N
N

N

HAL

open science

KP-LAB Knowledge Practices Laboratory —
Specifications and Prototype of the Knowledge
Repository (V.3.0) and the Knowledge Mediator (V.3.0)

Dimitris Andreou, Vassilis Christophides, Giorgos Flouris, Dimitris Kotzinos,

Panagiotis Pediaditis, Petros Tsialiamanis

» To cite this version:

Dimitris Andreou, Vassilis Christophides, Giorgos Flouris, Dimitris Kotzinos, Panagiotis Pediaditis,
et al.. KP-LAB Knowledge Practices Laboratory — Specifications and Prototype of the Knowledge

Repository (V.3.0) and the Knowledge Mediator (V.3.0). 2009. hal-00593216

HAL Id: hal-00593216
https://hal.science/hal-00593216

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00593216
https://hal.archives-ouvertes.fr

& KPP b

KNOWLEDGE PRACTICES LABORATORY Information SOCiﬁLV
Technologies !

27490

KP-LAB

Knowledge Practices Laboratory

Integrated Project

Information Society Technologies

D5.5: Specifications and Prototype of the

Knowledge Repository (V.3.0) and the Knowledge M ediator (V.3.0)

Due date of deliverabl&1/01/09
Actual submission dat€9/02/09

Start date of project: 1.2.2006 Duration: 60rths

Organisation legal name of lead contractor for tlakverable:
Foundation for Research & TechnologWellas (FO.R.T.H.)

Final

Project co-funded by the European Commission within
the Sixth Framewor k Programme (2002-2006)

Dissemination L evel

PU

Public v

PP

Restricted to other programme participants (inclgdhe Commission Services)

RE

Restricted to a group specified by the consortiunolding the Commission Services)

CoO

Confidential, only for members of the consortiumc{uding the Commission Services)

Contributor (s):

Editor (s):
Partner (s):
Work Package:
Nature of the
deliverable:
Internal
reviewers:
Review
documentation:

Dimitris Andreou ICS-FORTH andreou@ics.forth.gr
Vassilis ChristophidesICS-FORTH christop@ics.fagth
Giorgos Flouris ICS-FORTH fgeo@ics.forth.gr
Dimitris Kotzinos ICS-FORTH kotzino@ics.forth.gr
Panagiotis Pediaditis ICS-FORTH pediadit@ics.fapth.
Petros Tsialiamanis ICS-FORTH tsialiam@ics.forth.gr
Giorgos Flouris ICS-FORTH fgeo@ics.forth.gr
ICS-FORTH

WP5- Semantic Web Knowledge Middleware

Report

Michal Racek (POYRY)
lvan Furnadjiev/Tania Vasileva (TUS)

http://www.kp-lab.org/intranet/work-
packages/wp5/result/deliverable-5.5/

Version history

Vassilis Christophides

Version | Date Editors Description
0.1 September Giorgos Flouris, Initialization document, tasks and
25, 2008 | Vassilis Christophides | responsibilities.
0.2 December| Giorgos Flouris First draft ready
18, 2008
0.8 January | Dimitris Andreou, Incorporated comments and
12,2009 | Markos Charatzas, various corrections, second draft
Vassilis Christophides,| ready
Giorgos Flouris,
Dimitris Kotzinos,
Panagiotis Pediaditis,
Petros Tsialiamanis
0.9 January | Giorgos Flouris, Final proof-reading done, final
16, 2009 | Dimitris Kotzinos draft ready for internal reviews
1.0 February | Giorgos Flouris, Review comments considered and
4, 2009 Dimitris Kotzinos, incorporated in the document;

final version delivered

Executive summary

This deliverable reports the technical and resea®elopment performed un

M36 (January 2009) within tasks T5.2 and T5.4 of3APthe KP-Lab project, per

H

the latest Description of Work (DoW) 3.2 [DoW3.Zhe described components are

included in the KP-Lab Semantic Web Knowledge Méddhre (SWKM) Prototypg

Release 3.0 software that takes place in M36. fiHease builds on the Prototy
Release 2.0 that was presented in [D5.4].

The present deliverable includes both the spetifica as well as th

implementation details for the described componéitie description of the featur

of the new functionalities is provided based on mhetivating scenarios and the

subsequent functional requirements. The focus hadigh-level objective of th

new services is the provision of improved scalgb#ind modularity properties gn
the existing services, as well as improved managéemabilities upon
conceptualizations. The implementation of the s®wis described by providing the

1%

D

D
(%]

D

related services’ signatures, their proper ways#, uhe accepted input parameters,

as well as their preconditions and effects.

Initially, we describe the Delete Service, whichai&nowledge Repository service

allowing the removal of existing namespaces from tbpository; such remov
includes the deletion of the contents of said ngaess, as well as the deletion
any reference to the namespaces themselves tls$ @xithe repository. This ne
service enhances SWKM management capabilities apoceptualizations.

Then, the Named Graphs functionality is describelich is a new feature th

allows a very flexible modularization of the infoation found in RDF KBs. We

describe in detail the semantics of this featuseyell as the offered capabilities f
querying and updating RDF KBs that include modaktion information (i.e.
information on named graphs) and the implicatioomftheir use.

Finally, in the context of the Knowledge Mediatave present the Persistgnt

Comparison Service, which is a variation of thesgmg (Main Memory)

Comparison Service (see M24 release, [D5.3], [D5ujlike the original version,

the new service works exclusively on the persissémtage, guaranteeing improv,
scalability features.

al
of
W

Table of Contents

TABLE OF CONTENTS ..ottt sttt st s seste s sesseseesesseneesesseneesessenensessenen 5
1 INTRODUGCTION.ciiiiietisieietesieeete et te e tesaese e aesessessesessessesessessesessessenessensensasessens 6
2 YO I I N RSO 8
2.1 COLLABORATIVE IMODELLING «.tttttttaasaaeeeeeeeeeaettst e s e e e e e e aaaeeeteasssbssaaaaaaaeseeeaaeeeesessnsnnnnns 8
2.2 EMERGING FUNCTIONALITY L..etttiiieiiiiititteesssitteeeeeesatteeeeeesssaeeeeesssnnsseeaeessnsseeeaessannneneeeenan 8
3 HIGH-LEVEL FUNCTIONAL REQUIREMENTScootiirireneriereseees s 10
3.1 KNOWLEDGE REPOSITORY. ...ceeetiiutttiteeesittteeeeeesattteeeeesaastaeeesssastseeeeesssnssseeeeesansseeeeessannes 10
3.1.1 Removing Conceptualizations.............coiieeeeeeeeee e 10
3.1.2 Modularity of Conceptualizationscceeerirrrmiiireiierieeieeeeee s e eseeneeeeeees 11
3.2 KNOWLEDGEMEDIATOR.....cetteiiutititeeessttteeeeesaansteeeeeesaussaeeeesastsseeeessansnsseeeesannssseeeeess 13.
3.2.1 Scalable Comparison of Conceptualizations............ccoooviiiiiiiiiiiiiiiiiiiiieeeeeeee e 13
3.3 SUMMARY OF FUNCTIONALITIES ...t e e eeitteeeeeetttte e e e e e e e et eeteaeasaasb s e e e e e aaaeeeesesnenanannns 14
34 CONNECTION WITHKP-LAB HLRS ...ttt e e 16
3.4.1 Delete Service (Knowledge REPOSITOrY)ocaaooceiieeaeaaaieeiei e 16
3.4.2 Named Graphs (Knowledge REePOSITOIY) eeeeeeaaeiaaiaiiiiiieiieiieeeeeeeaaaaaens 16
3.4.3 Persistent Comparison Service (Knowledge MediatQr)............c..uueeeieeeiiiiiinieaannnnnnnn. 17
4 FUNCTIONAL AND ARCHITECTURAL DESIGN.....ccooiiiirienenieeseseese e 18
4.1 KNOWLEDGE REPOSITORY. ...cceetiiuttttteeesittteeeeeesattaeeeaesaasteeeesssnsteeeesesssssseeeeesanssneeeessanses 18
I A B 1= 1= (=S =T YT =S PP PUPPPPPPRRR 18
4.1.2 Modularization Using Named Graphs..........cccccceveieeeeeeiii e e e e 20
4.2 KNOWLEDGEMEDIATOR.....cettetiititteeeessttteeeeesaantteeeeeesansseeeeesastsseeaessansnsseeeesannnsneeeeess 31
4.2.1 Persistent COMPAriSON SEIVICEuuuuuuiiiiiiiieiiiiiiaaaaaaaa e e e e e reeeeeeaaaaaeeas 31
5 IMPLEMENTATION ..ottt sttt ettt st st se st enessessensesesseneesessenes 33
51 OVERVIEW AND PRELIMINARIESiiiiiiiiiiteiiiaii e e e e e e e e e eeeeasseasasst s s s e e e e aaaaeeesssnsnnnnnnsns 33
L0 I R 4 Lo Y O 1Y o | PRSP 33
5.1.2 Installation and ConfigUrationoeeeeeeeiiiiiiiaaa e 34
5.2 KNOWLEDGE REPOSITORY. ...ttt teeeaetteeeitttttiiaa s e e e e e aaaaeeeeeeaesesbabs e s e e e aeaaaaeeeesssbannaaaaaaeas 35
O R B = 1= (oS T o PP PRRT 35
Lo \\F- Y2 1 =T I = o 1 35
5.3 KNOWLEDGEMEDIATOR.....cettetittteteeeesattteeeaessansteeeeeesaussaeeeesastsseeaessansnsseeeesannnseeeeeess 36.
5.3.1 Persistent COMPAriSON SEIVICEcuiiiiiiiieeeeiee e e e e e e e e e e 36
6 CONGCLUSION ittt et sttt ettt e e st st e bt be b enesbenane 37
7 BIBLIOGRAPHY ..ottt sttt st sttt sttt neneenes 38

1 Introduction

In the context of KP-Lab we need to create, evame manage various kinds of
conceptualizations supporting either KP-Lab toalsteroperation [D4.2.3ll], or

learners’/workers’ knowledge transformation praesic[DKKCO08]. Consider for

instance, conceptualizations that describe ledfenkers’ understanding of a
particular object of interest or phenomenon undervestigation; such

conceptualizations play essentially the role obtgmic artefacts allowing knowledge
workers/learners not only to externalize their ustiding of the domain/problem at
hand but also to compare their underlying modelfangctices. In particular, it also
allows them to elicitate complementary or contreadie viewpoints. Such kinds of
knowledge creation processes constitute the sparklthe trialogical framework

[TCFKMPSO06], [TCFKMPSO07].

As described in [D5.3], such conceptualizations aepresented usindQRDF/S
Knowledge BasefKBs). More precisely, a conceptualization usually casgs an
ontology along with corresponding instantiationsitsf classes and properties. An
ontology is a vocabulary of terms (i.e., a taxonpneyriched with various types of
constraints, relationships and rules which canxpressed in the RDF/S data model
(see [KMACPSTO04] for details).

In order to effectively support the life-cycle afch conceptualizations, a number of
services have been developed, and are currentilableafor use in the context of the
KP-Lab Environment and end-user tools. Such sesviceve been described in
previous deliverables ([D5.1], [D5.3]) and are ud#d in the second prototype
release of the SWKM services (V2.0), which wasasésl in M24 and described in
[D5.4]. In the present deliverable, we presentgbecification and implementation of
some additional services developed during the Yastr, aiming to enhance the
management facilities of RDF KBs. The new serviglesig with refined versions of
the old ones are part of the third prototype redeasthe SWKM services (V3.0),
which is due in M36 (January 2009) and have beeeldped in the context of tasks
T5.2 (SWKM Knowledge Access and Evolution Services)d T5.4 (SWKM
Knowledge Repository).

The current deliverable includes both the spedibcaof the new services, as well as
the technical details regarding their implementatidhe new services include the
Delete Service(Knowledge Repository), the enhancement of the r@uedate
Service with named RDF/S graphgKnowledge Repository) and thBersistent
Comparison Servic&knowledge Mediator). The objective behind theoduction of
the new services is the provisionimifproved scalability and modularity propertiea
the existing ones, as well asnproved management abilitiespon existing
conceptualizations.

More specifically, the manipulation and managenwiRDF/S KBs is based on the
Knowledge Repository storage and its services: hmpéxport, Query, Update
[D5.1]; one missing piece of functionality is thebildy to remove obsolete
conceptualizations from the repository, which wien@orted but not used anymore.
The Delete Service covers this need, as it wasloese in order to allow the user to
remove in a consistent way RDF/S KBs from the kmalgk repository. The typical

usage of this service is the removal of an RDF/®easpace which is, for various
reasons, no longer needed or wanted. The DeletecB8aran be used to completely
remove an unwanted namespace and its correspondsgigntiations from the
repository; in effect, this action corresponds tondoing” a previous import
operation, as it removes all traces of the reqdestenespace from the repository,
including the triples that belong in the namespadbe, reference to the namespace
from the list of namespaces in the repository, ddpendency links to/from the
namespace etc.

On the other hand, the ability to modularize RDEf&phs is expected to serve
several needs in KP-Lab, for example in determirting origin or ownership of
information (per learner or per source of informaatconsulted), or how a particular
piece of information evolves, or in order to impdexible access control policies on
parts of an RDF KB. These needs arise by the HgyelL Requirements (HLRs) of
KP-Lab [D2.4]; we elaborate on this in section 3he named graphs functionality
covers this modularization need by allowing therusedefine, store and manipulate
modules of RDF/S graphs; such modules are defisedgnamed graphsor sets of
named graphs (calledraphsets Named graphs and graphsets can be viewed as
containers of triples and represent the “logicatgfa(modules) of the full RDF/S
graph. Named graphs and graphsets provide a vexjblé and powerful way to
represent modules of RDF/S graphs, which is swatédyl several diverse applications,
as described above. The introduction of the modine®RDF/S graphs requires
suitable support both at the level of the undedymepresentation of triples (for
storing the association of each triple with the adngraphs or graphsets that it
belongs to) and at the level of SWKM services (ipleit the advanced RDF/S
modelling capabilities offered by named graphs)this deliverable, we describe in
detail the semantics of named graphs and graphseteell as the support that is
currently provided in terms of querying and updatmamed graphs and graphset
information (per DoW 3.2 [DoW3.2)).

Apart from the Knowledge Repository, this delivdeablso deals with the Knowledge
Mediator which includes the knowledge evolutionvgass, i.e., Comparison, Change
Impact and Versioning. One need that was identifia$ the scalability of these
services in order to be usable over large KBs, mgittet the size of RDF/S KBs
manipulated in KP-Lab is increasing (approximatzB8% on average over the last
four months). Thus, scalability of the evolutionrdees emerges as a crucial
requirement in order to successfully deploy the ldB-Environment and tools in real
working and learning settings.

Scalability can be achieved by moving the bulk leé tomputational and storage
needs of the services from the main memory to #gmsigtent memory. Using this
idea, and starting from the Comparison Service @D5we developed a version of
the service that works on the persistent memorys(gtent Comparison Service). This
service enables to outline the differences betwesrations of conceptualizations
expressed in the RDF/S data model in a similar todiie functionality offered by the
Main Memory Comparison Service (described in [D5[85.4]). However, rather

than in main memory, comparisons of RDF/S KBs aszfogpmed directly in

secondary memory (i.e., the knowledge repositoay)] thus the implementation
challenges are different. In addition, the userth@d two services (Main Memory
Comparison Service and Persistent Comparison 3rigdaced with an interesting

trade-off between the maximum supported size ofpayed RDF/S KBs and the time
required to compute the differences.

2 Motivation

2.1 Collaborative Modelling

Collaborative modellingconstitutes an important knowledge practice intequnany
professional and scientific communities, as welliravarious educational settings.
Models are more than mere descriptions of a pdaaticobject of interest or
phenomenon under investigation, because they prawmbortant epistemic features
(i.e., for understanding of the modgler se as well as of the underlying modelling
practices) that can trigger exploration, inquirydaknowledge creation [PHO5].
Recent advances in semantic web technology prowseand more powerful means
to support collaborative modelling activities byoaling the users to externalize,
share, and evolve their own models and modellinguages.

In the context of the KP-Lab project, two exampmésecently developed tools [D6.6]
for supporting collaborative modelling activitieentred around conceptualizations
expressed as RDF/S KBs [D5.3] are the Collaborddiemantic Tagging [SemTag],
in which learners collaboratively annotate vari@aestent items with semantic tags
(i.e., vocabulary terms), and the Collaborative &etic Modelling [ColMol], in
which learners have additionally the possibility structure the terms of their
vocabularies using various semantic relationshigpshsas “is_A” and “has_part”.
These tools are developed to cover different needisrequirements of the learners
[D2.4].

In these tools, collaborative modelling, rathemtl&ing an isolated activity, is tightly
integrated into everyday groups’ work practicegngl with an open access and
reference to various forms of employed knowledgefacts. Moreover, knowledge
workers and learners are stipulated to developratee conceptualizations of a
particular object of interest or phenomenon underestigation and to support
triangulation of the different perspectives, withdéosing the information regarding
the origin of (and the rationale behind) each cptgaization. In order to trace the
rationale of the conceptualizations’ evolution, meafor comparing successive
versions of conceptualizations have to be in plaa®,well as negotiation and
argumentation mechanisms that support the exchainigieas towards converging to
a common understanding of the domain at hand. bitiad, the evolution and
negotiation process often implies that older versimay have to be discarded in the
process of building new and more adequate conclegstians.

2.2 Emerging Functionality

In this setting, collaborative modelling activitiemay take several forms. For
example, users may concurrently edit some sharedeptualization, while seeing
synchronously the changes performed by the whabepgrAlternatively, they may
edit their conceptualizations locally on their maral space and commit and merge
asynchronously their conceptualizations in a shapate. In the latter scenario, the
merging process may be either initiated centrajlyabcurator of the models or in a
peer-to-peer fashion by the learners themselvesioth cases, adequate tools are

required to monitor and analyze the differencethefdifferent conceptualizations as
well as to record the rationale of the underlyingdelling choices made by the

knowledge workers or learners in order to arguersgbtiate about the acceptance or
rejection of the changes made so far. During thelevprocess, we may need to keep
in the knowledge repository the full history ofeninediate versions, or only the most
“important” ones.

A comprehensive analysis and classification ofwi@ous dimensions characterizing
collaborative modelling activities was presentediNCLMO6] and is briefly reported
in the following:

* Whether the collaboration synchronousor asynchronousi.e., whether the
knowledge workers/learners will collaborate on theme version of the
conceptualization or using different local copiedich are afterwards
committed and merged. In the former case, adecugigort for inspecting the
effects and side-effects of the proposed changethersame version of a
conceptualization are required (see also Changadtpervice [D5.3]). In the
latter case, support for fusing automatically dife conceptualizations when
the curator or the learners take the final decsim required (see also
Knowledge Synthesizer [D5.6]).

* Whether the editing is performed incantinuousmanner saving only the
latest version (and allowing rolling back to anyeyous version—- see
Versioning Service [D5.3]), or in atep-wise mannerin which different
“official” versions of a shared conceptualizatiae @ublished, but the history
of the individual edits between versions is nottkgmd thus discovery of the
differences between consecutive versions can erpexd onlya posteriori—
see Comparison Service [D5.3]).

* Whether there is some central controur@tion) over the contents of the
produced shared conceptualization or only peeretr-pinteractions are
supported. The existence of multiple versions efthared conceptualization
and/or local ones highlights the need for adequagagement tools (e.g., to
import, export [D5.1] or delete conceptualizatiorem the knowledge
repository, as well as to store metadata on theeqnalizations through the
use of a Registry Service [D5.3]).

* Whether there is some (semi-)automated assisthateecordsrfionitorg the
performed edits and, possibly, creates adequatadatet and/or logs on the
changes implemented so far. In particular, metadhtaut the origin (e.g., a
group or a curator) and the reasons why the changes made (e.g., whether
the appearance or disappearance of a concept éwaversion relates to the
appearance or disappearance of other concepts oelaifonships among
them) are crucial in order to compare the undeglymodelling practices (such
metadata are usually captured by a Registry Sefidse3]).

Depending on the context, different combinationghef above dimensions stipulate
different processes of collaborative knowledge towea and result in different high-
level requirements for the SWKM services and thelldb end-user tools supporting
such processes. For example, the Visual Model EQMME) and Visual Modelling
Language Editor (VMLE) [D6.6] support asynchronowstep-wise collaborative
editing, which could be curated or non-curated.

In the sequel, we will detail the design rationaflehe new SWKM services delivered
for M36. In this respect, we consider that sharethdividual conceptualizations of
knowledge workers and learners are representedsbyies of user-defined RDF KBs,
including both the schema and the data of eachegpiunalization.

It should be stressed that SWKM services aim t@sumot only the management of
user-defined ontologiggonceptualizations) but also of tK€-Lab system ontologies

(see [D4.2.3ll] for details), thus enabling toolsteroperation. Even though such
ontologies are relatively stable, changes may ofrour time to time, especially when

new versions of the KP-Lab end-user tools are seléalhe main additional need that
arises from the existence of such ontologies @tedl to such changes. In particular,
when an old version of a system ontology is refldmnga new one, the older version
should be entirely deleted from the repository whsrthe (usually large amount of)
underlying instances need to be reclassified uttdenew ontology version to ensure
a seamless functioning of the related services@id.

3 High-Level Functional Requirements

3.1 Knowledge Repository

3.1.1 Removing Conceptualizations

As already mentioned, one of the needs that anséhé process of managing
ontologies and RDF/S KBs is the need to withdravexsting conceptualization that
is no longer needed, or to “undo” some storageatjmer which was made by mistake,
or using the wrong input etc. In the context of K&b, this need may arise in several
scenarios.

As an example, consider the case of a learner #tatts developing a
conceptualization in his personal space (e.g.,saa/i modelling language in the
VMLE tool), but, in the process, he realizes thiatdfforts are totally out of track. In
such a case, the learner might be better off startis efforts from scratch and
discarding whatever he has developed so far, rdtier attempting to correct the
existing conceptualization. If, however, he hagadly stored his conceptualization at
the knowledge repository, this also includes timaeal of the conceptualization from
the repository.

In another context, the deletion operation may Beful in order to allow the
replacement of an old ontology version by a new. dngthermore, the ability to
remove conceptualizations from the repository maysken as a way to “undo”
previous storage operations; such a need may &risexample, when an import was
made by mistake, or using the wrong set of ingasf{serializations).

As conceptualizations are represented by RDF/S KiBs, Delete Service is
essentially used to remove RDF/S namespaces atahdes classified under these
namespaces. The Delete Service should work dirapiby the persistent storage, and
it should remove both the contents of the removathaspace (i.e., classes and
properties), the classification links of the ingt@s classified under the deleted classes

10

and properties, as well as any references to theesace itself that may exist in the
database.

It should be stated that erasing the contents ofamespace and the instances
classified under this namespace could not be fuiyported using existing services
(e.g., Update and Change Impact Services). Themdaghat the Update Service can
only be used to remove instance resources of aspane, so the schema cannot be
deleted, whereas the Change Impact Service workkeomain memory and cannot,
therefore, directly delete the contents of a stor@thespace. Moreover, these services
can only be used to remove thententsof the namespace, but cannot be used to
remove theeferences to the namespanehe list of the dependent namespaces, or in
other records maintained by the Knowledge Repagsiferg., dependency links).
Thus, by simply removing the classes and propediesgiven namespace we would
get an empty namespace, but the reference(s) toatinespace itself would persist in
the repository.

The deletion of a namespace may cause problem&edeta the validity of the
Knowledge Repository. For example, if the deletathaspace has some dependent
namespaces or instance resources, and we proced itwi deletion in a
straightforward manner, then we risk the existemdedangling references to
physically deleted resources.

The easy way to avoid this problem is to state, thden deleting a namespace, all
dependent namespaces and instance resources bleaddteted along with it. This is
not always the desirable behaviour of the senhocaigh: in many cases, we may not
know what are the dependents of a namespace, ousdwthem and for what reason.
Thus, deleting such dependent namespaces may peaolsiems to other users. In
such a scenario, we should not be allowed to deleyedependents, so we have no
option but to abort the operation if there are @ependents. In other cases (for
similar reasons), we may want to retain the datssilied under the deleted
namespace’s classes and properties. Note thatirgain this context, does not mean
that the operation should be aborted, as in the chdependent namespaces. Instead,
there is a more clever way out of the problem, rgriee reclassificationof the data

in a way that would leave no dangling referencethéendatabase. The reclassification
should classify the class and property instance®iuthe minimal superclasses and
superproperties of the deleted classes and preperti

The above considerations apply both in the contéxiser-defined ontologies and
system ontologies. Note that both types may haterdapendencies (see also
[D4.2.311]), as well as data, so the above optionake sense for both cases;
nevertheless, we expect that for system ontolape®ption of reclassifying the data
will often be chosen, whereas for user-defined logies either the option of

removing the data and the dependent namespacéke @ption of retaining them

altogether will be chosen. From the above requirdmet follows that the Delete

Service should support a variety of operational espdjiving the user the option to
determine the desirable behaviour of the servica per-case basis.

3.1.2 Modularity of Conceptualizations

One of the requirements that arise from the preshodescribed scenarios (section 2)
is the need to record the origin of each piece nbwkedge codified by a

11

collaboratively developed conceptualization. Kegpitrack of metadata about
creation and modification history, influences, ovamgp, as well as othgrovenance
or lineageinformation (see [Tan07] for a survey) is crugrabrder to makénformed
judgments about the quality, integrity, and autiwtyt of data and knowledge
developed by a group of editors (in synchronousfassonous or centralized/peer-to-
peer settings).

In the context of learning, this requirement coaligbear, for example, in the case of a
learner who uses VME to create a model recordirigrnmation found in several
different sources (e.g., books, web pages, othdearmers etc). In many cases, it is
useful not only to store the relevant informatitself, but also to store thsourceof
the information. The latter (source of the inforima} could be important in
determining thesupport or reliability of each piece of information in the
conceptualization.

This need could be viewed as part of a more geneatl for modularization of
conceptualizations represented as RDF/S KBs. Depgrah the granularity of the
logical modules and the modularization policy, mladaation may be useful in
different ways, e.g., by allowing learners to cldiownership” of some part of an
RDF/S KB (see HLR4.1, HLR9.1 [D2.4]), or by desandp the source or modelling
rationale underlying each contribution made (se®#H, HLR12.1 [D2.4]). In order
to support such a modularization, we should be @blassociate each of the triples
that compose the RDF/S KB with zero, one, or mbas tone module.

Note that the solution of codifying each “modul@ta a separate conceptualization
(e.g., a separate RDF/S KB) is not enough for aupg@ses, because the connection
between such modules, in the context of a largaceptualization that engulfs all of
them, would be lost. Instead, each module would vimved as a separate
conceptualization, a fact which does not coincidt® wur original intentions.

Some (simple) kind of modularization within a seglonceptualization is offered by
namespaces [BHLTO6]. However, the modularizatioferefl by the namespaces
solves our problem only partially, as namespaces @ number of deficiencies
regarding the modularization they offer. First dif the modularization offered by
namespaces is restricted to the schema level dng/not clear where (i.e., in which
namespace) a data triple belongs to. Secondly,fabes of namespaces is on
modularizing the names (URIs) of classes and ptiggedefined in ontologies; what
we need here is a modularization of the concematidin itself, which is actually
composed by the triples that exist in the RDF/S KBsirdly, namespaces are not
flexible in their modularization abilities, sincayaname in the schema must belong to
one, and only one, namespace; therefore, sharingaymation between namespaces
is not allowed.

As a consequence, we need some other mechaniswithbé used to group triples

into modules. Each such module (as a whole) shioald resource of its own which
should be accessible, referable to, and which ¢atddlf, be associated with some
metadata information. This feature is necessayrdter to decide “how credible is”,

or “how evolves” a piece of knowledge codified bganceptualization.

12

One of the most difficult problems that arise dgrimodularization is the fact that
some parts of the information (especially non-eplones) cannot be clearly
classified in one of the modules. As an examplester the scenario where each
module represents the origin of the informationnsider also some piece of
information (say z) which is not explicit, but ingdl by two explicit pieces of
information which have different origin (say x,with origin G,, G, respectively). In
this case, what is the origin of z? The only sat&iry answer would be that the
origin is not any of the existing modules, busisredbetween G G; thus, in this
case, z is assigned to more than one modalethe same time and in a shared
fashion so our solution should support the assignmergamie information in the
conceptualization to more than one modules in geshi@ashion.

Note that the “shared assignment” of a triple etiof modules is different from the
multiple assignment of a triple to different modulén the first case, the assigned
triple does not belong to any one of the modules,itbbelongs to all of them in a

joint fashion; in the second case, the triple bgéomdependently to each of the
modules. The above two modes of triple assignneentddules could be combined.

Of course, having defined modules that satisfy dbeve requirements is not, by
itself, enough. We need such modules to be manbgdabthe various services,

meaning that the underlying representation shoaldlde to record the assignment of
information into modules and that all the SWKM see¢ should recognize and

support such modules. This requirement asks foretiteancement of all existing

SWKM services in a way that they will be able talerstand, store, retrieve, query,
update, compare etc information on the modulesjedisas triples that are assigned to
specific modules, taking into account the assigrirréarmation.

3.2 Knowledge Mediator

3.2.1 Scalable Comparison of Conceptualizations

Comparing individual viewpoints of a particular ebj of interest or phenomenon
under investigation is one of the main activitiewards the construction of a shared
conceptualization among group members. First ofitafielps identifying how shared
or individual conceptualizations evolve over timlditionally, it may be viewed as
an aid towards the negotiation and argumentaticotgss, because it helps the
learners identify the converging and conflictingrtpabetween their viewpoints
[NCLMOG6]; this allows the learners to focus on fh@ints that cause disagreements
and need further argumentation and negotiation.

Note that such a comparison should have the aldittake into account not only
explicit but also implicit knowledge encoded in anceptualization expressed in
RDF/S (see also [ZTCO7]). The need for comparingceptualizations has been
elaborated in [D5.3], where we described the ComparService that allows us to
detect the differences between two RDF/S KBs umdaous modes and parameters.

The main characteristic of the Comparison Servieesion implemented for the
second release (V2.0) in M24 [D5.4] is that it weoda the main memory. This means
that the compared RDF/S KBs must be loaded in then rmemory before being
compared, so they have to fit into the availablennmemory. This approach allows

13

fast execution of the comparison, but, unavoidaislyconstrained by the size of the
available memory. Therefore, even though the CommparService performs well for
small and medium-sized conceptualizations, it doest scale for large
conceptualizations. The problem does not usualpeapwhen one considers only the
schema information of RDF/S KBs (which is often #jnaut it does appear when the
instances are also considered.

It also emerges as a need in the context of th&ddPproject since a large number of
instances is actually starting to populate thetmgskKP-Lab ontologies [D4.2.3l]
and their number is constantly increasing. To beemspecific, the knowledge
repository currently (January 2009) contains mdnant 25000 class instances,
classified under 219 classes, and more than 12p0d@Perty instances, classified
under 349 properties; this size is constantly gsifior example, during the last four
months (September 2008-January 2009), the numbaljetts in total (classes, class
instances, properties, property instances) in th@enedge repository has risen by
approximately 238%. Note that this increase doé¢safiect so much the services that
work directly upon the repository (e.g., Query, dgdetc), but it affects a lot the
services that work on the main memory (e.g., Chamgaact, Comparison etc).

To address this problem we have implemented for M3@&ew version of the
Comparison Service which is able to compare comedigations directly in the
secondary memory of the knowledge repository. Bliengh such an implementation
is slower than the original main memory implemapntat(because accesses to the
hard disk are slower than accesses to the main nygnitds not limited by the size of
the machine’s main memory, but by the size of trecmme’s hard disk, which is
expected to be much larger. The functionality arghaviour of the Persistent
Comparison Service is identical to the one providgdhe main memory version of
the service. Therefore, the high-level functionabjuirements for the Persistent
Comparison Service are the same as those desanbj€b.3] regarding the Main
Memory Comparison Service.

The persistent version of the Comparison Servigeisneant to replace the original,
main memory version. Instead, the existence of botplementations of the

Comparison Service provides the KP-Lab system deees the opportunity to use
either, depending on the setting; in particular, $mall and medium-sized RDF/S
KBs, they can employ the main memory implementatiwhich will execute the

comparison more efficiently than the persistent lengentation, whereas for
comparing large RDF/S KBs they may employ the gesi version of the service,
which is scalable and guaranteed to produce atyesdn though it is not as efficient
as the main memory implementation.

3.3 Summary of Functionalities

The following table summarizes the high-level regoients identified for the services
and functionalities described in this deliveralale well as the service or functionality
that provides the related function.

Functionality | Short Description |Related Service or Functionality
Knowledge Repository

14

Remove a
conceptualizatior
along with its
dependent

namespaces ang
instance

Allow the removal of a
nnamespace from the
repository, including its
contents and any
references to it; any

dependent namespace;s

Delete Service allows the deletion of
namespaces, including their content
and any references to them; exact

behaviour determined by the mode ¢
operation

"4}

resources or instance resources
should be deleted as well
in the same way
Remove a Allow the removal of a |Delete Service allows the deletion of

conceptualizatiof
only if it does not
have any
dependent
namespaces or
instance

nnamespace from the
repository, including its
contents and any
references to it; if it has
any dependent
namespaces or instanc

namespaces, including their content
and any references to them; exact

behaviour determined by the mode ¢
operation

a)
-

resources resources, neither them,
nor the namespace
should be deleted
Remove a Allow the removal of a |Delete Service allows the deletion of

conceptualizatiof
along with its
dependent
namespaces; an
dependent
instance
resources shoulg
be reclassified

nnamespace from the
repository, including its
contents and any
yweferences to it; any

should be deleted, and

resources should be
reclassified

dependent namespaces

any dependent instance

namespaces, including their content
and any references to them; exact

behaviour determined by the mode ¢
operation

~

D

Create and storg
modules of
information

Create modules of
information and store
them in the repository

Named graphs and graphsets allow
definition of highly flexible modules

Find the triples,
nodes or module
that satisfy a

certain property

Query RDF/S KBs
taking into account
module information

An extension of RQL allows the
execution of more sophisticated
gueries that can return and consider
triple assignment to modules

Add/delete triples
to/from modules

sUpdate RDF/S KBs,

including module
information and the
association of triples
with modules

An extension of RUL allows the
execution of more sophisticated
updates that can update and considg
triple assignment to modules

Manipulate
modules

Create new modules or
remove existing ones
from the repository at
will

An extension of RUL allows the
execution of special updates that cre
and remove modules

Knowledge M ediator

)

15

=

the

ate

Scalable Allow the comparison ofPersistent Comparison Service allows

comparison large conceptualizationsthe comparison of large

in a scalable way conceptualizations; the comparison is
performed at the repository level for
scalability purposes

Table 1. Summary of Requirements and Functionalities

3.4 Connection with KP-Lab HLRs

In [D2.4], a number of User Tasks (UTs), Drivingj@tiives (DOs) and High-Level
Requirements (HLRs) were defined. Here, we willatdiég the connection of such
UTs, DOs and HLRs with the components presentekisndeliverable, as well as the
relation of such components with non-functionaluiegments in the KP-Lab project.

3.4.1 Delete Service (Knowledge Repository)

The Delete Service is associated with HLR4.4:“Usars able to save and share
conceptual models (e.g. vocabularies and visual ets@gd which is part of
DO4:“Users can describe the semantics of artefaetd their relations” and
UT2:*Modifying the content of the shared artefaictdividually and collaboratively”.
It is also associated with HLR6.3:“Users can shamne integrate different visual
modelling languages, ontologies and vocabulariegiich is part of DO6:“Provide
users with possibilities to develop and use theim oconceptual models” and
UT2:*Modifying the content of the shared artefaictdividually and collaboratively”.
Both associations stems from the fact that theimsfpaof visual models, visual
modelling languages, ontologies, or vocabulariesuldramply the existence of
various versions of the same conceptualizationretbee, improved management
capabilities of such multiple versions should existluding the ability to remove
obsolete conceptualizations.

3.4.2 Named Graphs (Knowledge Repository)

The concept of named graphs intends to supportnabau of functional and non-
functional requirements of the KP-Lab Environmemd #ools. More precisely, named
graphs is a generic mechanism for modularizing kedge in such way that can be
used to identify (through URIs) and establish efees to sub-graphs of large RDF/S
KBs and to encode additional information such &sdhgin of the sub-graph or the
access policies related to it. One of the featafesamed graphs is that they allow for
simultaneous memberships, so that any artefactpeaticipate in any number of
named graphs at the same time. On the usability, sidmed graphs allow us to
improve query performance by restricting the seaphce only to sub-graphs of
interest (so, e.g., costly and frequent querieatedl to the retrieval of a KP-Lab
shared space could be optimized in this respatt)he sequel, we will present the
main HLRs related to the functionality of namedpira

First of all, the named graphs functionality is asated with HLR1.1:“Users can
create structure and share various artefactsqketches, various kinds of texts, video
and audio-files, models as well as ontologies) ime @lace”, which is part of
DO1:“Provide a collaborative environment where assn work on shared artefacts”
and UT1:"Organizing shared artefacts and collaibgatools”; in a more generic
sense it is also associated with DO3:*Users areiged with support for the re-use of

16

shared artefacts and structures”, which is pathefsame UT. As described above,
named graphs allow us to structure collectionsrtéfacts (and their relationships)
and handle them afterwards as unique entitiesyameéed by a unique URI in the
RDF/S KB. Named graphs can serve any purpose dimeg do not carry any

predefined semantics allowing the user to attach semantics as he deems
appropriate.

Along the same lines, HLR4.4:“Users are able teesawd share conceptual models
(e.g. vocabularies and visual models)”, which ig ph DO4:“Users can describe the
semantics of artefacts and their relations” and {tMadifying the content of the
shared artefacts individually and collaborativeydn be served by the capability
provided by the named graphs to encode in a flexiay (i.e., through reification)
the source of each RDF/S knowledge module withmgosing a particular RDFS
schema (since they carry no semantics themselgeslekcribing the actual contents
of the module; this is coupled with the capabitiyprovide a single and unique way
(URI) to reference any (visual) model enablingséamless saving and retrieval.

Furthermore, named graphs functionality is assediatith HLR9.1:“Users can track
the evolution and changes of knowledge objects famdl out their authors and
contributors (sequences of performed steps in tinok, versioning)”, which is part of
DO9:“Users are provided with history on content elepment and work process
advancement” and UT3:"Management and organizatibncallaborative work
processes”. With named graphs, changes can besttackmparisons can be made
and evolution can be captured in a more aggregagt (not only at the single artefact
level), since named graphs can be seen as singfiegn

Finally, the named graphs functionality is ass@dawith HLR12.1:*Users can work
around a shared “virtual whiteboard” view where laobrative modelling and
discussion takes place”, which is part of DO12:{Rde users with means to capture,
reflect, discuss and model their activities andd@welop new models of working” and
UT5:“Investigation and development of knowledgeqtices”. In order to better serve
this HLR we will need to build upon the ability afamed graphs to encode
information on the source (origin) of each piecedafa; this kind of information is
useful during collaborative modelling and discussiMoreover, it provides users
with the ability to separate modelling or discusssessions, refer to or comment on
them as single unique entities and reuse themear ¢bntents as they see fit.

3.4.3 Persistent Comparison Service (Knowledge Mediator)

The Persistent Comparison Service is associateld MitR4.5:“Users are able to
compare and integrate different knowledge represents/visual models”, which is
part of DO4:“Users can describe the semantics teffaats and their relations” and
UT2:*Modifying the content of the shared artefaictdividually and collaboratively”.
The association originates from the fact that tlesiBtent Comparison Service
provides another, more scalable way to execute dbmmparison of different
knowledge representations/visual models.

17

4 Functional and Architectural Design

4.1 Knowledge Repository

4.1.1 Delete Service

The purpose of the Delete Service isdiglete an entire namespamcluding its
contents) from the underlying repository. Upon sssful execution, the Delete
Service removes the requested namespace (inclitgimgntents) from the database
and could also possibly affect dependent namespacésdata, depending on the
user’s choice on the mode of operation (see [Diad{letails on nhamespace and data
dependencies).

Let us initially consider the simple case where tiser requests the deletion of a

namespace (say nsl), which has no dependent naresspa data triples (the

namespace nsl itself may depend on other name$pabesis the simplest case, in

which the namespace’s contents, as well as angerefes to it are removed from the

database, in particular:

» All the triples that use names from nsl are delétau the database.

» All the names from ns1 and the references to themesmoved from the database.

« All the references to nsl are deleted from theldeta (e.g., nsl is removed from
the list of namespaces, all hamespace dependenky that involve nsl are
removed etc).

At the end of the operation, there will be no tratasl in the database. The Delete
Service can, in this respect, be considered a&trmeplement” of the Import Service,
in the sense that if we import a namespace anddélete it, the repository will return
to its original state; similarly, if we delete amespace and then re-import it, the
database will return to its original state. As aute the Delete Service allows us to
“undo” import operations (and vice-versa).

The above are true so long as nsl does not havelependent namespaces or data
triples. If a namespace ns2 (or data triple t) ddpeon nsl, then the dependent
namespace ns2 (or data triple t) has no valid megawithout the existence of nsl,
because it refers to URIs (resources) defined th As described in the previous
section, dealing with such dependent namespacedatadtriples can be done in
different ways.

The simplest way to deal with the problem of deggrncdhamespaces and data triples
is to delete them along with the deleted namespdoriever, as explained before,
there are cases where this kind of action is neiralele. In such cases, the user has
the option to retain dependent namespaces andridés.

In the former case (i.e., retaining dependent npawss), the Delete Service cannot
proceed with the deletion of the original namespa® that would render the
repository to an invalid state. More specificaltihe removal of the namespace’s
contents would create dangling references in tipemigent namespaces. Thus, if there
are any dependent namespaces and the user dis#lenwsieletion, the service will
fail, and nothing will be deleted.

18

In the latter case (i.e., retaining dependent dafdes), the Delete Service can
overcome the problem heclassifyingthe instances involved in the dependent data
triples, rather than deleting the dependent dgikes altogether.

The reclassification is performed as follows: datiginally classified under about-to-
be-removed classes (or properties), will be retladsunder certain superclasses (or
superproperties) of the about-to-be-deleted clagmeproperties); those superclasses
(and superproperties) are all the minimal supeselagor superproperties) that are not
in the namespaces that are about to be deleted. Wdy, all the problematic data
triples are replaced with triples that would naate any dangling references.

More precisely, the steps of the aforementionetassdication are as follows:

» Consider an individual &a which is directly clagsd under the classes A.,An.
Let us assume that the classes. AAx are contained in the namespace to be
deleted or in its dependents.

* For each A(i=1,...,k), find the minimal (most specific) class] which will not
be deleted (i.e., they are not parts of the delewmdespace or its dependents),
let's say B ...,Bim.

* Reclassify &a under B

* Remove the classification links between &a andi#L,... k).

As an example of this process, consider Figurehg. deletion of namespace ns1 will
cause the deletion of classes ns1#A, ns1#D. luee asks for a reclassification of
the data resources, then the resource &a, origistdksified under ns1#D and ns3#C
will now be reclassified under ns2#B, ns3#E and#@s3The classification links to
ns2#B and ns3#E will be created because ns2#B aBdEnare both minimal
superclasses of ns1#D that do not belong in theespate(s) to be deleted (nsl in
this case). The classification link to ns3#C wiirgist, because ns3#C is not affected
by the deletion.

?? ?9

Delete ns1 (with

rdfs:subclassOf reclassification)
————>

Figure 1: Reclassification in Delete

The same process as with class instances is asofaisproperty instances which can
be reclassified in the same manner. Also, notedlaas instance reclassification may

19

affect property instances as well: the deletioa ofass instance causes the deletion of
all associated property instances, whereas thexssfication of a class instance
causes the reclassification (if possible) or defefiif reclassification is not possible)
of the associated property instances.

Note that this reclassification semantics is id=itio the semantics used in RUL
[MSCKO5] (which is employed by the Update Servicehen the deletion of a
classification link is requested in the Update 8&ryRUL), a reclassification like the
one described above takes place. In fact, thiows the Delete Service implements
the reclassification process (i.e., through callshie Update Service). The reader is
referred to [MSCKO5] for further details on the pess.

Summarizing the above we could say that, dependmghe user’s selections, we

have the following different modes of operation tioe Delete Service:

1. Soft Delete Under that mode, the Delete Service will fail tifere are any
namespaces or data triples which are dependindh@mamespace to delete. In
any other case, the input namespace is deletedg alith its contents and any
references to it. In the example of Figure 1, te&etibn (under “soft mode”) of
ns4 will succeed (and will delete ns4#G and thelislR of ns4#G to ns2#F), but
any other deletion would fail (under “soft mode”).

2. Hard Delete with Reclassificationder that mode, the Delete Service will delete
the namespace in its input, along with all its dej@mt namespaces (if any). All
data classified under the deleted namespace (deftendents) will be reclassified
as described above. In Figure 1, one can see fibetdf this mode of operation
when deleting ns1. If, in the same figure, we wasked to delete ns3, on the other
hand, then the operation would cause the delefidiotn ns1 and ns3, as well as
the reclassification of &a under ns2#B only.

3. Hard Delete Under that mode, the Delete Service will delegnamespace in its
input, along with all its dependent namespaces datd triples (if any). If this
deletion leaves any resource unclassified, theuresois deleted altogether from
the database. In the case of Figure 1, the delefims3 would cause the deletion
of ns1 and the deletion of the resource &a (aloity all its classification links);
on the other hand, the deletion of ns2 would céfuseleletion of ns1 and ns4, but
the resource &a would persist, and would be clesksiinder ns3#C only.

The input to the Delete Service is the namespacelelete, along with some
parameters indicating the “mode” of the operatitme output is a boolean flag
indicating success or failure of the operation. ddetails on the related methods’
signatures and the implementation of the servigpeapin the next section.

The Delete Service works exclusively on the pegsitsstorage level, which means
that the service does not use the Main Memory Atel does not load the deleted
namespace in the main memory. The service is imgiaa by executing adequate
SQL update operations (DELETE) upon the databassking sure that all the

contents of the deleted namespace(s), as well lahelreferences to them (e.g.,
dependency information) are removed.

4.1.2 Modularization Using Named Graphs

Named Graphs

20

In the relevant literature [CBHSO05], the proposedutson to the modularization
problem outlined in previous sections is the intrctcbn of named graphswhich
allow the decomposition of an ontology or RDF KBoiogical modules. A named
graph can be simply viewed ascantainer of triplesto which we have assigned a
name (URI). Using this URI, we can refer to nameabbs using RDF/S triples, just
like we do for all types of resources. Formallyyaaned graph can be modelled as an
assignment (function) of sets of triples to URlar{res) [Ped08].

Applying this line of thinking in our context, wellhassociate each named graph with
one logical module in the RDF/S KB, so each modutauld correspond to one
named graph. The concept of named graphs provittesoé flexibility in the offered
modularization for several reasons. First of alhaaned graph can contain both data
and schema triples. Secondly, named graphs areddan triples, unlike namespaces
whose focus is on names and nodes of the RDF/Shgfapthermore, there is no
restriction as to the number of triples contained named graph: it could contain any
number of triples, or no triples at all. Similarlhere is no restriction as to the
assignment of triples to named graphs: one spddifie could belong to one named
graph, many named graphs, or no named graphs &irally, the association of each
named graph with a URI allows us to refer to themea graph as a whole in RDF
triples, thus being able to set metadata and dtifermation on the named graph
itself. The flexibility offered by named graphs ati@ir ability to modularize RDF/S
graphs has already been exploited in the literataspecially in the context of
provenance tracking and recording [CBHSO05], [WNO6].

Most of the named graphs (modules) that appedrarsystem are defined by the user
(through the use of adequate RUL statements oéxhended RUL presented in this
deliverable). However, there is one special namegply the DEFAULT# named
graph, which is not user-defined, but system-defirend has been introduced for
backwards compatibility purposes. This named gregh be queried, updated and
accessed, just like any other (user-defined) nagnagh. By default, it is assumed to
contain all triples that have not been explicithgigned to any particular named graph
(thus, a triple belonging to “no” named graph isuatly a triple belonging to the
DEFAULT# named graph). Unlike user-defined namedpgs, the #DEFAULT
named graph exists by default in the knowledge sy and cannot be removed.

Co-ownership and Graphsets

The introduction of named graphs in our model hasumber of implications, the
most important one being the fact that they forsetasintroduce a new and more
general concept (thgraphse} in order to be able to fully exploit the modutgri
offered by named graphs. The need for graphsetsssteom the need for explicit
“shared assignment” of a triple to a set of namegblgs, whose semantics is that the
triple does not belong to any of the named graghthe set in isolation, but to all
named graphs of the set at the same time, in a sfa-ownership(see [Ped08]).
This state of co-ownership appears mainly due té-&IDference but the real need
that forces us to introduce graphsets stems froenfalet that RDF/S graphs are
updatable, dynamic entities and our update semantics requires that inferred
knowledge is a “first-class citizen” that needsb retained, if possible, after the
update.

21

....................... » |mp|ICIt

rdfs:subclassOf {Go}
—_—— >

(6,6}

[&a rdf:type B] 0 G, G }
[B rdfs:subClassOf A] O G, v

[&a rdf:type A] 0 {G,,G,}

Figure 2: Graphsets in Inference

The problems that arise due to the inference mestmaare illustrated in Figure 2. In
that figure, it would be a mistake to classify {imaplicit) triple [&a rdf:itype A] into
any single named graph, because its generatioasisdbon the existence of triples in
both G and G. The only acceptable solution is to claim thas ttriple belongs to
both named graph¢$G; and G) in a shared fashianThis “shared ownership” is
represented using the notion of a graphset, wiichset of named graph@amely,
the set {G,G;} in our example) that the triple belongs to.

It should be emphasized that a triple belongingsioand/or G is different than
belonging to {G,G,}. In the former case, the named graphsa@d/or G contain said
triple, whereas in the latter the triple does nefobg to any of @ and G
independently, but only to {{f5,} in a shared fashion. Therefore, saying that @dri
belongs to multiple named graphs (or graphsetshm#wat a triple belongs to each of
those named graphs (or graphsets) in an indepemna&mbier, whereas saying that a
triple belongs to certain named graphs in a joashfon means that it belongs to the
graphset formed by those named graphs (and ontlgisngraphset, i.e., it does not
belong to the named graphs themselves). Note ibaDEFAULT# named graph can
also be used to form graphsets.

The need for the introduction of graphsets preséstdf even more emphatically
when updates are considered. During updates (ircplar, deletions), we are often
faced with the need to introduce in an explicit mamtriples which were originally
implicit. This is due to the semantics of RUL upsafMSCKO05] and the fact that as
much as possible of the original implicit knowledgeretained during an update.
Whenever such a situation arises, we must maketisatéhe newly introduced triples
are assigned to the correct named graphs (or ggteg)hs

22

rdfs:subclassOf kY mplicit * Explicit

- ©H (Gh

[&a rdf:type B] O G,
[B rdfs:subClassOf A] 0 G, {{G1,Gy} [Delete 16,65}

[&a rdf:type A] O {G,,G,}
X

Delete :
[&a rdf:type A]
from {G,}

Figure 3: Graphsets in Change

In the example of Figure 3, the newly introducedgjoally implicit) triple [&a
rdf:type A] should be assigned to the graphset,@g3, as described above. The
introduction of this triple is due to RUL semanti@ddSCKO05], per which, implicit
triples which will lose their support due to a dele operation are explicitly
introduced in the RDF graph. The assignment ofethlicitly introduced triple to
{G1,G;} is due to the fact that both named graphs “coatgel’ in the inference of the
original triple [&a rdf:type A]. Note that this dagament means that graphsets do not
only contain implicit triples (as in the case ofyiie 2), but may contain explicit
triples as well. This feature is extremely impottaas it allows the user txplicitly
declare certain triples to belong to graphsetseffect stating that said triples belong
to several named graphs in a shared fashion, ratlaer to any individual named
graph.

It can be easily inferred by the above that a gsaphontaining just one named graph
(e.g., {G}) is in fact the same as the named graphTherefore, a named graph can
be seen as a special type of graphset. For eageséntation, in the following we
will only refer to graphsets, assuming that nameablgs are the graphsets whose
definition contains just one named graph.

Further, note that the modularization flexibilityhébited by named graphs is also
extended to graphsets. More specifically, a graphs&y contain any number of
triples, even zero, whereas a triple may belongnyp number of graphsets (including
individual named graphs), without any limitatiomsthis respect. The only limitation
of graphsets (with respect to named graphs) isttieat are not assigned a URI, only
an internal ID; thus, one cannot directly refeatgraphset in an RDF/S triple (e.g., in
order to assign metadata information to the graphs®wever, graphsets can be
referred to indirectly, via their constituent nangdphs.

A further implication of these facts is that grapissare first-class citizens in our
model, i.e., they are considered of equal valu@mamed graphs, since they can be
assigned triples in an explicit manner, just like did with named graphs in the
simplified model. Also, the notion of named graphsstill supported, because a
named graph G is identified with the graphset {G§., a named graph can be
considered as a special type of graphset. For rdetails on the semantics of
graphsets and their properties, the reader isrezfdo [Ped08]. In the same work, the

23

interested reader may find the details of the fdimaton underlying the definition of
graphsets (and named graphs).

Named Graphsand Graphsetsin SWKM

The introduction of graphsets in our model solves problem of modularization of
RDF/S graphs. Nevertheless, being able to fullyl@kphe functionality offered by
graphsets requires their full support in the enkinewledge management process;
such a support should include support at the lefvtiie serialization of RDF/S graphs
with graphset information, as well as extensionghef existing main memory and
database representations to capture and storesgtajpiiormation, and should also
involve all the existing SWKM services, whose setitanare obviously affected by
the enrichment of the standard RDF/S model withing notion.

The present deliverable concerns the support dilyramiegrated (and implemented)
in the Query (RQL) and Update (RUL) services, ascdbed in [DoW3.2]. However,
a few notes on the level of support provided bydtier services and components of
SWKM are in order.

At the level of the serialization of RDF/S graptieere is currently no well-defined (or
accepted) standard supporting graphset informatiim.the other hand, the TRIG
format, which is supported by the SWKM platform,hénently supports the
serialization of named graphs (the RDF/XML formaesd not). Thus, if we want to
serialize an RDF Graph that contains named grajohnration, this can only be done
using the TRIG format.

At the level of the database representation, getphgoport has been implemented as
an optional feature in the HYBRID representatiorgamng that the new persistent
storage is backwards compatible with the older isesv (which didn’t support
graphset information). The main memory model, andther hand, does not support
graphsets.

The Import and Export services of the Knowledge d®épry can easily be upgraded
to support graphsets; note however that the impMatien of such services

presupposes the existence of a serialization fotingdtsupports graphset information,
which is currently not available. The support famporting and exporting named

graphs (which is supported by the TRIG serializgtizas been included in the current
versions of the Import and Export Services.

Finally, as far as the rest of the SWKM services@mncerned (Knowledge Mediator,
Knowledge MatchMaker, Knowledge Synthesizer, Anefitand Knowledge Mining
Services) there has been no provision, at the moni@nsupporting graphsets. In
fact, the introduction of graphsets in such sewiemuld present several technical
difficulties and would introduce changes in theemantics. In addition, at the
moment, there does not seem to exist the needufdt a support in any of the
Working Knots.

On the other hand, the Query (RQL) and Update (R&#ryices have been extended
in order to fully support querying and updating RBFgraphs with graphset
information. Such a support is far from trivial, dsinvolves certain non-trivial
extensions in both the semantics and the syntakeofjuery and update languages
(RQL/RUL). Moreover, the extended query and updatguages (RQL/RUL) should

24

be backwards compatible with their older versicamsd should, at the same time,
support querying and updating graphset informatas,well as triples in RDF/S
graphs that contain graphset information. The tetdithe syntax of the new query
and update languages (RQL/RUL), as well as thedeidails on their semantics, can
be found at [Ped08]; here, we will give an overvieimhe new functionalities and
some basic explanation of their semantics.

Note that the introduction of support for graphsatthe existing Query and Update
services does not affect their reliability or pemi@nce; queries and updates that do
not involve named graphs would be interpreted amti@ed using the original query
and update algorithms and would return the sameltse¢since the services are
backwards compatible). However, the new, enhanegsions of the services allow
the execution of more complicated queries and @sdéte., involving graphset
information).

Querying Named Graphs and Graphsets

At the level of queries, the introduction of graphmformation allows the execution
of more sophisticated and complicated querieshénoriginal RQL, one could ask for
the triples (or nodes) that satisfy a certain prigpen the new RQL, one can ask for
the triples, nodes, or graphsets that satisfy taiceproperty. The property which the
triple, node, or graphset, is required to satisyrhe determined taking into account
graphset information.

The above flexibility allows the user to ask foe tihformation contained in a specific
graphset or which graphset contains a specificepadcinformation; the answers to
both queries can be filtered using filtering comlis regarding the triples and/or the
graphsets involved. Thus, the new functionalitpal querying for different things,
such as: the graphset(s) in which specific triplddslong to; the graphset(s) that
satisfy a certain property (e.g., containing al@)ipthe existing named graphs in the
system; the triples that belong in certain graf¥ethe triples or nodes that satisfy a
certain property; the triples or nodes that satsbtertain property within one or more
graphsets, or within the graphsets that satisfiv@ngproperty; or the triples or nodes
that satisfy a certain property, as well as theplgsats that participate in the
satisfaction of said property. For backwards combgay purposes, when no graphset
information is provided in a query, then all gragiissare considered by default (note
that this is the behaviour of the original RQL, wdhgraphsets are not supported).

25

The above types of queries can be also combinéarto more complicated queries.
Some examples of queries, their syntax and thgeeed response by the system for
the RDF KB shown in Figure 4 can be found in thiéofaing table. For more details

on the extended RQL,

refer to [Ped08].

rdf:type

....................... >

rdfs:subclassOf

————>

properties
—>
Figure4: Querying with Graphsets
Description Syntax Expected Result (Figure 4)
Find all graphsets thatSELECT g {G1,Gy}
define &b as an FROM g::A{x} {G3}
instance of A WHERE x=&b
Find all instances of ASELECT x &cC
in {G2} FROM g::A{x}
USING NAMEDGRAPH
g=&G2

Find all graphsets INSELECT g {G2,G3}
which C is a subclagsFROM g::A{;$X}
of A WHERE $X=C
Find all subclasses of ASELECT $X,g B,{G3}
and the graphsets [FROM g::$X C.{G2,G3}
which they are defined)l WHERE $X < A E{G.}
Find all subproperty SELECT @X,@Y,g P,Q.{G}
relations and the FROM g::@X;@Y
graphsets they belong
to

Table 2: Examples of RQL Queries

Let us suppose that the RDF/S graph in Figure 4deasloped by a learner in order
to record the information found in different sowc@dooks, web pages, other co-
learners, etc) as well as the source of each irdbam. Then, each named graph in the
figure would represent one source of informatiosing the above queries, the learner
would be able to find all the sources that supporhe given information (query #1,

#3), or the information of a certain form that das found in a given source (query

26

#2), or the information of a certain form that daa found in any source, as well as
the source that supports each such informatiorriggi#4, #5).

Updating Named Graphs and Graphsets

At the level of updates, the new feature is thgtlds can now be added to (and
deleted from) graphsets. Note that the new, exteriRldL (and, consequently, the
new Update Service) only supports the updating if@dcemoving) of data triples,

just like the original RUL (and Update Service).

It is easier in the analysis that follows to viehetnew RUL as dealing with
quadruplesi.e., triples associated with graphset infornrati@s in the original RUL,
the full expressive power and patterns of RQL carused to specify the triple(s) to
be added and/or deleted to/from the respectivehgeifs), i.e., the quadruples to add
and/or delete; this feature guarantees the fleilof the language in terms of being
able to specify with accuracy the quadruple(s)datded/deleted. The semantics of
executing an update operation are complicated eyabt that more housekeeping is
required in order to determine the side-effects gjmekify the triples’ assignments to
graphsets following an update. An additional featof the new RUL is that we can
manipulate named graphs and graphsets, by allomddgions and deletions of entire
named graphs from the repository.

More specifically, the addition of a new data tiplassociated with a graphset,
proceeds, as usual, by adding the new triple as®ativith the graphset that the RUL
statement requires; if no graphset informatiorpeceied, then the DEFAULT# graph

is assumed; if the quadruple exists already (tlee, required triple exists and is
associated with the graphset that the insert s@iemequires), then the operation is
void and no insertion takes place.

INSERT g::A(&a)
USING NAMEDGRAPH g=G1

rdf:type @V
rdfs:subclassOf
—_—p {G} {GH
Insert {G1,G;}
[&a rdf:type A]
to {G,}

©}

Following the addition of the quadruple, redundaalimination takes place, as usual,
the only difference being that redundancy elimmratshould now take into account
the graphset information as well (i.e., it workstbe level of quadruples, rather than
the level of triples). For example, in Figure %¢ thiple [&a rdf:type A] is redundant,
because it belongs to {(&,}, whereas in Figure 6, the same triple belong§3e},

so it is not redundant and is kept after the update

Figure5: Insert Operation (1)

27

rdf:type
....................... » ‘._“‘ ‘._“
rdfs:subclassOf
——» {G} {G,}|
Insert G} G
[x rdf:type A] A { 1}
to {G,}
©
INSERT g::A(&a)
USING NAMEDGRAPH g=G1 : :

Figure 6: Insert Operation (2)

The deletion of a quadruple is more complicatedlikdninsertion, deleting a triple
without specifying the graphset from which to delét implies that the triple is
deleted from all the graphsets that it appearsf itite triple does not appear in any
graphset, the operation is void. Following the tlete of the triple from the
graphset(s) as required, the following actions rbedaken:

1. Verify that the about-to-be-deleted quadruple wilbt re-emerge as an
implication of the remaining quadruples. If thistiee case, then remove all
data quadruples participating in the implication tbé about-to-be-deleted
quadruple. Note that, again, graphset informatitayg a critical role; for
example, in the operation shown in Figure 7, thpldr[&a rdfitype C],
belonging in {G}, must persist, because it is not involved in amylication
causing the generation of the deleted triple ([&atype B] in {Gy}); this is
not the case in Figure 8, where the operationfferént, and said triple must
be removed.

2. All (implicit) triples that are implied by the abbto-be-deleted quadruples, or
by the quadruples detected in step 1, must petsitgss they are included in
the list of triples to be deleted that was ideatlfby the delete statement itself,
or in step 1. For this reason, we must explicittid ssuch triples, carefully
assigning them the correct graphset informatiom.éxample, in Figure 7, we
add the triple [&a rdf:itype A] in {@Gs}; in Figure 8, we add the triple [&a
rdf:type A] in {G1,G,,Gg}, as well as the triple [&a rdf:itype D] in {GGs} (the
latter is caused by the removal of [&a rdf:typef@jm {G1}).

3. After all class instantiations have been fixed, gteps 1 and 2, we must make
sure that all explicit or implicit property instagsc are deleted or kept as
necessary. In particular, eaelplicit property instancevhich is originating
from (or leading to) one of the instances whosé¢amgation is affected by
steps 1, 2, is checked for validity; if its sour@e target) is not correctly
classified (explicitly, or implicitly, and regardie of the graphset information)
under the domain (or range) of the respective sehenoperty, then the
property instance is removed. Moreover, eactplicit property instance
which is originating from (or leading to) one ofethinstances whose
instantiation is affected by steps 1, 2, is chediegd/alidity; if its source (or
target) is correctly classified (explicitly, or ihgtly, and regardless of the
graphset information) under the domain (or randethe respective schema
property, then the property instance should be ,kept given that it is
currently implicit, it is added (unless its additizvould cause a redundancy).

28

rdfs:subclassOf

————>

Delete G2} ///E"-_:st} G} //"ng}

[&a rdf:type B]
from {G,} (G}

DELETE g::B(&a) (G} {Gl}§

USING NAMEDGRAPH g=G1

Figure 7: Delete Operation (1)

The above steps (especially #3) are quite complicdhe general idea is the same as
in the original RUL, however, the critical differea that complicates the problem is
the fact that we are now dealing with quadruplesher than triples. The reader is
referred to [MSCKO5], [Ped08] for details on thensatics of the original and the
extended RUL respectively.

{G3}|
rdfs:subclassOf
7 ’G ©
Delete -
[&a rdf:type B] {Ga} - {G3}
from {G,,G,} i
DELETE g::B(&a)

USING NAMEDGRAPH (G}
g=gset(G1,G2) :

Figure 8: Delete Operation (2)

As already mentioned, the new RUL allows us alsexplicitly manipulate named
graph and graphset information. In particulars ipossible to:
1. Insert a new named graptwhose semantics is that a new, empty named graph
(and the respective graphsets) are added in tlsitepy.

29

2. Delete all data contents of a named graplhose semantics is that all data
triples in the given named graph are deleted. @ptip, one can also delete
the data contents (i.e., all the data triples) lintkee graphsets in which the
given named graph participates in.

3. Delete an empty named graph from the systehbse semantics is that a
named graph, and all graphsets that contain saitedaraph, are removed
from the system. Note that this operation will failhe named graph itself, or
any of the graphsets that include it, contain aipjeis (data or schema).

4. Force delete a named graptvhose semantics is that the data contents (i.e.,
the data triples) of the named graph and the gedplikat it participates in are
deleted (like in operation #2), and then, the nargeaph itself and the
graphsets that it participates in are deletedmipty (like operation #3). Note
that this operation will fail (roll-back) if the need graph itself, or any of the
graphsets that include it, contain any schemaesipl

It should be noted that the above operations camgpdied only to user-defined
named graphs; they cannot be applied on the sydé&dfimed #DEFAULT named
graph.

The above operations (insert, delete, operationsamned graphs) can be arbitrarily
combined forming more complicated update requestbet handled by the Update
Service. Furthermore, insert and delete operatiosiswere supported by the original
RUL are supported by the enhanced version too; Wiexyeeplace operations with
graphsets have not been defined, even though eeglperations without graphset
information are still supported.

In the aforementioned example of the learner whlomnds some information on a

domain and the related sources, the updating fematwould allow, for example, the

insertion of a piece of information (data triplégrag with its related sources (i.e., the
sources where the information was found in), orrémaoval of the association of a
certain piece of information (data triple) with spe sources (meaning that we no
longer believe that the particular piece of infotima was provided by the particular
sources), or the removal of a certain piece ofrmftion (data triple) from the RDF/S

graph entirely (irrespectively of the source assthmans). In addition, the operations
on graphsets allow the manipulation of sourcesh aag the introduction of a new

source (as a preparation for adding informatioateel to that source), or the deletion
of some source (which could be empty, or could bketdd along with its data

contents, if not empty).

Implications from the I ntroduction of Named Graphs

As already mentioned, the introduction of namedglsaprovides the user with a lot
of powerful features and allows a very flexible mtatization of RDF/S graphs.
However, named graphs come also with a number pligations, outlined here.

First of all, the notion of‘ownership” that presents itself once modules are
introduced, also causes the need“tm-ownership”. This need is due to the RDFS
inference mechanism (which causes implicit trigle$e “co-owned”), as well as by
the RUL semantics (which causes explicit triplesb® “co-owned”). Apart from
necessary, this feature is also very useful, becduwslows us also to state explicitly
that some triple is “co-owned” by more than one edrgraphs. In order to support

30

this feature, the notion of graphsets was introduae a first-class citizen in our
model.

The second major implication of the introduction ofmed graphs (and,
consequently, graphsets) is that the user shouldbbe to query and update them.
Both features require the expansion of the exidi@d. and RUL languages, which is
described in detail in [Ped08] (and in this delakde).

More specifically, querying in the presence of ¢nsgts means that a new, and more
powerful version of the RQL language (and the Qu&eyice) should be introduced
in order to allow querying graphsets (and nameglgp as well as triples that
contain graphset (and named graph) information. idgurquerying, graphset
information should be taken into account, and therg language should support the
feature of being able to detect those named grémhgraphsets) that contributed in
determining the query answer.

Updating in the presence of graphsets is even diffreult. A new RUL (and Update
Service) is required, which, as expected, buildsnuppe new RQL language. The new
RUL should support the updating of graphset (andethgraph) information, as well
as the updating of triple information in the preseof graphsets (and named graphs).
The main complications that arise in the speciicet of the semantics of the new
RUL stem from the fact that inference and redungasienination in the presence of
graphsets is more complicated and takes into ataglere (i.e., in which graphsets)
the involved triples are assigned to.

A further implication from the introduction of nachegraphs is related to their
serialization; at the moment the TRIG format (ondgpports the serialization of
named graphs (but not of graphsets).

Finally, fully exploiting the modularization poweffered by named graphs (and
graphsets) implies that all SWKM services shouldpsut them. At the moment, we

have provided support for named graphs (and gréphaethe level of the knowledge

repository (persistent storage). Support at thelle¥ the main memory model is

pending. The support of named graphs by the Knaydddediator and Knowledge

MatchMaker services is inherently difficult and Wwibe addressed in the future,
depending on whether such a need will be exprdsgelde partners in the context of
some Working Knot. Support for named graphs inlthport and Export services of

the Knowledge Repository is relatively easy (and Ibeen implemented), but support
for graphsets presupposes the existence of a wkHeadl serialization format that

supports graphsets (which is not available at tbemant). Finally, support at the level

of the Query and Update services has been alreddgrated, as described above.
This deliverable only covered the support of nameaphs by the Query and Update
services, as described in the latest Dow [DoW3.2].

4.2 Knowledge Mediator
4.2.1 Persistent Comparison Service

The specifications and general design of the Rergi€omparison Service is, in most
respects, similar to the design of the main menvamgion of the service that was

31

described in detail in [D5.3]. Here, we will repgae main points from [D5.3],
outlining the differences between the two versiafisthe service. The reader is
referred to [D5.3] and [ZTCO07] for more details.

The Persistent Comparison Service is responsilsledmparing two collections of
namespaces already stored in the repository andpwiimy their delta in an
appropriate form. Unlike the Main Memory Comparisservice, the comparison is
made directly on the repository, without an intediaée phase of loading the two
collections of namespaces into the main memory. rElsalt of the comparison is a
“delta” (or “diff") containing the differences beeen the two collections of
namespaces, i.e., the change(s) that should bedpgon the first in order to get to
the second (see Figure 9 for an example).

Compare

&

Delta (explicit):
Del Class B
Del CIsAB
Del B IsA A
Add CIsA A

Figure9: Comparing Two Namespaces

The comparison is based on semantic, rather thatadic considerations (see
[D5.3]), so our service is based on the comparigbthe triples contained in the
namespaces. All four of the different methods famputing a semantic delta between
namespaces that were discussed in [ZTCO07] and mgpleed in the Main Memory
Comparison Service [D5.3] are implemented in thesiBent Comparison Service as
well. More specifically, depending on whether theplicit knowledge (i.e., the
inferred triples) contained in the two collectiamfsnamespaces is, or is not, taken into
account, we have the following four modes of operat
» DeétaExplicit (Ag): Takes into account only explicit triples
— A(K—K') = {Add(t) | tOK'-K} O {Del(t) | tOK-K"}
» DeéetaClosure (Ac): Takes into account both explicit and inferred &gl
— A(K—K") = {Add(t) | tDC(K")-C(K)} O {Del(t) | tOC(K)-C(K')}
» Delta Dense (Aq): Returns the explicit triples of one KB that do madst at
the closure of the other KB
- Ag(K—K") ={Add(t) | tOK'-C(K)} O {Del(t) | tOK-C(K")}
» Delta Dense & Closure (Aq4): resemblesAy regarding additions and.
regarding deletions
- Ag(K—K") = {Add(t) | tIK'-C(K)} O {Del(t) | tOC(K)-C(K")}

In the above bullets the operator C(.) standsHerdonsequence operator, which is a
function producing all the consequences (implicag)oof a set of triples (namespace
or collection of namespaces) K, i.e., all the >hat exist explicitly or implicitly in

K.

32

The output of the Persistent Comparison Serviceaich of the different modes of
operation (deltas) is identical to the output a thain memory version of the service
for the respective mode (delta). Therefore, alldhservations and comments made in
[D5.3] regarding the property afelta correctnessthe size of the various deltas and
the different update semantiahat could be used to apply a delta, hold for the
persistent version of the service as well.

Just like its main memory counterpart, the inputhi® Persistent Comparison Service
Is two collections of namespaces for comparisod,tha delta function that should be
used for the comparison. The dependent namespé&dbse compared ones (in the
input) are also considered in the comparison irh barsions of the service (see
[D5.3] for details).

The format of the output of the service is identicathe one produced by the main
memory Comparison Service, namely, a pair of ssritihgit represent the delta of the
two (collections of) namespaces. In particular,first string of the pair represents the
RDF triples that exist in the second collectionnamespaces but don't exist in the
first, whereas the second represents the triplas d@kist in the first but not in the

second. The serialization of said triples in thépau string is done using the TRIG

format.

5 Implementation

5.1 Overview and Preliminaries

The general architectural decisions related toSW&KM platform have not changed
since the latest M24 release (V2.0), and are de=ttiin detail in [D5.4]. In short, the
services are being deployed as web services, wisehan RDBMS server as a
backend and the SWKM client as an API for contactimeem. Here, we will describe
the (few) parts of the architecture that have ckdngince the M24 release, namely
the enhancements related to the SWKM client anahéve automatic installation tool
that we developed for the SWKM platform.

5.1.1 The SWKM Client

As an aid for contacting the various SWKM servicas,SWKM client is provided,
which is a collection of java classes and interfatteat can be used to contact the
SWKM web services in a concise and natural wayl Aent instance is an access
point to several interfaces in “gr.forth.ics.rdteuservices”, which group the
operations of each web service; these are thenwin

e Importer accessed byclient.inporter()

* Exporter accessed bycl i ent . exporter ()

* QueryHandler accessed bycl i ent. query()

* UpdateHandler accessed byl i ent. update()

» DiffGenerator accessed byclient. diffGenerator()
* Changelmpact accessed byl i ent. changel npact ()

* VersionManager accessed byl i ent. versi onManager ()
* Registry accessed byclient.registry()

e Delete accessed bycl i ent. del eter ()

33

« Debug accessed bycl i ent . debug()

Note that there have been no changes with respdbetexisting services. The new
Delete Service is being accessed through a dediqatierface €l i ent . del eter).
The new Persistent Comparison Service has not besociated with a dedicated
interface, but shares the interface of the Main MnComparison Service; a boolean
parameter is used to determine whether the Main digrG@omparison Service or its
persistent counterpart should be udedl 6e for the main memory versiony ue for

the persistent one). Note that, the determinatiotihe version to use is made during
the initialization of the DiffGenerator; thus, Hd user wants to use both versions, he
should initialize two instances of DiffGeneratoin&ly, the new versions of the
Query and Update service are supported using thme saterfaces as the original
ones; note that the changes needed to supporathechgraphs functionality are at a
lower level, namely at the level of the RQL and Rldhguages, thus no changes are
required at the level of the function calls.

Each web service is modeled as a Java interfacesel mterfaces reside gwkm
servi ces-api.jar , in the package “gr.forth.ics.rdfsuite.serviceRie mapping of
interface names and services is given below:

Web Services WSDL URL Paths Interfaces

Query Service /query?wsdlI QueryHandler
Update Service /update?wsdl| UpdateHandler
Import Service /importer?wsdl Importer

Export Service /exporter?wsdl Exporter
Versioning Service /versioning?wsdl VersionManager
Comparison Service /diffGenerator?wsdl DiffGenerato
Change Impact Service| /changelmpact?wsd ChangebAwpalyzer
Registry Service /registry?wsd| Registry

Delete Service /deleter?wsd| Deleter

Table 3: Web Services and Interfaces

As before, the only new interface required (witbpect to the M24 release) is for the
Delete Service; the Persistent Comparison Senheees the interface of the Main
Memory Comparison Service, whereas the new, enkdavessions of the Query and
Update services use the interfaces of the origieedion.

5.1.2 Installation and Configuration

Details on the configuration, installation, optieimn etc of the SWKM platform can

be found at [D5.4]. A new feature, with respec{@®.4], is the development of an
easy-to-use, automatic installer that can be useorder to avoid the cumbersome
installation process described in [D5.4]; this afist can be found at

http://athena.ics.forth.gr:9090/SWKM.

The installer can be used to setup SWKM itselfivalt as all the related services and
applications that SWKM depends on (such as gldssfisstgres, etc), as necessary,
depending on the services existing in the undeglgystem. There are two versions of
the installer (both can be found at the aforemaeeto URL,

http://athena.ics.forth.gr:9090/SWKM): the firstrsi®n downloads the entire bundle

34

locally and executes the installation from theréermeas the second downloads only
the basic executable and the rest is downloadedglthe installation on a need-to-
have basis. The reader is referred to http://atientorth.gr:9090/SWKM for further
details on the installer.

5.2 Knowledge Repository

5.2.1 Delete Service

Signature

* java.l ang. Bool ean del et e(
java.lang. String uri)

« java.lang. Bool ean del et eWt hDependent s(
java.lang. String uri,
j ava. | ang. Bool ean dat a)

Description

The purpose of these operations is to delete a s@ame from the repository
(parameteruri). The del et e method corresponds to the “soft delete” mode of
operation; depending on the value of the parametéata, the
del et eWt hDependents method corresponds to either the “hard delete with
reclassification” (wherdat a is f al se) or “hard delete” mode of operation (when
dataistrue).

Both methods will returnr ue if the deletion was completed successfully; thely w
return f al se if the deletion failed for some reason (indicativauses include:
existence of data classified under the namespabe tteleted while in “soft delete”
mode, dependent namespaces in “soft delete” matapadse connection problems,
non-existence of the URI to be deleted etc).

Preconditions

The namespace with URIri should exist in the repository. For the “soft dele
mode of operation, the service will succeed (returae) only if the input URI does
not have any dependents or data classified under it

Effects

After the successful execution of the operatiom, titiples contained in the deleted
namespace no longer exist in the database. MorgibvelRI of the namespace itself
is deleted from the list of namespaces in the @a@aband all references to such a
namespace are deleted as well. This is true fah@alhamespaces that are deleted, and
includes either the input namespace only, or thmtimamespace along with its
dependents (depending on the mode of operatiord).data classified under the
deleted namespaces is either deleted or reclaksifiepending on the mode of
operation. If the operation fails, none of the tleles is committed and the database
remains in its original state. For details on tlféecent modes of operation, refer to
section 4 of this deliverable.

5.2.2 Named Graphs

The implementation of the (enhanced) Query and Wpdervices that support
graphsets (and named graphs) was based on thememigtion of the original Query
and Update services. The only changes requirechtatbe level of the individual
services’ implementation, which should be able w@ndie the more complex

35

(enhanced) RQL queries and RUL updates that aressary to support graphsets
(and named graphs).

Therefore, the enhancement of these services dueafiect the methods used as
contact points for the services; the signaturesciigions, preconditions and effects
of the related methodsjery, queryMil ti pl e, updat e, updat eMul ti pl e) are
identical to those presented in [D5.4] and are waifrom this deliverable.

The only difference between the two versions is tha new services can also handle
the enhanced queries and updates related to gtagdech would fail under the old
versions); attempting to execute, for example, arginvolving graphsets with the
old service would result in a failure to execute tjuery, as the old version cannot
interpret a query that involves graphsets. On tterohand, the new methods are
backwards compatible with the old ones, since therigs (and updates) that are not
related to graphsets are handled in the same wiag inew services.

5.3 Knowledge Mediator

5.3.1 Persistent Comparison Service

The implementation of the interface calling the dftent Comparison Service was
based on the interface that calls the Main Memooyn@arison Service; as already
mentioned, a boolean variable during the initidiaa of Di f f Gener at or (of the
SWKM client) determines whether the main memoryher persistent version of the
service should be used. As a result, the signatescription, preconditions and
effects of the related method are very similarhi® dnes described in [D5.4]. In this
section, we describe the (few) differences thatehbeen introduced due to the
inclusion of the persistent version of the service;additional details, the reader is
referred to [D5.4].

Signature

Delta diff(

java.util.List<java.lang. String> namespacesOr G aphspacesli,

java. util.List<java.lang. String> nanespacesOr G aphspaces?2,

Del t aFuncti on del t aFuncti on)

Description

The Comparison Service is responsible for compasmacollections of namespaces
already stored in the repository and computingrttieita in an appropriate form. The
compared RDF KBs (or ontologies) are determined the parameters
namespacesO G aphspacesl, nanespacesO Graphspaces2 (see [D5.4] for
details), whereas the paramedet t aFunct i on determines the delta function to use
(see [ZTCO7], [D5.3] for detalils).

The expected input, output, preconditions and hiebawf the algorithm is identical
to the ones described in [D5.4], regardless of hérethe initialization required the
main memory or the persistent version of the sertacbe used; the two services have
been designed so as to produce the same resulise smly thing that is affected is
the performance and the scalability of the senasejescribed in the previous section,
because the original version of the service workgh® main memory, whereas the
persistent version works on the persistent storage.

Preconditions

36

The preconditions for the service are identicaltie preconditions of the Main
Memory Comparison Service, outlined in [D5.4].

Effects

None.

6 Conclusion

In this deliverable we described some new servana$ functionalities which are
included in the new M36 release (V3.0) in the KRxlfaoject. These services and
functionalities are the following:

 The Delete Service which is a new service allowing the deletion of
namespaces from the repository. The Delete Sehaseébeen implemented as
part of the SWKM Knowledge Repository.

 The named graphs featurewhich allows flexible modularization of the
information found in RDF/S KBs. This functionality expected to be used in
various interesting ways within the project. At fresent deliverable we only
described in detail the support for named grapashhs been integrated in the
Query and Update Services of the SWKM Knowledged3epry, per DowW
3.2 [Dow3.2].

» The Persistent Comparison Servjc&hich is used to compare, in a scalable
way, conceptualizations, in a manner similar toNteen Memory Comparison
Service described in [D5.3], [D5.4]. The Persist€omparison Service, like
its main memory counterpart, is part of the SWKMokuhedge Mediator.

We described in a detailed fashion each of theseces and functionalities, based on
certain motivating scenarios and the subsequentitural requirements. In addition

to the abstract description of their functionaliye also gave technical details on their
implementation, how they can be accessed, and lamh parameter of the related
method calls affects the functionality of the redpe service or feature.

In addition to those services and functionaliti@s,developed an enhancement of the
streaming capabilities of the existing TRIG parserpart of our activities related to
the Knowledge Repository (see also [DoW3.2]). Unitker new implementation, the
input TRIG file is read in a streaming manner, ¢fwr reducing the space
requirements and improving the performance of tmepadrt Service. This
enhancement has been included in the new releasé,dpes not affect the usage of
the service in any way, because it is an interhahge.

Finally, it should be noted that the Persistentr@ealmpact Service (see [DoW3.2]),
which was designed to improve the scalability & driginal, main memory version

of the Change Impact Service [D5.3] by executing thanges directly upon the

persistent storage, has not been developed arat inaluded in this deliverable. The

reason is that the problem turned out to be mucrenddficult than expected and

additional work is required for an adequate speaifon and implementation of the

service; in addition, up to now, we did not findjugéements for such a service in any
of the Working Knots. The development of such avisercan be reconsidered later
on, if such a requirement appears within the ptojdote that persistent updates upon
data is already supported using the Update Sefid&el], whereas main memory

updates upon both data and schema are supportegl thei Change Impact Service
[D5.3], [D5.4].

37

7 Bibliography

[BHLTO6] T. Bray, D. Hollander, A. Layman, R. TobilNamespaces in XML 1.0
(Second Edition). W3C Recommendation, 2006. Avé&lab at:
http://mwww.w3.0rg/TR/REC-xml-names/

[CBHSO05] J. Carroll, C. Bizer, P. Hayes, P. Stickidamed Graphs, Provenance and
Trust. In Proceedings of the Ml4international World Wide Web Conference
(WWW-05), 2005.

[ColMol] End User Requirements for Collaborativengetic Modelling. KP-Lab
internal document, v.0.6, August 2007.

[D2.4] Driving Objectives and High-level Requirenterfor KP-Lab Technologies.
KP-Lab project Deliverable D2.4, November 2008.

[D4.2.311] Annex II: “TLO and Ontologies Engineegnn the KP-Lab Platform” of
the D4.2.3: “KP-Lab Platform Architecture DossieRelease 3”. KP-Lab project
Deliverable D4.2.3, Annex Il, June 2008.

[D5.1] Specification of the SWKM Architecture (V).@nd Core Services. KP-Lab
project Deliverable D5.3, July 2006.

[D5.3] Specification of the SWKM Knowledge Evolutio Recommendation, and
Mining services. KP-Lab project Deliverable D5.3Wémber 2007.

[D5.4] Prototype (V2.0) of the SWKM Knowledge Mettig MatchMaker and
Manager. KP-Lab project Deliverable D5.4, March 00

[D5.6] Specifications for the Knowledge Matchmakgr.2.0), the Knowledge
Synthesizer (V.1.0) and the Analytical and Knowkeddining Services (V.1.0).
KP-Lab project Deliverable D5.6, January 2009.

[D6.6] M33 Specification of End-user Application&kP-Lab project Deliverable
D6.6, December 2008.

[DKKCO08] M. Doerr, A. Kritsotaki, D. Kotzinos, V. Rristophides. Reference
Ontology for Knowledge Creation Processes. KP-Latierhal Document
(currently in draft status), December 2008. Avddabat: http://www.kp-
lab.org/intranet/work-packages/wp4/t4-4-servicesraggment/t4-4-3-creation-
and-support-of-semantic-models-based-on-pedagegiodkls-created-in-the-
project/material-of-the-heraklio-reference-model-
workshop/Reference%200ntology%20for%20Knowledge%2atibn%20Proces
ses.doc/view

[DoW3.2] Description of Work 3.2 Months 25-42. KRk Consortium, July 2008.

[KMACPSTO04] G. Karvounarakis, A. Magkanaraki, Segaki, V. Christophides, D.
Plexousakis, M. Scholl, K. Tolle. RQL: A Functior@uery Language for RDF. In
Functional Approach to Data Management, pages 46552004.

38

[MSCKO5] M. Magiridou, S. Sahtouris, V. Christopks] M. Koubarakis. RUL: A
Declarative Update Language for RDF. In Proceediofyshe 4" International
Semantic Web Conference (ISWC-05), 2005.

[NCLMO6] N. Noy, A. Chugh, W. Liu, M. Musen. A Fraawork for Ontology
Evolution in Collaborative Environments. In Prociegys of the & International
Semantic Web Conference (ISWC-06), 2006.

[Ped08] P. Pediaditis. Querying and Updating RDR&ned Graphs. Master thesis,
Computer Science Department, University of Cref®32

[PHO5] S. Paavola, K. Hakkarainen. The Knowledgeeaion Metaphor — An
Emergent Epistemological Approach to Learning. eBSce Education, 14(6),
pages 535-557, 2005.

[SemTag] Specifications for Annotating Knowledgej&zits with Semantic Tags. KP-
Lab internal document, October 2007. Available aftttp://www.kp-
lab.org/intranet/design-teams/wk-management-antissiseof-complex-
knowledge-structures/semantic-tagging/annotatingakedge-objects-with-
semantic-tags/AnnotatingObjectsWithSemanticTagsifipations-v1.doc/view

[Tan07] W.-C. Tan. Provenance in Databases: Paste, and Future. Bulletin of
the IEEE Computer Society, Technical Committee atalEngineering, 2007.

[TCFKMPSO06] Y. Tzitzikas, V. Christophides, G. Fimj D. Kotzinos, H.
Markkanen, D. Plexousakis, N. Spyratos. Emergenovdedge Artefacts for
Supporting Trialogical E-Learning. In Proceeding$ the T International
Workshop on Building Technology Enhanced Learninfufons for Communities
of Practice (TEL-CoPs-06), pages 162-176, 2006.

[TCFKMPSO07] Y. Tzitzikas, V. Christophides, G. Ft®y D. Kotzinos, H.
Markkanen, D. Plexousakis, N. Spyratos. Emergenovdedge Artefacts for
Supporting Trialogical E-Learning. In Internationdlournal of Web-Based
Learning and Teaching Technologies (IJWLTT), 2f#&)ges 16-38, 2007.

[WNO6] E. Watkins, D. Nicole. Named Graphs as a Metsm for Reasoning About
Provenance. In Frontiers of WWW Research and Deweémt - APWeb, 2006.

[ZTCO7] D. Zeginis, Y. Tzitzikas, V. ChristophideOn the Foundations of
Computing Deltas Between RDF Models. In Proceedwmigthe & International
Semantic Web Conference (ISWC-07), 2007.

39

