionality returns the list of knowledge objects (artefacts, content items, etc.)
similar to the given knowledge object. Similarity is based on the vector document
model and can be computed according to the textual properties, metadata properties
(i.e. creator, creation date, etc.), or semantic annotations like tags from controlled
vocabularies or comments. It is required that all properties included in the similarity
measure will be indexed using the Search indexing service (see [Search]
specification).

ObjectHit[] findSimilar(String URI artefactURI, Str ing[]
fields)

input: artefactURI: URI of the artefact used for “similar like” query;
 fields: the list of indexed fields that will be used to compute similarity. Each
 field corresponds to the semantic or textual property of the object of activity
 indexed in the search index (see [Search] specification).

output: the list of results of the “similar like” query sorted by similarity scores.
 ObjectHit contains reference to the similar object of activity and similarity
 score.

25

3.1.2 Information Extraction Service
The purpose of the Information Extraction Service is to support the user with
semantically tagging artefacts and thus enabling to search for related ones based on
these semantic descriptions. Machine learning techniques are utilized to allow
semantic annotation of textual artefacts. The service identifies entities and relations
directly in the content of the artefacts and produces these annotations in a standard
representation (RDFa).

The important property for the service is the ability to adapt to new content. The
envisioned functionality of the information extraction service will allow reviewing
suggested annotations produced by the service and improve the extraction models
based on the user feedback.

String initModel (String[] annotatedArtefactURIs, S tring

ontologyURI, String[] settings)

Initialize the extraction model from a training set of annotated artefacts.

Input:
 annotatedArtefactURIs: references to XML documents with manually annotated

artefact textual contents (in RDFa format);
 ontologyURI: an optional link to the relevant ontology. If provided, it allows the

service to build better models by utilizing the hierarchy of concepts;
 settings: implementation-specific settings.
Output:
 URI of the new extraction model

String ie (String modelURI, String contentXML, Stri ng[]

settings)

Input:
 modelURI: a trained extraction model used for extraction;
 contentXML: text content, optionally with embedded semantic annotations

created manually, or by means of the previous call of this method with
additional user feedback;

 settings: additional flags, such as input/output format selection, mode (train-
only, extraction-only).

Output:
 Same format as input contentXML string with embedded new annotations in the

specified format.

XML format specification

The XML format used in the information extraction service needs to represent
semantic annotations embedded in the content and statements about these semantic

26

tags for training purposes. The format takes advantage of the RDFa annotations
extended with additional attributes:

feedback

Stores the "decision" of the user for the statement represented by this tag, thus
providing the service with the user feedback for learning
“positive”

the user acknowledged the statement as being correct;
“negative”

the user acknowledged the statement as being incorrect;
“none” (default)

the user did not provide a feedback for this annotation.

confidence

value between 0.0 and 1.0 which denotes the confidence value of the extracted
triple represented by the tag.

extract

Presence of this attribute tells the information extraction service explicitly to
extract information about the content of this element.

 “classify”
classify the content of this element, optionally can be used with the
“typeof” RDFa tag to specify which particular set of classes is
possible (based on the ontology);

 “relations”
Extract relations among the entity and other relevant entities;

 “all” (default)
classify the content of this element and extract relations.

3.1.3 Recommendation Service
Notification and recommendation services will cooperate with History/Participation
Awareness (HPA) services designed within the WP4 [HPA01]. The events logged in
HPA will be processes by Notification and recommendation service, matched with
registered subscriptions and a respective user will be notified through various
channels, based on user preference.

The process of registering a subscription is handled by registerSubscription method:

String registerSubscription (String userId, String
subjectId, String subjectType, String objectId, Str ing
objectType, String actionType)

This method registers a new subscription and adds it into the list of users’
subscriptions (user is identified by its URI). If some parameter is null, it is not taken
into account in the matching phase. If the method performs successfully, subscription
identifier is returned. Service also provides a method for listing and removal of
registered subscriptions:

27

String removeSubscription (String userId, String
subscriptionId)

If subscriptionId is null, all subscriptions for specified users are removed.

Event[] getSubscriptions (String userId)

Returns all subscriptions registered for a particular user.

As a part of Punctual Notification, user can obtain URL of a RSS channel, where all
notifications are immediately present.

String getRssUrl(String userId, String subscription Id)

If subscriptionId is null, service returns URL to RSS feed which integrates all
subscriptions for a given user. If subscriptionId parameter is present, the returned RSS
feed contains only notification that matches to the particular subscription

In order to support also Scheduled Notification, i.e. the possibility for a user to
subscribe for a specific periodicity of notification (e.g., to be notified once a day, once
a week, or once a month), the following service is provided.

String registerEmail (String userId, String startTi me,
String endTime, String timeInterval, String emailAd dress)

With these methods, user can register for scheduled notifications. In this method, the
user can specify the necessary time constraints for scheduled notification. startTime
and endTime parameters define a period in which the emails are sent. A null value in
these parameters denotes an open interval. A timeInterval parameter specifies how
often emails should be sent. With this service, the user can for example set a daily or
weekly digest of notifications, which will be send to his email address.

3.2 Knowledge Synthesizer (V.1.0)
The Knowledge Synthesizer is responsible for combining different conceptualizations
represented in the core Semantic Web language, namely RDF/S. We identify two
different basic modes of operation, which produce different results, but are based on
the same motivating idea and driving requirements. The two different modes
determine whether all or any of the sources will be considered during the merging
operation in order to identify the information at the output.

Let us consider a set of RDF KBs, say K1, K2, …, Kn, each corresponding to a
different conceptualization of the same phenomenon under investigation. The role of
the service is to provide a new RDF KB, say K, whose content (triples) is determined
by the mode of operation as follows:

• In the case of UNION, the new KB K should contain the triples found in any
of the n sources. Therefore, UNION should be used when we are interested in
determining the information found in at least one of the sources.

28

• In the case of INTERSECTION, the new KB K should contain the triples
found in all sources. Therefore, INTERSECTION should be used when we are
interested in determining the information that all the sources agree upon.

In calculating the UNION (or INTERSECTION) of the KBs, the user may choose to
consider the RDF KBs themselves (i.e., the explicit knowledge of the KB), or their
closure (which includes both the explicit and inferred knowledge and is calculated by
taking into account the transitivity of subsumption and instantiation relationships).
This choice essentially determines whether the inferred knowledge in each of the
sources will be considered in the computation of the result or not.

The major challenge faced by the service is that the set that occurs from the simple,
set-theoretic union (or intersection) of the triples found in two or more RDF KBs (or
their closure), is not necessarily an RDF KB itself, because it may contain invalidities.
The resolution of such invalidities is the main problem that must be addressed by the
service, as it is not a priori known what types of invalidities may be encountered, nor
is it obvious how each such invalidity could, or should, be resolved. Additionally, the
types of invalidities that we may encounter, as well as the methodologies that we
should use to resolve them, are different in each of the modes of operation (UNION,
INTERSECTION, and with or without taking into account the inferred knowledge).
Despite the differences, this critical difficulty appears in all modes of operation, and
our methodology to address it is common.

RDF KB 1

A B

C

P

RDF KB 2

A B

C

P

RDF KB 1

A B

C

P

RDF KB 1

A B

C

P
A B

C

P

RDF KB 2

A B

C

P

RDF KB 2

A B

C

P

A B

C

P

Figure 1. Invalid UNION and INTERSECTION

An example that illustrates this problem is shown in Figure 1, where we have two,
almost identical RDF KBs; the only difference between these KBs is that the range of
property P is different. These two particular KBs cannot be easily merged: UNION is
problematic because P would have two different ranges, whereas INTERSECTION
would be invalid because P would have no explicitly defined range. In both cases, we
must make a decision as to which one should be the range of the property P in the
resulting KB, so as to make the resulting KB valid.

The problem is similar to the one that has been addressed in the Change Impact
Service (see [D5.3]). In that case, the straightforward deletion or addition of some
triple(s) could cause invalidities, which should be resolved by means of side-effects
(additional changes, which are in fact extra deletions and additions) that should be
applied upon the KB. The determination of the side-effects was made using some kind
of preference ordering that allowed us to determine the most plausible way to resolve
some invalidity out of the various possible ones.

29

The same general method will be followed here as well: given some invalid KB (say
K) that resulted as the union or intersection of two or more (valid) KBs (or their
closure), we add or remove some knowledge (triples) to/from K in order to render it
valid. Towards this end, we first identify the ways in which K is invalid (by
determining which validity rules are invalidated). Then, we determine the various
possible ways in which K can be rendered valid. Finally, we use some preference
ordering that determines the most plausible (best) out of the different options for
resolving the invalidity. In the example of Figure 1, the service would select either B
or C as the range of the property, depending on the relative position of B and C in the
subsumption hierarchy.

Thus, the general process followed by the Knowledge Synthesizer is as follows: first,
we identify the triples that correspond to the set-theoretic union, or intersection, of the
triples in the input conceptualizations, or their closure, depending on the mode of
operation; then this temporary set of triples is fed to the component (of the
Knowledge Synthesizer) that will identify and restore any possible invalidity that is
found in that, temporary, KB. After restoring the invalidities (if any), the resulting KB
is returned as the output of the service.

The use of the Knowledge Synthesizer guarantees that the result (output) will be a
valid KB. In addition, the service will always return a KB that is “as close as
possible” to the result of the set-theoretic union or intersection of the input RDF KBs
(or their closure), where the notion of “proximity” between the temporary (possibly
invalid) result and the final output is determined via the preference ordering.

At a more technical level, the signature of the Knowledge Synthesizer will be as
follows:

String merge(String[][] nameGraphSpaceURI, String m ode,
String closure)

The Knowledge Synthesizer accepts in its input a collection of RDF KBs
(nameGraphSpaceURI). Each of those RDF KBs will be represented by a set of
URIs (nameGraphSpaceURI[]), each URI corresponding to a single namespace
or named graph. Thus, each source RDF KB actually corresponds to a set of
namespaces and/or named graphs (and determined by a set of URIs). In order to
determine the triples belonging in said source RDF KB, we take the union of the
triples in the namespaces and/or named graphs corresponding to the input URIs
(nameGraphSpaceURI[]), as well as the triples in the namespaces/named graphs
that depend on those namespaces/named graphs. Note that this kind of union will
necessarily result to a valid KB, as it corresponds to namespaces/named graphs that
are already stored, so they cannot contain conflicts.

In addition, the Knowledge Synthesizer takes in the input a number of parameters that
determine the mode of operation. These parameters determine whether the operation
of UNION or the operation of INTERSECTION will be executed (mode), as well as
whether the inferred knowledge will be considered or not (closure).

30

The output of the service is a string containing the TRIG serialization of the (valid)
RDF KB returned in the output of the service. This RDF KB can be imported in
memory and manipulated using the Main Memory Model API (see [D5.4]), or stored
in the persistent memory (database) for querying and updating.

Further details on the implementation of the service will appear in the upcoming
deliverable D5.8: “Prototype of the Knowledge Matchmaker (V.2.0) and the
Knowledge Synthesizer (V.1.0)”, which is due on M42.

3.2.1 The Process of Merging in the Related Literature

The need for combining KBs and semantic information (in general) has been
identified in several contexts. There are some theoretical works [Kon00], [Kon04],
[KLM04], [KP05], coming from the area of belief merging, that describe several
different operators for combining KBs. For instance, [Kon00] studies the properties of
a number of different merging operators where a KB is a set of first-order formulae.
Although very interesting theoretically, the practical exploitation of these results is
quite distant, given that first-order logic is an undecidable language. Nonetheless,
such approaches uncover the prevailing intuitions behind the process of merging, and
describe an automatic, albeit non-practical, method to perform merging. Our approach
is more practical-oriented and aims to produce a working prototype addressing the
merging of RDF KBs.

There is also a rich literature on ontology merging and integration, that is quite
relevant to our work. Ontology merging and integration deal with the fusion of the
information found in two or more ontologies. There is a subtle difference between the
two fields which is described in [FMK+08]. The former (ontology merging) refers to
the combination of ontologies covering highly overlapping or identical domains; this
process is used to fuse ontologies that contain information about the same subject into
one large (and hopefully more accurate) ontology. The latter (ontology integration)
refers to the composition (via reuse) of ontologies covering loosely related (i.e.,
similar) domains (subjects); this is mainly used when building a new ontology that
covers all these subjects. Note that the terms merging and integration are often
misused in the literature [FMK+08].

Our work on the Knowledge Synthesizer is closer to ontology merging, because the
envisioned application scenarios of the Knowledge Synthesizer within KP-Lab are
expected to require the merging of conceptualizations covering identical phenomena.
Note however that ontology merging corresponds to the operation of UNION; to our
knowledge there is no work in the literature dealing with the INTERSECTION
operation. A thorough literature review of the two areas (ontology merging and
integration) and a lot of pointers to relevant papers can be found in [FMK+08].
Furthermore, it should be emphasized that, to our knowledge, all existing works in
ontology merging and integration use manual or semi-automatic approaches to resolve
the conflicts that may appear during merging [FMK+08].

The most popular tools used for ontology merging are PROMPT [NM00], [NM03]
and Chimaera [MFRW00]. These tools use a semi-automatic approach focused on

31

suggesting how elements from the source ontologies should be merged in the resulting
ontology. The final choice relies on the ontology engineer. An interesting theoretical
approach to ontology integration (also applicable to ontology merging) appears in
[CGL02], which focuses on the formal definition of mappings between the resulting
and the source ontologies and how these mappings can be exploited for query
answering; another theoretical approach to ontology merging can be found in
[BCM99].

Another frequent misuse of the terms ontology merging and integration is to refer to
the fields that are related to heterogeneity resolution, such as ontology mapping,
ontology matching etc (see [FMK+08]). It is true that, in the general case, establishing
a proper mapping between the fused ontologies is critical towards their successful
fusion. However, this is not the only challenge of the merging process: even if a
perfect mapping is provided, the result of fusion is not at all clear, as was shown in
the example of Figure 1 above.

Despite the importance of mappings in the general case of ontology merging, our
work does not deal with the problem of establishing mappings between the different
source ontologies. In the context of KP-Lab, we expect that the terminology used by
the users will be common, so the need for a sophisticated mapping is significantly
reduced. Instead, we assume a simple, default mapping, which is based on a string
comparison of the local names of the URIs of the various elements in the two RDF
KBs, as well as the versioning relationship between the namespaces/named graphs
involved. This mapping is good enough for the expected usage scenarios, described in
the respective section of this deliverable, because we expect the merged ontologies to
be parallel (“fork”) versions of the same ontology.

The fields of ontology merging and integration (which are the most relevant to the
work on Knowledge Synthesizer), as well as the Knowledge Synthesizer itself, have
strong ties with another ontology-related field, namely ontology debugging
[FMK+08]. Ontology debugging is the field that deals with the resolution of
invalidities in a given ontology [FMK+08]; therefore, it is the field that addresses the
most difficult subproblem faced by the Knowledge Synthesizer service, namely, the
determination of the actions to be taken in order to resolve the invalidities caused by
the merging of the source RDF KBs. Details on ontology debugging and several
pointers to the related literature can be found at [FMK+08].

The ontology debugging field is characterized by the fact that many approaches
depend on manual input by the user to determine the proper way to resolve some
invalidity [FMK+08]. Many researchers believe that the best thing an automated
system can do is to propose alternative ways to repair an ontology, but it’s up to a
human expert to select the appropriate one to resolve the invalidity [SC03]. As a
result, most approaches deal with the problem of diagnosis, i.e., determining the
invalidities as well as the source(s) of each invalidity, leaving the problem of repair,
i.e., the resolution of invalidities, to some human expert. In this respect, the tool’s role
is to provide, in a concise and user-friendly manner, all the necessary information that
will help a human expert resolve the invalidity.

32

Nonetheless, there are certain tools that perform automated ontology debugging (e.g.,
[Kal06], [LPSV06], [MLBP06], [QP07]); such tools work on expressive logical
models, such as Description Logics (DLs) [BCMGNPS02] and use tableaux-based
methods to identify the invalidities, the source(s) of invalidities and the necessary
actions for resolving the invalidities. However, these methods are not applicable in the
RDF/S context, as they are based on a different logical setting.

3.3 Analytical and Knowledge Mining Services (V.1.0)
Analytical and Knowledge Mining Services (AKMS) will provide a set of analytical
services based on various data analysis and data mining tasks performed on data
stored in several KP-Lab repositories, e.g. log storage for History and Participation
awareness (see T4.11).

AKMS will be implemented as integrated part of KP-Lab system, because this
functionality requires interaction with end user tools that are developed under WP6
responsibility and platform services that are provided by WP4. The main interactions
between are depicted on Figure 2.

Figure 2. Integration of AKMS services in whole KP-Lab System

The main source of data for AKMS is Awareness repository that provides log storage
for both types of awareness features that are implemented within KP-Lab project, i.e.
Real time awareness (WP6) and History/Participation Awareness (WP4). Information
stored in this repository describes actions, activities, changes and modifications
performed by users in the KP-Lab environment. So this requires communication with
all integrated parts of KP-environment, such as: the support tools e.g. preferences and
setting: the common tools e.g. M2T and additional tools, e.g. SMAT or ASDT (for
the functional view on KP-Lab tools see [D6.6]). This communication will be realized
through client library at the Flex side as was agreed in WP6. This library monitors all

Content
repository

Knowledge
repository

Awareness
repository

Awareness
services

Text mining
services

Awareness GUI
(HPA, RTA)

Data
Export

GUI

Analytical and knowledge
mining services (AKMS)

Knowledge
evolution

Data export
for analysis

Analytical tools (WP6) Community

Search
GUI

ASDT

33

events in GUI and then sends them as a package into Awareness repository. List of
proposed events for monitoring is part of HPA technical specification [HPA01] and
actual list of supported actions can be found on official project wiki [HPA02].

AKMS features are specified according to the end-user application requirements for
knowledge-intensive cooperation and reflection on users’ knowledge practices in KP-
Lab tools. Two main analytical perspectives will be implemented in the first version
of AKMS:

• Services supporting participation and activity analysis of knowledge creation
processes

• Services supporting knowledge evolution analysis
Each of these perspectives emerged from evolutionary discussions with end-user
partners that will use relevant analytical features and results of analyses for their
education or research purposes.

3.3.1 Services for support of participation and activity analysis of the
knowledge creation processes

Within this part two different mechanisms supporting analytical features will be
provided. The first one is aimed for any tool asking for specialized aggregated
information that will further be processed by the tool (e.g. visualized or used for
support of decisions etc.). The second mechanism (see subsection 3.3.2) supports
envisaged stand-alone visualization tool with special support for analytical queries as
they are known in data warehouses. But in this particular case the user will be guided
in the process of formulating the analytical query and a suitable form of visualization
of its results.

The first mechanism will be supported by the following web service.

String eventAggregationService (Query query,
List<AggregationFunction> aggregationFunctions,
Set<GroupBy> groupBy)

query parameter describes constrains which will be used for filtering of the events
included in the aggregated view. Query object encapsulate the following constrains
already specified for HPA:

• actionType - type of performed activity,
• objectID - URI of the Object of activity,
• subjectID - URI of the Actor,
• timeRange - time interval,
• filter - set of key value pairs which will be compared with events

custom properties,
• excludeFilter - true of false, whether include or not events which does

not have properties from filter present in them.

aggregationFunctions: specify the list of aggregation functions included in the view
computed from the set of selected events.

• NumOfEvents - the number of events,

34

• NumOfSubjects - the number of unique subjects included in the result,
• NumOfObjects - the number of unique objects included in the result,
• TimeSpan - the date of the first event and date of the last event

(starting and ending date).

groupBy: specify clause for the grouping of the result. It is possible to specify the
following values:

• Subject - group results by subject,
• Object - group result by object,
• actionType - group result by type of the activity.

return value: XML of the result (scheme to be specified, see example for proposal).

Based on this basic general service some types of helpers will be implemented to
provide concrete analytical requirements, see Example.

Example. This example will present aggregated view, which will select all users
working on the Task1 object and for each user it will contains the number of updates
and time span when the user updated this object:

group by Subject (subjectID), Query(objectID = Task 1,
actionType = update), aggregationFunctions = NumOfE vents,
TimeSpan

Result:

<result>
 <row>
 <subject>User1</subject>
 <numOfEvents>10</numOfEvents>
 <startingDate>10-11-2008</startingDate>
 <endingDate>20-11-2008</endingDate>
 </row>
<row>
 <subject>User2</subject>
 <numOfEvents>2</numOfEvents>
 <startingDate>10-11-2008</startingDate>
 <endingDate>12-11-2008</endingDate>
 </row>
</result>

3.3.2 Tools for support of visual analysis of logs
The Visual Analysis of Logs Service (VALS) will provide functionalities supporting
the "participation and activity analysis" perspective of AKMS. VALS will be
designed to provide users with the following features:

� a user-friendly visual representation of the participation log, adapted to the

formulation of analysis requests;

35

� the possibility for the user to easily formulate analysis requests for retrieving
summaries about users activities;

� the possibility for the user to choose an appropriate mode for the presentation of
the results: “histogram”, “pie-chart” etc.

User interaction steps are summarized in the following Table 3.

Authentication The user connects to VALS by providing login and password

(thus proving that he is allowed to explore the log).
Log presentation The log from the HPA is presented to the user, schematically,

in the form of a graph with clickable nodes (together with a
“submit” button).

Query formulation The user formulates an analysis query, visually, by clicking
on nodes of the graph.

Selection of a result
presentation

VALS shows a menu of available presentation modes
(histogram, bar-chart etc.) for the user to select one.

Result exploration VALS shows to the user the result of the query evaluation in
the selected mode of presentation.

Table 3. User interaction steps identified for visual analysis of logs

Example. Suppose a user would like to visualize in a meaningful way for him the
result of the following query:

Activeness (i.e. count of actions) by participant f or
Task-1.4 during the month of September 2008

The interaction steps between the user and VALS will be as follows:

1. The user connects to http://VALS.lri.fr.

2. If required by the user, the screen showing (which can look like Table 4.) the log
with all events stored in HPA will be presented (this step is not necessary):

ID
(group ID)

Time Subject ID Subject
Type

Object ID Object
Type

Action

1 (1) 2008-07-
31
18:30:07.0

http://www.kp
lab.org/system
model/TLO#S
tudent_Mary

user http://www.kp-
lab.org/system-
model/TLO#Task_
4.3

task modification

2 (2) 2008-07-
31
18:56:30.0

http://www.kp
lab.org/system
model/TLO#S
tudent_Paul

user http://www.kp-
lab.org/system-
model/TLO#Task_
1.4

task modification

3 (3) 2008-08-
01
00:52:54.0

http://www.kp
lab.org/system
model/TLO#T
eacher_Frank

user http://www.kp-
lab.org/ontologies/s
s#Note:_081114-
1642-f2511634-
a914-4dfe-8088-
4070f8b4f53b

Content
Item

cration

Table 4. Example of preview of the selected part of the log (shortened).

36

3. VALS transforms the log with all events stored in HPA into a schema (i.e. a graph)
and shows it to the user (see Figure 3).

Figure 3. Example of a schema automatically derived from the log data

The user formulates his query, by clicking on the nodes (guided by VALS so that he
chooses valid arguments for his query). In our example, the user will perform the
following actions:
� click on SubjectID (thus indicating that he wants the Events grouped by

participant)
� click on ObjectID (specifying “ObjectID = Task-1.4” so that only participants for

that particular task be considered)
� click on Month (specifying “Month= September 2008” so that only participants

for that particular month be considered)
� click on Event (since he wants every Event ID to be considered), then click on

“COUNT” from the menu of operations proposed by VALS
� click on a presentation mode in a menu presented by VALS (line chart, pie chart

etc.)
� click on the “Submit” button and VALS then returns the result in the presentation

mode selected by the user (e.g. in form of a bar chart as shows Figure 4).

37

Figure 4. Example of possible log data visualization in form of a bar chart

Description of services

Log transformation:
TO DO: add signature & a short description
input: Relational table containing the log data
output: A schema presenting the log schematically, in the form of a graph

Query formation assistance:
TO DO: add signature & a short description
input: A set of clicks on a schema graph
output: An analytic SQL query ready for the evaluation

Result presentation:
TO DO: add signature & a short description
input: A query and a choice of presentation mode
output: The query result presented in the selected presentation mode

3.3.3 Services for support of knowledge evolution analysis
Let us start with an illustrative example of a simple knowledge creation process of
this deliverable D5.6 (see Figure 5).

38

Figure 5. Evolution process of D5.6 creation

This particular process can be visualized as a series of actions in time (see Figure 5),
e.g. based on particular versions of the document with relevant properties or linked to
other types of knowledge object – chats, meetings, etc. In order to acquire all
necessary data for such kind of visualization, combined access to all the repositories,
i.e. to the Knowledge repository, to the Content repository, as well as to the
Awareness repository, is needed. Information relevant to the performed events
through timeline can be extracted from the Awareness repository and semantic
information based on properties of relevant objects can be retrieved from the
Knowledge repository.

One possibility to create this flow is:

1. User defines his/her interests – D5.6, from day1 (first draft) to day30 (final
version) → evolution.

2. Each change relevant to this object (D5.6) represents one event in HPA
(Awareness) repository – so list of events will be extracted.

3. Each event represents relevant version of the document – based on the URI,
a relevant version can be found in the Content repository – so important aspect
of this step is to save the ID of the content (versioning of the Content
repository) as custom property in the log of events. It is relevant only for the
objects with the content stored in the Content repository.

4. Based on the URI we can provide some information about each document
version – properties such as title, description, and maybe, if it is possible, also
a description of performed changes. This last information is possible in the
situation when user makes a change in the document and writes a short notice
describing this change, e.g. as some type of own tag. Then we can provide this
type of own tag as the description of changes for relevant version (property
Changes).

Event ID 1 Event ID 2 Event ID 3 Event ID 4

D5.6 v0.1 D5.6 v0.3 D5.6 v0.6 D5.6 v1.0

Actor1 URI Actor2 URI Actor3 URI

Title:
Description:

Title:
Changes:

Title:
Changes:

Title:
Changes:

39

5. Based on the URI we can provide some supporting information for each
version, e.g. assigned actors, chats, meetings, etc.

For these purposes we can use advanced versions of previous service with
combination of relevant queries to the Knowledge repository based on user
requirements – what users want to have in common description of relevant object
version (in Figure 5 you can see property Title, Description and Changes)

Critical Patterns

The AKMS will provide for user’s possibility to define critical patterns and based on
proposed description the system will be able to discover similar types of patterns in
historical or actual data. In the simplest form, pattern is a sequence of actions that lead
to/caused a critical moment, as you can see on Figure 6.

Figure 6. Identification of critical moment and relevant critical pattern that caused it

The critical pattern is defined as the sequence of events (i.e. events which preceded
the critical moment and which have been identified as crucial on this path) and their
relevant semantic properties that sufficiently identify/describe this particular type of
critical pattern.

Particular critical pattern from one process can be manually selected by the user and
can be stored as a new type of the knowledge object. Other users then can visualize
patterns and use pattern-matching service to find similar patterns in the historical or
actual data. Notification service can be integrated with the pattern-matching service to
check current processes and to notify users about the relevant patterns identified in the
ongoing processes (see Figure 7).

Internally, critical pattern can be represented as a sequence of tuples (events):

CP = <actionType, objectID, subjectID, TimeRange> 1, ...,
< actionType, objectID, subjectID, TimeRange> n

Event ID 1 Event ID 2 Event ID 3 Event ID 4

Critical moment Critical Pattern (CP)

40

Figure 7. Discovering defined pattern in historical data

We can decompose the matching of such a sequences to the comparison of two tuples
<>i, <>j, where we need to compare type of the action, object instance and (possibly)
subject instance. Object instance can be arbitrary object of activity and pattern-
matching service will reuse the Knowledge Matchmaker services to compute the
similarity of two objects of activity. The subject is an agent (i.e. user) responsible for
the action. Similarity of subjects can also be computed (if required) for example
according to the groups to which the users belong to.

Possibility for future discussion is to have hierarchy of types of activities to be able to
generalize the concept of critical patterns.

Patterns can be saved into the Knowledge repository, so they will be available for
further usage (they will have its own URI; user can tag the critical pattern, etc.).

CriticalPattern - events[] – is a sequence of events (user actions) identified on the
critical path leading to critical moment in a knowledge creation process.

URI definePatternService (CriticalPattern pattern)

This service returns URI of newly defined critical pattern stored in the Knowledge
repository.

MatchingResult[] matchingService(URI pattern)

- score – similarity between the patterns
- CriticalPattern – new matched pattern from the history data

The result from the matching is a score that measures the level of similarity between
defined and newly discovered critical patterns.

Event ID 10

Event ID 11

Event ID 12

Event ID 13

Event ID 14

Event ID 1

Event ID 2

Event ID 3

Similarity

41

4 Conclusions and Future Work

This deliverable presented functional specification of three different SWKM modules.
The first one is Knowledge Matchmaker (V2.0) and utilizes various text mining,
information extraction, and heuristic methods for advanced access to and
manipulation with shared knowledge artefacts according to the explicit meaning of
artefacts expressed by their textual content, as well as metadata, including semantic
tags. This second version presents a set of completely new services supporting
miscellaneous functionalities derived from the motivating scenarios and mapped on
the high-level requirements providing users intelligent tools for tag consistency
checking, information extraction. Better support on search and notification will also
be achieved.

Next two presented SWKM modules are completely new. The Knowledge
Synthesizer (V1.0) can be used to combine information found in multiple sources; this
feature is necessary to allow automated merging of the conceptualizations modeled in
independently edited conceptualizations.

The Analytical and Knowledge Mining Services (V1.0) provide means for analyzing
participation and activities within past or ongoing knowledge creation processes, as
well as for support of knowledge evolution analysis (by means of manual
identification of critical patterns and their later proactive identification in selected
running processes).

Based on these specifications, proposed services will be implemented and delivered in
form of stand-alone deliverables – software prototypes. In particular, Analytical and
Knowledge Mining Services (V1.0) are due in M40 (deliverable D5.7); the
Knowledge Matchmaker (V2.0) and the Knowledge Synthesizer (V1.0) are due in
M42 (deliverable D5.8).

42

Bibliography

[Bauters07] Bauters, M. et al: Semantic tagging according to PBL vocabulary
requirements - Questions remaining. Version 0.6 draft. KP-Lab internal
deliverable. September 21, 2007.

[BCMGNPS02] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-

Schneider (eds). The Description Logic Handbook: Theory, Implementation and
Applications. Cambridge University Press, 2002.

[Ber03] P.A. Bernstein. Applying Model Management to Classical Meta Data

Problems. In Proceedings of the 1st Biennial Conference on Innovative Data
Systems Research (CIDR-03), pages 209-220, 2003.

[BCM99] T. Bench-Capon, G. Malcolm. Formalizing Ontologies and Their Relations.

In Proceedings of the 16th International Conference on Database and Expert
Systems Applications (DEXA-99), pages 250-259, 1999.

[CGL02] D. Calvanese, G. De Giacomo, M. Lenzerini. A Framework for Ontology

Integration. In I. Cruz, S. Decker, J. Euzenat, D. McGuinness (eds) The Emerging
Semantic Web. Selected Papers from the First Semantic Web Working
Symposium, IOS Press, pages 201-214, 2002.

[ColMol] End User Requirements for Collaborative Semantic Modelling. KP-Lab

internal document, v.0.6, August 2007.

[D2.4] Driving Objectives and High-level Requirements for KP-Lab Technologies.

KP-Lab project Deliverable D2.4, November 2008.

[D5.3] Specification of the SWKM Knowledge Evolution, Recommendation, and

Mining services. KP-Lab project Deliverable D5.3, November 2007.

[D5.4] Prototype (V2.0) of the SWKM Knowledge Mediator, MatchMaker and

Manager. KP-Lab project Deliverable D5.4, March 2008.

[D6.6] D6.6 M33 specification of end-user applications. KP-Lab project Deliverable

D6.6, December 2008.

[D6.6-Search] D6.6 M33 specification of end-user applications – Search. Appendix of

the KP-Lab project Deliverable D6.6, December 2008.

[D6.6-SSpUMT] D6.6 M33 specification of end-user applications – Shared Space and

User Management Tool. Appendix of the KP-Lab project Deliverable D6.6,
December 2008.

[D6.6-DEAT] D6.6 M33 specification of end-user applications – Data export analysis

tool. Appendix of the KP-Lab project Deliverable D6.6, December 2008.

43

[FMK+08] G. Flouris, D. Manakanatas, H. Kondylakis, D. Plexousakis, G. Antoniou.
Ontology Change: Classification and Survey. Knowledge Engineering Review
(KER), 23(2), pages 117-152, 2008.

[HPA01] Technical specification for History/Participation awareness in Shared Space

M24 specifications (M30 update for M32 prototype). http://www.kp-
lab.org/intranet/design-teams/wk-shared-space-and-common-
tools/awareness/participation-and-history-based-
awareness/history_awareness_technical_v02.doc/view

[HPA02] Actual list of action types that are required by particular KP-Lab tools to be

logged:
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=M30HistoryParticipationAwareness
ListOfActionsForLogging

[Kal06] A. Kalyanpur. Debugging and Repair of OWL Ontologies. Doctoral

Dissertation, University of Maryland, College Park. 2006.

[Kay 2007] Kay, J, K Yacef and P Reimann, Visualisations for team learning: small

teams working on long-term projects. In C. Chinn, G. Erkens & S. Puntambekar
(Eds.), Minds, mind, and society. Proceedings of the 6th International Conference
on Computer-supported Collaborative Learning (CSCL 2007) 351-353, New
Brunswick, NJ: International Society of the Learning Sciences.

[Kon00] S. Konieczny. On the Difference Between Merging Knowledge Bases and

Combining them. In Proceedings of the 7th International Conference on Principles
of Knowledge Representation and Reasoning (KR-00), pages 135-144, 2000.

[Kon04] S. Konieczny. Belief Base Merging as a Game. Journal of Applied Non-

Classical Logics, 14(3):275-294, 2004.

[KLM04] S. Konieczny, J. Lang, P. Marquis. DA2 Merging Operators. Artificial

Intelligence, 157(1-2):49-79, 2004.

[KP05] S. Konieczny, R.P. Perez. Propositional Belief Base Merging or How to

Merge Beliefs/Goals Coming from Several Sources and Some Links with Social
Choice Theory. European Journal of Operational Research, 160(3):785-802, 2005.

[LPSV06] S.C. Lam, J. Pan, D. Sleeman, W. Vasconcelos. A Fine-Grained Approach

to Resolving Unsatisfiable Ontologies. In Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelligence (WI-06), 2006.

[LocSca08] Locoro, A., Scapolla, M.: Editing Semantic Tags Specifications Draft

version for M27 release. Version 1.2 for M27. April 22, 2008.
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=M27EditingSemanticTagsSpecificat
ionsDraftVersion

[MFRW00] D. McGuiness, R. Fikes, J. Rice, S. Wilder. An Environment for Merging

and Testing Large Ontologies. In Proceedings of the 7th International Conference

44

on Principles of Knowledge Representation and Reasoning (KR-00), also available
as Technical Report KSL-00-16, Knowledge Systems Laboratory, Stanford
University, 2000.

[MLBP06] T. Meyer, K. Lee, R. Booth, J. Pan. Finding Maximally Satisfiable

Terminologies for the Description Logic ALC. In Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI-06), pages 269-274, 2006.

[NCLM06] N. Noy, A. Chugh, W. Liu, M. Musen. A Framework for Ontology

Evolution in Collaborative Environments. In Proceedings of the 5th International
Semantic Web Conference (ISWC-06), 2006.

[NM00] N. Noy, M. Musen. Algorithm and Tool for Automated Ontology Merging

and Alignment. In Proceedings of the 17th National Conference on Artificial
Intelligence (AAAI-00), also available as SMI technical report SMI-2000-0831,
2000.

[NM03] N. Noy,.M. Musen. The PROMPT Suite: Interactive Tools for Ontology

Merging and Mapping. In International Journal of Human-Computer Studies 59(6),
pages 983-1024, 2003.

[QP07] G. Qi, J. Pan. A Stratification-based Approach for Inconsistency Handling in

Description Logics. In Proceedings of the International Workshop on Ontology
Dynamics (IWOD-07), pages 83-96, 2007.

[SC03] S. Schlobach, R. Cornet. Non-Standard Reasoning Services for the Debugging

of Description Logic Terminologies. In Proceedings of the 18th International Joint
Conference on Artificial Intelligence (IJCAI-03), 2003.

[Search] P. Bednar. Technical specification of Indexing and Search services. Version

0.5 draft, KP-Lab internal deliverable. September 30, 2007.

[SemTag] Specifications for Annotating Knowledge Objects with Semantic Tags. KP-

Lab internal document, October 2007. Available at: http://www.kp-
lab.org/intranet/design-teams/wk-management-and-analysis-of-complex-
knowledge-structures/semantic-tagging/annotating-knowledge-objects-with-
semantic-tags/AnnotatingObjectsWithSemanticTags-specifications-v1.doc/view

[SW_SUS] M. Bauters et al. WK5: Document Centered Collaboration. System usage

scenarios for the Semantic wiki. KP-Lab deliverable. Revision 0.61. 23.11.2008

