
HAL Id: hal-00593216
https://hal.science/hal-00593216

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KP-LAB Knowledge Practices Laboratory –
Specifications and Prototype of the Knowledge

Repository (V.3.0) and the Knowledge Mediator (V.3.0)
Dimitris Andreou, Vassilis Christophides, Giorgos Flouris, Dimitris Kotzinos,

Panagiotis Pediaditis, Petros Tsialiamanis

To cite this version:
Dimitris Andreou, Vassilis Christophides, Giorgos Flouris, Dimitris Kotzinos, Panagiotis Pediaditis,
et al.. KP-LAB Knowledge Practices Laboratory – Specifications and Prototype of the Knowledge
Repository (V.3.0) and the Knowledge Mediator (V.3.0). 2009. �hal-00593216�

https://hal.science/hal-00593216
https://hal.archives-ouvertes.fr

1

27490

KP-LAB

Knowledge Practices Laboratory

Integrated Project

Information Society Technologies

D5.5: Specifications and Prototype of the
Knowledge Repository (V.3.0) and the Knowledge Mediator (V.3.0)

Due date of deliverable: 31/01/09
Actual submission date: 09/02/09

Start date of project: 1.2.2006 Duration: 60 Months

Organisation legal name of lead contractor for this deliverable:
Foundation for Research & Technology − Hellas (FO.R.T.H.)

 Final

Project co-funded by the European Commission within
the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public ����
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

2

Contributor(s): Dimitris Andreou ICS-FORTH andreou@ics.forth.gr
Vassilis Christophides ICS-FORTH christop@ics.forth.gr
Giorgos Flouris ICS-FORTH fgeo@ics.forth.gr
Dimitris Kotzinos ICS-FORTH kotzino@ics.forth.gr
Panagiotis Pediaditis ICS-FORTH pediadit@ics.forth.gr
Petros Tsialiamanis ICS-FORTH tsialiam@ics.forth.gr

Editor(s): Giorgos Flouris ICS-FORTH fgeo@ics.forth.gr
Partner(s): ICS-FORTH
Work Package: WP5 − Semantic Web Knowledge Middleware
Nature of the
deliverable:

Report

Internal
reviewers:

Michal Racek (POYRY)
Ivan Furnadjiev/Tania Vasileva (TUS)

Review
documentation:

http://www.kp-lab.org/intranet/work-
packages/wp5/result/deliverable-5.5/

3

Version history

Version Date Editors Description
0.1 September

25, 2008
Giorgos Flouris,
Vassilis Christophides

Initialization document, tasks and
responsibilities.

0.2 December
18, 2008

Giorgos Flouris First draft ready

0.8 January
12, 2009

Dimitris Andreou,
Markos Charatzas,
Vassilis Christophides,
Giorgos Flouris,
Dimitris Kotzinos,
Panagiotis Pediaditis,
Petros Tsialiamanis

Incorporated comments and
various corrections, second draft
ready

0.9 January
16, 2009

Giorgos Flouris,
Dimitris Kotzinos

Final proof-reading done, final
draft ready for internal reviews

1.0 February
4, 2009

Giorgos Flouris,
Dimitris Kotzinos,
Vassilis Christophides

Review comments considered and
incorporated in the document;
final version delivered

4

Executive summary

This deliverable reports the technical and research development performed until
M36 (January 2009) within tasks T5.2 and T5.4 of WP5 in the KP-Lab project, per
the latest Description of Work (DoW) 3.2 [DoW3.2]. The described components are
included in the KP-Lab Semantic Web Knowledge Middleware (SWKM) Prototype
Release 3.0 software that takes place in M36. This release builds on the Prototype
Release 2.0 that was presented in [D5.4].

The present deliverable includes both the specification, as well as the
implementation details for the described components. The description of the features
of the new functionalities is provided based on the motivating scenarios and the
subsequent functional requirements. The focus and the high-level objective of the
new services is the provision of improved scalability and modularity properties on
the existing services, as well as improved management abilities upon
conceptualizations. The implementation of the services is described by providing the
related services’ signatures, their proper way of use, the accepted input parameters,
as well as their preconditions and effects.

Initially, we describe the Delete Service, which is a Knowledge Repository service
allowing the removal of existing namespaces from the repository; such removal
includes the deletion of the contents of said namespaces, as well as the deletion of
any reference to the namespaces themselves that exists in the repository. This new
service enhances SWKM management capabilities upon conceptualizations.

Then, the Named Graphs functionality is described, which is a new feature that
allows a very flexible modularization of the information found in RDF KBs. We
describe in detail the semantics of this feature, as well as the offered capabilities for
querying and updating RDF KBs that include modularization information (i.e.,
information on named graphs) and the implications from their use.

Finally, in the context of the Knowledge Mediator, we present the Persistent
Comparison Service, which is a variation of the existing (Main Memory)
Comparison Service (see M24 release, [D5.3], [D5.4]); unlike the original version,
the new service works exclusively on the persistent storage, guaranteeing improved
scalability features.

5

Table of Contents

TABLE OF CONTENTS ...5

1 INTRODUCTION...6

2 MOTIVATION ...8

2.1 COLLABORATIVE MODELLING ...8
2.2 EMERGING FUNCTIONALITY ...8

3 HIGH-LEVEL FUNCTIONAL REQUIREMENTS ...10

3.1 KNOWLEDGE REPOSITORY...10
3.1.1 Removing Conceptualizations...10
3.1.2 Modularity of Conceptualizations ..11

3.2 KNOWLEDGE MEDIATOR..13
3.2.1 Scalable Comparison of Conceptualizations ..13

3.3 SUMMARY OF FUNCTIONALITIES..14
3.4 CONNECTION WITH KP-LAB HLRS..16

3.4.1 Delete Service (Knowledge Repository) ...16
3.4.2 Named Graphs (Knowledge Repository) ..16
3.4.3 Persistent Comparison Service (Knowledge Mediator)..17

4 FUNCTIONAL AND ARCHITECTURAL DESIGN..18

4.1 KNOWLEDGE REPOSITORY...18
4.1.1 Delete Service ...18
4.1.2 Modularization Using Named Graphs..20

4.2 KNOWLEDGE MEDIATOR..31
4.2.1 Persistent Comparison Service...31

5 IMPLEMENTATION ..33

5.1 OVERVIEW AND PRELIMINARIES ..33
5.1.1 The SWKM Client ...33
5.1.2 Installation and Configuration ...34

5.2 KNOWLEDGE REPOSITORY...35
5.2.1 Delete Service ...35
5.2.2 Named Graphs..35

5.3 KNOWLEDGE MEDIATOR..36
5.3.1 Persistent Comparison Service...36

6 CONCLUSION ...37

7 BIBLIOGRAPHY ...38

6

1 Introduction

In the context of KP-Lab we need to create, evolve and manage various kinds of
conceptualizations supporting either KP-Lab tools’ interoperation [D4.2.3II], or
learners’/workers’ knowledge transformation practices [DKKC08]. Consider for
instance, conceptualizations that describe learners’/workers’ understanding of a
particular object of interest or phenomenon under investigation; such
conceptualizations play essentially the role of epistemic artefacts allowing knowledge
workers/learners not only to externalize their understanding of the domain/problem at
hand but also to compare their underlying modelling practices. In particular, it also
allows them to elicitate complementary or contradictory viewpoints. Such kinds of
knowledge creation processes constitute the sparkle of the trialogical framework
[TCFKMPS06], [TCFKMPS07].

As described in [D5.3], such conceptualizations are represented using RDF/S
Knowledge Bases (KBs). More precisely, a conceptualization usually comprises an
ontology along with corresponding instantiations of its classes and properties. An
ontology is a vocabulary of terms (i.e., a taxonomy), enriched with various types of
constraints, relationships and rules which can be expressed in the RDF/S data model
(see [KMACPST04] for details).

In order to effectively support the life-cycle of such conceptualizations, a number of
services have been developed, and are currently available for use in the context of the
KP-Lab Environment and end-user tools. Such services have been described in
previous deliverables ([D5.1], [D5.3]) and are included in the second prototype
release of the SWKM services (V2.0), which was released in M24 and described in
[D5.4]. In the present deliverable, we present the specification and implementation of
some additional services developed during the last year, aiming to enhance the
management facilities of RDF KBs. The new services along with refined versions of
the old ones are part of the third prototype release of the SWKM services (V3.0),
which is due in M36 (January 2009) and have been developed in the context of tasks
T5.2 (SWKM Knowledge Access and Evolution Services) and T5.4 (SWKM
Knowledge Repository).

The current deliverable includes both the specification of the new services, as well as
the technical details regarding their implementation. The new services include the
Delete Service (Knowledge Repository), the enhancement of the Query/Update
Service with named RDF/S graphs (Knowledge Repository) and the Persistent
Comparison Service (Knowledge Mediator). The objective behind the introduction of
the new services is the provision of improved scalability and modularity properties on
the existing ones, as well as improved management abilities upon existing
conceptualizations.

More specifically, the manipulation and management of RDF/S KBs is based on the
Knowledge Repository storage and its services: Import, Export, Query, Update
[D5.1]; one missing piece of functionality is the ability to remove obsolete
conceptualizations from the repository, which were imported but not used anymore.
The Delete Service covers this need, as it was developed in order to allow the user to
remove in a consistent way RDF/S KBs from the knowledge repository. The typical

7

usage of this service is the removal of an RDF/S namespace which is, for various
reasons, no longer needed or wanted. The Delete Service can be used to completely
remove an unwanted namespace and its corresponding instantiations from the
repository; in effect, this action corresponds to “undoing” a previous import
operation, as it removes all traces of the requested namespace from the repository,
including the triples that belong in the namespace, the reference to the namespace
from the list of namespaces in the repository, all dependency links to/from the
namespace etc.

On the other hand, the ability to modularize RDF/S graphs is expected to serve
several needs in KP-Lab, for example in determining the origin or ownership of
information (per learner or per source of information consulted), or how a particular
piece of information evolves, or in order to impose flexible access control policies on
parts of an RDF KB. These needs arise by the High-Level Requirements (HLRs) of
KP-Lab [D2.4]; we elaborate on this in section 3.4. The named graphs functionality
covers this modularization need by allowing the user to define, store and manipulate
modules of RDF/S graphs; such modules are defined using named graphs, or sets of
named graphs (called graphsets). Named graphs and graphsets can be viewed as
containers of triples and represent the “logical parts” (modules) of the full RDF/S
graph. Named graphs and graphsets provide a very flexible and powerful way to
represent modules of RDF/S graphs, which is suitable for several diverse applications,
as described above. The introduction of the modules in RDF/S graphs requires
suitable support both at the level of the underlying representation of triples (for
storing the association of each triple with the named graphs or graphsets that it
belongs to) and at the level of SWKM services (to exploit the advanced RDF/S
modelling capabilities offered by named graphs). In this deliverable, we describe in
detail the semantics of named graphs and graphsets, as well as the support that is
currently provided in terms of querying and updating named graphs and graphset
information (per DoW 3.2 [DoW3.2]).

Apart from the Knowledge Repository, this deliverable also deals with the Knowledge
Mediator which includes the knowledge evolution services, i.e., Comparison, Change
Impact and Versioning. One need that was identified was the scalability of these
services in order to be usable over large KBs, given that the size of RDF/S KBs
manipulated in KP-Lab is increasing (approximately 238% on average over the last
four months). Thus, scalability of the evolution services emerges as a crucial
requirement in order to successfully deploy the KP-Lab Environment and tools in real
working and learning settings.

Scalability can be achieved by moving the bulk of the computational and storage
needs of the services from the main memory to the persistent memory. Using this
idea, and starting from the Comparison Service ([D5.3]), we developed a version of
the service that works on the persistent memory (Persistent Comparison Service). This
service enables to outline the differences between variations of conceptualizations
expressed in the RDF/S data model in a similar way to the functionality offered by the
Main Memory Comparison Service (described in [D5.3], [D5.4]). However, rather
than in main memory, comparisons of RDF/S KBs are performed directly in
secondary memory (i.e., the knowledge repository), and thus the implementation
challenges are different. In addition, the user of the two services (Main Memory
Comparison Service and Persistent Comparison Service) is faced with an interesting

8

trade-off between the maximum supported size of compared RDF/S KBs and the time
required to compute the differences.

2 Motivation

2.1 Collaborative Modelling
Collaborative modelling constitutes an important knowledge practice in quite many
professional and scientific communities, as well as in various educational settings.
Models are more than mere descriptions of a particular object of interest or
phenomenon under investigation, because they provide important epistemic features
(i.e., for understanding of the models per se, as well as of the underlying modelling
practices) that can trigger exploration, inquiry, and knowledge creation [PH05].
Recent advances in semantic web technology provide new and more powerful means
to support collaborative modelling activities by allowing the users to externalize,
share, and evolve their own models and modelling languages.

In the context of the KP-Lab project, two examples of recently developed tools [D6.6]
for supporting collaborative modelling activities centred around conceptualizations
expressed as RDF/S KBs [D5.3] are the Collaborative Semantic Tagging [SemTag],
in which learners collaboratively annotate various content items with semantic tags
(i.e., vocabulary terms), and the Collaborative Semantic Modelling [ColMol], in
which learners have additionally the possibility to structure the terms of their
vocabularies using various semantic relationships such as “is_A” and “has_part”.
These tools are developed to cover different needs and requirements of the learners
[D2.4].

In these tools, collaborative modelling, rather than being an isolated activity, is tightly
integrated into everyday groups’ work practices, along with an open access and
reference to various forms of employed knowledge artefacts. Moreover, knowledge
workers and learners are stipulated to develop alternative conceptualizations of a
particular object of interest or phenomenon under investigation and to support
triangulation of the different perspectives, without losing the information regarding
the origin of (and the rationale behind) each conceptualization. In order to trace the
rationale of the conceptualizations’ evolution, means for comparing successive
versions of conceptualizations have to be in place, as well as negotiation and
argumentation mechanisms that support the exchange of ideas towards converging to
a common understanding of the domain at hand. In addition, the evolution and
negotiation process often implies that older versions may have to be discarded in the
process of building new and more adequate conceptualizations.

2.2 Emerging Functionality
In this setting, collaborative modelling activities may take several forms. For
example, users may concurrently edit some shared conceptualization, while seeing
synchronously the changes performed by the whole group. Alternatively, they may
edit their conceptualizations locally on their personal space and commit and merge
asynchronously their conceptualizations in a shared space. In the latter scenario, the
merging process may be either initiated centrally by a curator of the models or in a
peer-to-peer fashion by the learners themselves. In both cases, adequate tools are

9

required to monitor and analyze the differences of the different conceptualizations as
well as to record the rationale of the underlying modelling choices made by the
knowledge workers or learners in order to argue and negotiate about the acceptance or
rejection of the changes made so far. During the whole process, we may need to keep
in the knowledge repository the full history of intermediate versions, or only the most
“important” ones.

A comprehensive analysis and classification of the various dimensions characterizing
collaborative modelling activities was presented in [NCLM06] and is briefly reported
in the following:

• Whether the collaboration is synchronous or asynchronous, i.e., whether the
knowledge workers/learners will collaborate on the same version of the
conceptualization or using different local copies which are afterwards
committed and merged. In the former case, adequate support for inspecting the
effects and side-effects of the proposed changes on the same version of a
conceptualization are required (see also Change Impact Service [D5.3]). In the
latter case, support for fusing automatically different conceptualizations when
the curator or the learners take the final decisions is required (see also
Knowledge Synthesizer [D5.6]).

• Whether the editing is performed in a continuous manner, saving only the
latest version (and allowing rolling back to any previous version − see
Versioning Service [D5.3]), or in a step-wise manner, in which different
“official” versions of a shared conceptualization are published, but the history
of the individual edits between versions is not kept (and thus discovery of the
differences between consecutive versions can be performed only a posteriori −
see Comparison Service [D5.3]).

• Whether there is some central control (curation) over the contents of the
produced shared conceptualization or only peer-to-peer interactions are
supported. The existence of multiple versions of the shared conceptualization
and/or local ones highlights the need for adequate management tools (e.g., to
import, export [D5.1] or delete conceptualizations from the knowledge
repository, as well as to store metadata on the conceptualizations through the
use of a Registry Service [D5.3]).

• Whether there is some (semi-)automated assistance that records (monitors) the
performed edits and, possibly, creates adequate metadata and/or logs on the
changes implemented so far. In particular, metadata about the origin (e.g., a
group or a curator) and the reasons why the changes were made (e.g., whether
the appearance or disappearance of a concept in a new version relates to the
appearance or disappearance of other concepts or of relationships among
them) are crucial in order to compare the underlying modelling practices (such
metadata are usually captured by a Registry Service [D5.3]).

Depending on the context, different combinations of the above dimensions stipulate
different processes of collaborative knowledge creation, and result in different high-
level requirements for the SWKM services and the KP-Lab end-user tools supporting
such processes. For example, the Visual Model Editor (VME) and Visual Modelling
Language Editor (VMLE) [D6.6] support asynchronous, step-wise collaborative
editing, which could be curated or non-curated.

10

In the sequel, we will detail the design rationale of the new SWKM services delivered
for M36. In this respect, we consider that shared or individual conceptualizations of
knowledge workers and learners are represented by a series of user-defined RDF KBs,
including both the schema and the data of each conceptualization.

It should be stressed that SWKM services aim to support not only the management of
user-defined ontologies (conceptualizations) but also of the KP-Lab system ontologies
(see [D4.2.3II] for details), thus enabling tools’ interoperation. Even though such
ontologies are relatively stable, changes may occur from time to time, especially when
new versions of the KP-Lab end-user tools are released. The main additional need that
arises from the existence of such ontologies is related to such changes. In particular,
when an old version of a system ontology is replaced by a new one, the older version
should be entirely deleted from the repository whereas the (usually large amount of)
underlying instances need to be reclassified under the new ontology version to ensure
a seamless functioning of the related services and tools.

3 High-Level Functional Requirements

3.1 Knowledge Repository

3.1.1 Removing Conceptualizations

As already mentioned, one of the needs that arise in the process of managing
ontologies and RDF/S KBs is the need to withdraw an existing conceptualization that
is no longer needed, or to “undo” some storage operation which was made by mistake,
or using the wrong input etc. In the context of KP-Lab, this need may arise in several
scenarios.

As an example, consider the case of a learner that starts developing a
conceptualization in his personal space (e.g., a visual modelling language in the
VMLE tool), but, in the process, he realizes that his efforts are totally out of track. In
such a case, the learner might be better off starting his efforts from scratch and
discarding whatever he has developed so far, rather than attempting to correct the
existing conceptualization. If, however, he has already stored his conceptualization at
the knowledge repository, this also includes the removal of the conceptualization from
the repository.

In another context, the deletion operation may be useful in order to allow the
replacement of an old ontology version by a new one. Furthermore, the ability to
remove conceptualizations from the repository may be seen as a way to “undo”
previous storage operations; such a need may arise, for example, when an import was
made by mistake, or using the wrong set of input files (serializations).

As conceptualizations are represented by RDF/S KBs, the Delete Service is
essentially used to remove RDF/S namespaces and instances classified under these
namespaces. The Delete Service should work directly upon the persistent storage, and
it should remove both the contents of the removed namespace (i.e., classes and
properties), the classification links of the instances classified under the deleted classes

11

and properties, as well as any references to the namespace itself that may exist in the
database.

It should be stated that erasing the contents of a namespace and the instances
classified under this namespace could not be fully supported using existing services
(e.g., Update and Change Impact Services). The reason is that the Update Service can
only be used to remove instance resources of a namespace, so the schema cannot be
deleted, whereas the Change Impact Service works on the main memory and cannot,
therefore, directly delete the contents of a stored namespace. Moreover, these services
can only be used to remove the contents of the namespace, but cannot be used to
remove the references to the namespace in the list of the dependent namespaces, or in
other records maintained by the Knowledge Repository (e.g., dependency links).
Thus, by simply removing the classes and properties of a given namespace we would
get an empty namespace, but the reference(s) to the namespace itself would persist in
the repository.

The deletion of a namespace may cause problems related to the validity of the
Knowledge Repository. For example, if the deleted namespace has some dependent
namespaces or instance resources, and we proceed with its deletion in a
straightforward manner, then we risk the existence of dangling references to
physically deleted resources.

The easy way to avoid this problem is to state that, when deleting a namespace, all
dependent namespaces and instance resources should be deleted along with it. This is
not always the desirable behaviour of the service though: in many cases, we may not
know what are the dependents of a namespace, or who uses them and for what reason.
Thus, deleting such dependent namespaces may cause problems to other users. In
such a scenario, we should not be allowed to delete any dependents, so we have no
option but to abort the operation if there are any dependents. In other cases (for
similar reasons), we may want to retain the data classified under the deleted
namespace’s classes and properties. Note that retaining, in this context, does not mean
that the operation should be aborted, as in the case of dependent namespaces. Instead,
there is a more clever way out of the problem, namely the reclassification of the data
in a way that would leave no dangling references in the database. The reclassification
should classify the class and property instances under the minimal superclasses and
superproperties of the deleted classes and properties.

The above considerations apply both in the context of user-defined ontologies and
system ontologies. Note that both types may have interdependencies (see also
[D4.2.3II]), as well as data, so the above options make sense for both cases;
nevertheless, we expect that for system ontologies the option of reclassifying the data
will often be chosen, whereas for user-defined ontologies either the option of
removing the data and the dependent namespaces, or the option of retaining them
altogether will be chosen. From the above requirements, it follows that the Delete
Service should support a variety of operational modes, giving the user the option to
determine the desirable behaviour of the service on a per-case basis.

3.1.2 Modularity of Conceptualizations

One of the requirements that arise from the previously described scenarios (section 2)
is the need to record the origin of each piece of knowledge codified by a

12

collaboratively developed conceptualization. Keeping track of metadata about
creation and modification history, influences, ownership, as well as other provenance
or lineage information (see [Tan07] for a survey) is crucial in order to make informed
judgments about the quality, integrity, and authenticity of data and knowledge
developed by a group of editors (in synchronous/asynchronous or centralized/peer-to-
peer settings).

In the context of learning, this requirement could appear, for example, in the case of a
learner who uses VME to create a model recording information found in several
different sources (e.g., books, web pages, other co-learners etc). In many cases, it is
useful not only to store the relevant information itself, but also to store the source of
the information. The latter (source of the information) could be important in
determining the support, or reliability of each piece of information in the
conceptualization.

This need could be viewed as part of a more general need for modularization of
conceptualizations represented as RDF/S KBs. Depending on the granularity of the
logical modules and the modularization policy, modularization may be useful in
different ways, e.g., by allowing learners to claim “ownership” of some part of an
RDF/S KB (see HLR4.1, HLR9.1 [D2.4]), or by describing the source or modelling
rationale underlying each contribution made (see HLR4.4, HLR12.1 [D2.4]). In order
to support such a modularization, we should be able to associate each of the triples
that compose the RDF/S KB with zero, one, or more than one module.

Note that the solution of codifying each “module” into a separate conceptualization
(e.g., a separate RDF/S KB) is not enough for our purposes, because the connection
between such modules, in the context of a larger conceptualization that engulfs all of
them, would be lost. Instead, each module would be viewed as a separate
conceptualization, a fact which does not coincide with our original intentions.

Some (simple) kind of modularization within a single conceptualization is offered by
namespaces [BHLT06]. However, the modularization offered by the namespaces
solves our problem only partially, as namespaces have a number of deficiencies
regarding the modularization they offer. First of all, the modularization offered by
namespaces is restricted to the schema level only; it is not clear where (i.e., in which
namespace) a data triple belongs to. Secondly, the focus of namespaces is on
modularizing the names (URIs) of classes and properties defined in ontologies; what
we need here is a modularization of the conceptualization itself, which is actually
composed by the triples that exist in the RDF/S KBs. Thirdly, namespaces are not
flexible in their modularization abilities, since any name in the schema must belong to
one, and only one, namespace; therefore, sharing of information between namespaces
is not allowed.

As a consequence, we need some other mechanism that will be used to group triples
into modules. Each such module (as a whole) should be a resource of its own which
should be accessible, referable to, and which could, itself, be associated with some
metadata information. This feature is necessary in order to decide “how credible is”,
or “how evolves” a piece of knowledge codified by a conceptualization.

13

One of the most difficult problems that arise during modularization is the fact that
some parts of the information (especially non-explicit ones) cannot be clearly
classified in one of the modules. As an example, consider the scenario where each
module represents the origin of the information; consider also some piece of
information (say z) which is not explicit, but implied by two explicit pieces of
information which have different origin (say x, y, with origin Gx, Gy respectively). In
this case, what is the origin of z? The only satisfactory answer would be that the
origin is not any of the existing modules, but is shared between Gx, Gy; thus, in this
case, z is assigned to more than one modules at the same time and in a shared
fashion, so our solution should support the assignment of some information in the
conceptualization to more than one modules in a shared fashion.

Note that the “shared assignment” of a triple to a set of modules is different from the
multiple assignment of a triple to different modules. In the first case, the assigned
triple does not belong to any one of the modules, but it belongs to all of them in a
joint fashion; in the second case, the triple belongs independently to each of the
modules. The above two modes of triple assignment to modules could be combined.

Of course, having defined modules that satisfy the above requirements is not, by
itself, enough. We need such modules to be manageable by the various services,
meaning that the underlying representation should be able to record the assignment of
information into modules and that all the SWKM services should recognize and
support such modules. This requirement asks for the enhancement of all existing
SWKM services in a way that they will be able to understand, store, retrieve, query,
update, compare etc information on the modules, as well as triples that are assigned to
specific modules, taking into account the assignment information.

3.2 Knowledge Mediator

3.2.1 Scalable Comparison of Conceptualizations

Comparing individual viewpoints of a particular object of interest or phenomenon
under investigation is one of the main activities towards the construction of a shared
conceptualization among group members. First of all, it helps identifying how shared
or individual conceptualizations evolve over time. Additionally, it may be viewed as
an aid towards the negotiation and argumentation process, because it helps the
learners identify the converging and conflicting parts between their viewpoints
[NCLM06]; this allows the learners to focus on the points that cause disagreements
and need further argumentation and negotiation.

Note that such a comparison should have the ability to take into account not only
explicit but also implicit knowledge encoded in a conceptualization expressed in
RDF/S (see also [ZTC07]). The need for comparing conceptualizations has been
elaborated in [D5.3], where we described the Comparison Service that allows us to
detect the differences between two RDF/S KBs under various modes and parameters.

The main characteristic of the Comparison Service version implemented for the
second release (V2.0) in M24 [D5.4] is that it works on the main memory. This means
that the compared RDF/S KBs must be loaded in the main memory before being
compared, so they have to fit into the available main memory. This approach allows

14

fast execution of the comparison, but, unavoidably, is constrained by the size of the
available memory. Therefore, even though the Comparison Service performs well for
small and medium-sized conceptualizations, it does not scale for large
conceptualizations. The problem does not usually appear when one considers only the
schema information of RDF/S KBs (which is often small), but it does appear when the
instances are also considered.

It also emerges as a need in the context of the KP-Lab project since a large number of
instances is actually starting to populate the existing KP-Lab ontologies [D4.2.3II]
and their number is constantly increasing. To be more specific, the knowledge
repository currently (January 2009) contains more than 25000 class instances,
classified under 219 classes, and more than 125000 property instances, classified
under 349 properties; this size is constantly rising: for example, during the last four
months (September 2008-January 2009), the number of objects in total (classes, class
instances, properties, property instances) in the knowledge repository has risen by
approximately 238%. Note that this increase does not affect so much the services that
work directly upon the repository (e.g., Query, Update etc), but it affects a lot the
services that work on the main memory (e.g., Change Impact, Comparison etc).

To address this problem we have implemented for M36 a new version of the
Comparison Service which is able to compare conceptualizations directly in the
secondary memory of the knowledge repository. Even though such an implementation
is slower than the original main memory implementation (because accesses to the
hard disk are slower than accesses to the main memory), it is not limited by the size of
the machine’s main memory, but by the size of the machine’s hard disk, which is
expected to be much larger. The functionality and behaviour of the Persistent
Comparison Service is identical to the one provided by the main memory version of
the service. Therefore, the high-level functional requirements for the Persistent
Comparison Service are the same as those described in [D5.3] regarding the Main
Memory Comparison Service.

The persistent version of the Comparison Service is not meant to replace the original,
main memory version. Instead, the existence of both implementations of the
Comparison Service provides the KP-Lab system developers the opportunity to use
either, depending on the setting; in particular, for small and medium-sized RDF/S
KBs, they can employ the main memory implementation, which will execute the
comparison more efficiently than the persistent implementation, whereas for
comparing large RDF/S KBs they may employ the persistent version of the service,
which is scalable and guaranteed to produce a result, even though it is not as efficient
as the main memory implementation.

3.3 Summary of Functionalities
The following table summarizes the high-level requirements identified for the services
and functionalities described in this deliverable, as well as the service or functionality
that provides the related function.

Functionality Short Description Related Service or Functionality

Knowledge Repository

15

Remove a
conceptualization
along with its
dependent
namespaces and
instance
resources

Allow the removal of a
namespace from the
repository, including its
contents and any
references to it; any
dependent namespaces
or instance resources
should be deleted as well
in the same way

Delete Service allows the deletion of
namespaces, including their contents
and any references to them; exact
behaviour determined by the mode of
operation

Remove a
conceptualization
only if it does not
have any
dependent
namespaces or
instance
resources

Allow the removal of a
namespace from the
repository, including its
contents and any
references to it; if it has
any dependent
namespaces or instance
resources, neither them,
nor the namespace
should be deleted

Delete Service allows the deletion of
namespaces, including their contents
and any references to them; exact
behaviour determined by the mode of
operation

Remove a
conceptualization
along with its
dependent
namespaces; any
dependent
instance
resources should
be reclassified

Allow the removal of a
namespace from the
repository, including its
contents and any
references to it; any
dependent namespaces
should be deleted, and
any dependent instance
resources should be
reclassified

Delete Service allows the deletion of
namespaces, including their contents
and any references to them; exact
behaviour determined by the mode of
operation

Create and store
modules of
information

Create modules of
information and store
them in the repository

Named graphs and graphsets allow the
definition of highly flexible modules

Find the triples,
nodes or modules
that satisfy a
certain property

Query RDF/S KBs
taking into account
module information

An extension of RQL allows the
execution of more sophisticated
queries that can return and consider
triple assignment to modules

Add/delete triples
to/from modules

Update RDF/S KBs,
including module
information and the
association of triples
with modules

An extension of RUL allows the
execution of more sophisticated
updates that can update and consider
triple assignment to modules

Manipulate
modules

Create new modules or
remove existing ones
from the repository at
will

An extension of RUL allows the
execution of special updates that create
and remove modules

Knowledge Mediator

16

Scalable
comparison

Allow the comparison of
large conceptualizations,
in a scalable way

Persistent Comparison Service allows
the comparison of large
conceptualizations; the comparison is
performed at the repository level for
scalability purposes

Table 1: Summary of Requirements and Functionalities

3.4 Connection with KP-Lab HLRs
In [D2.4], a number of User Tasks (UTs), Driving Objectives (DOs) and High-Level
Requirements (HLRs) were defined. Here, we will describe the connection of such
UTs, DOs and HLRs with the components presented in this deliverable, as well as the
relation of such components with non-functional requirements in the KP-Lab project.

3.4.1 Delete Service (Knowledge Repository)

The Delete Service is associated with HLR4.4:“Users are able to save and share
conceptual models (e.g. vocabularies and visual models)”, which is part of
DO4:“Users can describe the semantics of artefacts and their relations” and
UT2:“Modifying the content of the shared artefacts individually and collaboratively”.
It is also associated with HLR6.3:“Users can share and integrate different visual
modelling languages, ontologies and vocabularies”, which is part of DO6:“Provide
users with possibilities to develop and use their own conceptual models” and
UT2:“Modifying the content of the shared artefacts individually and collaboratively”.
Both associations stems from the fact that the sharing of visual models, visual
modelling languages, ontologies, or vocabularies would imply the existence of
various versions of the same conceptualization; therefore, improved management
capabilities of such multiple versions should exist, including the ability to remove
obsolete conceptualizations.

3.4.2 Named Graphs (Knowledge Repository)

The concept of named graphs intends to support a number of functional and non-
functional requirements of the KP-Lab Environment and tools. More precisely, named
graphs is a generic mechanism for modularizing knowledge in such way that can be
used to identify (through URIs) and establish references to sub-graphs of large RDF/S
KBs and to encode additional information such as the origin of the sub-graph or the
access policies related to it. One of the features of named graphs is that they allow for
simultaneous memberships, so that any artefact can participate in any number of
named graphs at the same time. On the usability side, named graphs allow us to
improve query performance by restricting the search space only to sub-graphs of
interest (so, e.g., costly and frequent queries related to the retrieval of a KP-Lab
shared space could be optimized in this respect). In the sequel, we will present the
main HLRs related to the functionality of named graphs.

First of all, the named graphs functionality is associated with HLR1.1:“Users can
create structure and share various artefacts (e.g. sketches, various kinds of texts, video
and audio-files, models as well as ontologies) in one place”, which is part of
DO1:“Provide a collaborative environment where users can work on shared artefacts”
and UT1:“Organizing shared artefacts and collaborative tools”; in a more generic
sense it is also associated with DO3:“Users are provided with support for the re-use of

17

shared artefacts and structures”, which is part of the same UT. As described above,
named graphs allow us to structure collections of artefacts (and their relationships)
and handle them afterwards as unique entities, referenced by a unique URI in the
RDF/S KB. Named graphs can serve any purpose since they do not carry any
predefined semantics allowing the user to attach any semantics as he deems
appropriate.

Along the same lines, HLR4.4:“Users are able to save and share conceptual models
(e.g. vocabularies and visual models)”, which is part of DO4:“Users can describe the
semantics of artefacts and their relations” and UT2:“Modifying the content of the
shared artefacts individually and collaboratively” can be served by the capability
provided by the named graphs to encode in a flexible way (i.e., through reification)
the source of each RDF/S knowledge module without imposing a particular RDFS
schema (since they carry no semantics themselves) for describing the actual contents
of the module; this is coupled with the capability to provide a single and unique way
(URI) to reference any (visual) model enabling its seamless saving and retrieval.

Furthermore, named graphs functionality is associated with HLR9.1:“Users can track
the evolution and changes of knowledge objects and find out their authors and
contributors (sequences of performed steps in time, incl. versioning)”, which is part of
DO9:“Users are provided with history on content development and work process
advancement” and UT3:“Management and organization of collaborative work
processes”. With named graphs, changes can be tracked, comparisons can be made
and evolution can be captured in a more aggregate level (not only at the single artefact
level), since named graphs can be seen as single entities.

Finally, the named graphs functionality is associated with HLR12.1:“Users can work
around a shared “virtual whiteboard” view where collaborative modelling and
discussion takes place”, which is part of DO12:“Provide users with means to capture,
reflect, discuss and model their activities and to develop new models of working” and
UT5:“Investigation and development of knowledge practices”. In order to better serve
this HLR we will need to build upon the ability of named graphs to encode
information on the source (origin) of each piece of data; this kind of information is
useful during collaborative modelling and discussion. Moreover, it provides users
with the ability to separate modelling or discussion sessions, refer to or comment on
them as single unique entities and reuse them or their contents as they see fit.

3.4.3 Persistent Comparison Service (Knowledge Mediator)

The Persistent Comparison Service is associated with HLR4.5:“Users are able to
compare and integrate different knowledge representations/visual models”, which is
part of DO4:“Users can describe the semantics of artefacts and their relations” and
UT2:“Modifying the content of the shared artefacts individually and collaboratively”.
The association originates from the fact that the Persistent Comparison Service
provides another, more scalable way to execute the comparison of different
knowledge representations/visual models.

18

4 Functional and Architectural Design

4.1 Knowledge Repository

4.1.1 Delete Service

The purpose of the Delete Service is to delete an entire namespace (including its
contents) from the underlying repository. Upon successful execution, the Delete
Service removes the requested namespace (including its contents) from the database
and could also possibly affect dependent namespaces and data, depending on the
user’s choice on the mode of operation (see [D5.4] for details on namespace and data
dependencies).

Let us initially consider the simple case where the user requests the deletion of a
namespace (say ns1), which has no dependent namespaces or data triples (the
namespace ns1 itself may depend on other namespaces). This is the simplest case, in
which the namespace’s contents, as well as any references to it are removed from the
database, in particular:
• All the triples that use names from ns1 are deleted from the database.
• All the names from ns1 and the references to them are removed from the database.
• All the references to ns1 are deleted from the database (e.g., ns1 is removed from

the list of namespaces, all namespace dependency links that involve ns1 are
removed etc).

At the end of the operation, there will be no trace of ns1 in the database. The Delete
Service can, in this respect, be considered as the “complement” of the Import Service,
in the sense that if we import a namespace and then delete it, the repository will return
to its original state; similarly, if we delete a namespace and then re-import it, the
database will return to its original state. As a result, the Delete Service allows us to
“undo” import operations (and vice-versa).

The above are true so long as ns1 does not have any dependent namespaces or data
triples. If a namespace ns2 (or data triple t) depends on ns1, then the dependent
namespace ns2 (or data triple t) has no valid meaning without the existence of ns1,
because it refers to URIs (resources) defined in ns1. As described in the previous
section, dealing with such dependent namespaces and data triples can be done in
different ways.

The simplest way to deal with the problem of dependent namespaces and data triples
is to delete them along with the deleted namespace. However, as explained before,
there are cases where this kind of action is not desirable. In such cases, the user has
the option to retain dependent namespaces and data triples.

In the former case (i.e., retaining dependent namespaces), the Delete Service cannot
proceed with the deletion of the original namespace, as that would render the
repository to an invalid state. More specifically, the removal of the namespace’s
contents would create dangling references in the dependent namespaces. Thus, if there
are any dependent namespaces and the user disallows their deletion, the service will
fail, and nothing will be deleted.

19

In the latter case (i.e., retaining dependent data triples), the Delete Service can
overcome the problem by reclassifying the instances involved in the dependent data
triples, rather than deleting the dependent data triples altogether.

The reclassification is performed as follows: data originally classified under about-to-
be-removed classes (or properties), will be reclassified under certain superclasses (or
superproperties) of the about-to-be-deleted classes (or properties); those superclasses
(and superproperties) are all the minimal superclasses (or superproperties) that are not
in the namespaces that are about to be deleted. This way, all the problematic data
triples are replaced with triples that would not create any dangling references.

More precisely, the steps of the aforementioned reclassification are as follows:
• Consider an individual &a which is directly classified under the classes A1,…,An.

Let us assume that the classes A1,…,Ak are contained in the namespace to be
deleted or in its dependents.

• For each Ai (i=1,…,k), find the minimal (most specific) class(es) which will not
be deleted (i.e., they are not parts of the deleted namespace or its dependents),
let’s say Bi1,…,Bim.

• Reclassify &a under Bij.
• Remove the classification links between &a and Ai (i=1,…,k).

As an example of this process, consider Figure 1. The deletion of namespace ns1 will
cause the deletion of classes ns1#A, ns1#D. If the user asks for a reclassification of
the data resources, then the resource &a, originally classified under ns1#D and ns3#C
will now be reclassified under ns2#B, ns3#E and ns3#C. The classification links to
ns2#B and ns3#E will be created because ns2#B and ns3#E are both minimal
superclasses of ns1#D that do not belong in the namespace(s) to be deleted (ns1 in
this case). The classification link to ns3#C will persist, because ns3#C is not affected
by the deletion.

The same process as with class instances is also used for property instances which can
be reclassified in the same manner. Also, note that class instance reclassification may

rdf:type

rdfs:subclassOf

Delete ns1 (with
reclassification)

&a

ns1#D

ns1#A ns2#B

ns3#C

&a

ns2#B

ns3#C

ns3#E ns3#Ens2#F ns2#F

ns4#G ns4#G

Figure 1: Reclassification in Delete

rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

Delete ns1 (with
reclassification)

&a

ns1#D

ns1#A ns2#B

ns3#C

&a

ns2#B

ns3#C

ns3#E ns3#Ens2#F ns2#F

ns4#G ns4#G

Figure 1: Reclassification in Delete

20

affect property instances as well: the deletion of a class instance causes the deletion of
all associated property instances, whereas the reclassification of a class instance
causes the reclassification (if possible) or deletion (if reclassification is not possible)
of the associated property instances.

Note that this reclassification semantics is identical to the semantics used in RUL
[MSCK05] (which is employed by the Update Service): when the deletion of a
classification link is requested in the Update Service (RUL), a reclassification like the
one described above takes place. In fact, this is how the Delete Service implements
the reclassification process (i.e., through calls to the Update Service). The reader is
referred to [MSCK05] for further details on the process.

Summarizing the above we could say that, depending on the user’s selections, we
have the following different modes of operation for the Delete Service:
1. Soft Delete: Under that mode, the Delete Service will fail if there are any

namespaces or data triples which are depending on the namespace to delete. In
any other case, the input namespace is deleted, along with its contents and any
references to it. In the example of Figure 1, the deletion (under “soft mode”) of
ns4 will succeed (and will delete ns4#G and the IsA link of ns4#G to ns2#F), but
any other deletion would fail (under “soft mode”).

2. Hard Delete with Reclassification: Under that mode, the Delete Service will delete
the namespace in its input, along with all its dependent namespaces (if any). All
data classified under the deleted namespace (or its dependents) will be reclassified
as described above. In Figure 1, one can see the effects of this mode of operation
when deleting ns1. If, in the same figure, we were asked to delete ns3, on the other
hand, then the operation would cause the deletion of both ns1 and ns3, as well as
the reclassification of &a under ns2#B only.

3. Hard Delete: Under that mode, the Delete Service will delete the namespace in its
input, along with all its dependent namespaces and data triples (if any). If this
deletion leaves any resource unclassified, the resource is deleted altogether from
the database. In the case of Figure 1, the deletion of ns3 would cause the deletion
of ns1 and the deletion of the resource &a (along with all its classification links);
on the other hand, the deletion of ns2 would cause the deletion of ns1 and ns4, but
the resource &a would persist, and would be classified under ns3#C only.

The input to the Delete Service is the namespace to delete, along with some
parameters indicating the “mode” of the operation; the output is a boolean flag
indicating success or failure of the operation. More details on the related methods’
signatures and the implementation of the service appear in the next section.

The Delete Service works exclusively on the persistent storage level, which means
that the service does not use the Main Memory API and does not load the deleted
namespace in the main memory. The service is implemented by executing adequate
SQL update operations (DELETE) upon the database, making sure that all the
contents of the deleted namespace(s), as well as all the references to them (e.g.,
dependency information) are removed.

4.1.2 Modularization Using Named Graphs

Named Graphs

21

In the relevant literature [CBHS05], the proposed solution to the modularization
problem outlined in previous sections is the introduction of named graphs, which
allow the decomposition of an ontology or RDF KB into logical modules. A named
graph can be simply viewed as a container of triples, to which we have assigned a
name (URI). Using this URI, we can refer to named graphs using RDF/S triples, just
like we do for all types of resources. Formally, a named graph can be modelled as an
assignment (function) of sets of triples to URIs (names) [Ped08].

Applying this line of thinking in our context, we will associate each named graph with
one logical module in the RDF/S KB, so each module would correspond to one
named graph. The concept of named graphs provides a lot of flexibility in the offered
modularization for several reasons. First of all, a named graph can contain both data
and schema triples. Secondly, named graphs are focused on triples, unlike namespaces
whose focus is on names and nodes of the RDF/S graph. Furthermore, there is no
restriction as to the number of triples contained in a named graph: it could contain any
number of triples, or no triples at all. Similarly, there is no restriction as to the
assignment of triples to named graphs: one specific triple could belong to one named
graph, many named graphs, or no named graphs at all. Finally, the association of each
named graph with a URI allows us to refer to the named graph as a whole in RDF
triples, thus being able to set metadata and other information on the named graph
itself. The flexibility offered by named graphs and their ability to modularize RDF/S
graphs has already been exploited in the literature, especially in the context of
provenance tracking and recording [CBHS05], [WN06].

Most of the named graphs (modules) that appear in the system are defined by the user
(through the use of adequate RUL statements of the extended RUL presented in this
deliverable). However, there is one special named graph, the DEFAULT# named
graph, which is not user-defined, but system-defined, and has been introduced for
backwards compatibility purposes. This named graph can be queried, updated and
accessed, just like any other (user-defined) named graph. By default, it is assumed to
contain all triples that have not been explicitly assigned to any particular named graph
(thus, a triple belonging to “no” named graph is actually a triple belonging to the
DEFAULT# named graph). Unlike user-defined named graphs, the #DEFAULT
named graph exists by default in the knowledge repository and cannot be removed.

Co-ownership and Graphsets
The introduction of named graphs in our model has a number of implications, the
most important one being the fact that they force us to introduce a new and more
general concept (the graphset) in order to be able to fully exploit the modularity
offered by named graphs. The need for graphsets stems from the need for explicit
“shared assignment” of a triple to a set of named graphs, whose semantics is that the
triple does not belong to any of the named graphs of the set in isolation, but to all
named graphs of the set at the same time, in a state of co-ownership (see [Ped08]).
This state of co-ownership appears mainly due to RDFS inference, but the real need
that forces us to introduce graphsets stems from the fact that RDF/S graphs are
updatable, dynamic entities, and our update semantics requires that inferred
knowledge is a “first-class citizen” that needs to be retained, if possible, after the
update.

22

The problems that arise due to the inference mechanism are illustrated in Figure 2. In
that figure, it would be a mistake to classify the (implicit) triple [&a rdf:type A] into
any single named graph, because its generation is based on the existence of triples in
both G1 and G2. The only acceptable solution is to claim that this triple belongs to
both named graphs (G1 and G2) in a shared fashion. This “shared ownership” is
represented using the notion of a graphset, which is a set of named graphs (namely,
the set {G1,G2} in our example) that the triple belongs to.

It should be emphasized that a triple belonging to G1 and/or G2 is different than
belonging to {G1,G2}. In the former case, the named graphs G1 and/or G2 contain said
triple, whereas in the latter the triple does not belong to any of G1 and G2
independently, but only to {G1,G2} in a shared fashion. Therefore, saying that a triple
belongs to multiple named graphs (or graphsets) means that a triple belongs to each of
those named graphs (or graphsets) in an independent manner, whereas saying that a
triple belongs to certain named graphs in a joint fashion means that it belongs to the
graphset formed by those named graphs (and only in this graphset, i.e., it does not
belong to the named graphs themselves). Note that the DEFAULT# named graph can
also be used to form graphsets.

The need for the introduction of graphsets presents itself even more emphatically
when updates are considered. During updates (in particular, deletions), we are often
faced with the need to introduce in an explicit manner triples which were originally
implicit. This is due to the semantics of RUL updates [MSCK05] and the fact that as
much as possible of the original implicit knowledge is retained during an update.
Whenever such a situation arises, we must make sure that the newly introduced triples
are assigned to the correct named graphs (or graphsets).

rdf:type

rdfs:subclassOf

&a

B

A

{G1}

{G2}

{G1,G2}

[&a rdf:type B] ∈ G1
[B rdfs:subClassOf A] ∈ G2
[&a rdf:type A] ∈ {G1,G2}

Implicit

Figure 2: Graphsets in Inference

rdf:type

rdfs:subclassOf

&a

B

A

{G1}

{G2}

{G1,G2}

[&a rdf:type B] ∈ G1
[B rdfs:subClassOf A] ∈ G2
[&a rdf:type A] ∈ {G1,G2}

Implicit

rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

&a

B

A

{G1}

{G2}

{G1,G2}

[&a rdf:type B] ∈ G1
[B rdfs:subClassOf A] ∈ G2
[&a rdf:type A] ∈ {G1,G2}

Implicit

Figure 2: Graphsets in Inference

23

In the example of Figure 3, the newly introduced (originally implicit) triple [&a
rdf:type A] should be assigned to the graphset {G1,G2}, as described above. The
introduction of this triple is due to RUL semantics [MSCK05], per which, implicit
triples which will lose their support due to a deletion operation are explicitly
introduced in the RDF graph. The assignment of the explicitly introduced triple to
{G1,G2} is due to the fact that both named graphs “cooperated” in the inference of the
original triple [&a rdf:type A]. Note that this assignment means that graphsets do not
only contain implicit triples (as in the case of Figure 2), but may contain explicit
triples as well. This feature is extremely important, as it allows the user to explicitly
declare certain triples to belong to graphsets, in effect stating that said triples belong
to several named graphs in a shared fashion, rather than to any individual named
graph.

It can be easily inferred by the above that a graphset containing just one named graph
(e.g., {G1}) is in fact the same as the named graph G1. Therefore, a named graph can
be seen as a special type of graphset. For ease of presentation, in the following we
will only refer to graphsets, assuming that named graphs are the graphsets whose
definition contains just one named graph.

Further, note that the modularization flexibility exhibited by named graphs is also
extended to graphsets. More specifically, a graphset may contain any number of
triples, even zero, whereas a triple may belong to any number of graphsets (including
individual named graphs), without any limitations in this respect. The only limitation
of graphsets (with respect to named graphs) is that they are not assigned a URI, only
an internal ID; thus, one cannot directly refer to a graphset in an RDF/S triple (e.g., in
order to assign metadata information to the graphset). However, graphsets can be
referred to indirectly, via their constituent named graphs.

A further implication of these facts is that graphsets are first-class citizens in our
model, i.e., they are considered of equal value as named graphs, since they can be
assigned triples in an explicit manner, just like we did with named graphs in the
simplified model. Also, the notion of named graphs is still supported, because a
named graph G is identified with the graphset {G}, i.e., a named graph can be
considered as a special type of graphset. For more details on the semantics of
graphsets and their properties, the reader is referred to [Ped08]. In the same work, the

rdf:type

rdfs:subclassOf

&a

B

A

{G1}

{G2}

{G1,G2}
[&a rdf:type B] ∈ G1
[B rdfs:subClassOf A] ∈ G2
[&a rdf:type A] ∈ {G1,G2}

Delete
[&a rdf:type A]
from {G1}

&a

B

A

{G2}

{G1,G2}Delete

Implicit Explicit

Figure 3: Graphsets in Change

rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

&a

B

A

{G1}

{G2}

{G1,G2}
[&a rdf:type B] ∈ G1
[B rdfs:subClassOf A] ∈ G2
[&a rdf:type A] ∈ {G1,G2}

Delete
[&a rdf:type A]
from {G1}

&a

B

A

{G2}

{G1,G2}Delete

Implicit Explicit

Figure 3: Graphsets in Change

24

interested reader may find the details of the formalization underlying the definition of
graphsets (and named graphs).

Named Graphs and Graphsets in SWKM
The introduction of graphsets in our model solves the problem of modularization of
RDF/S graphs. Nevertheless, being able to fully exploit the functionality offered by
graphsets requires their full support in the entire knowledge management process;
such a support should include support at the level of the serialization of RDF/S graphs
with graphset information, as well as extensions of the existing main memory and
database representations to capture and store graphset information, and should also
involve all the existing SWKM services, whose semantics are obviously affected by
the enrichment of the standard RDF/S model with the new notion.

The present deliverable concerns the support currently integrated (and implemented)
in the Query (RQL) and Update (RUL) services, as described in [DoW3.2]. However,
a few notes on the level of support provided by the other services and components of
SWKM are in order.

At the level of the serialization of RDF/S graphs, there is currently no well-defined (or
accepted) standard supporting graphset information. On the other hand, the TRIG
format, which is supported by the SWKM platform, inherently supports the
serialization of named graphs (the RDF/XML format does not). Thus, if we want to
serialize an RDF Graph that contains named graph information, this can only be done
using the TRIG format.

At the level of the database representation, graphset support has been implemented as
an optional feature in the HYBRID representation, meaning that the new persistent
storage is backwards compatible with the older services (which didn’t support
graphset information). The main memory model, on the other hand, does not support
graphsets.

The Import and Export services of the Knowledge Repository can easily be upgraded
to support graphsets; note however that the implementation of such services
presupposes the existence of a serialization format that supports graphset information,
which is currently not available. The support for importing and exporting named
graphs (which is supported by the TRIG serialization) has been included in the current
versions of the Import and Export Services.

Finally, as far as the rest of the SWKM services are concerned (Knowledge Mediator,
Knowledge MatchMaker, Knowledge Synthesizer, Analytical and Knowledge Mining
Services) there has been no provision, at the moment, for supporting graphsets. In
fact, the introduction of graphsets in such services would present several technical
difficulties and would introduce changes in their semantics. In addition, at the
moment, there does not seem to exist the need for such a support in any of the
Working Knots.

On the other hand, the Query (RQL) and Update (RUL) services have been extended
in order to fully support querying and updating RDF/S graphs with graphset
information. Such a support is far from trivial, as it involves certain non-trivial
extensions in both the semantics and the syntax of the query and update languages
(RQL/RUL). Moreover, the extended query and update languages (RQL/RUL) should

25

be backwards compatible with their older versions, and should, at the same time,
support querying and updating graphset information, as well as triples in RDF/S
graphs that contain graphset information. The details of the syntax of the new query
and update languages (RQL/RUL), as well as the full details on their semantics, can
be found at [Ped08]; here, we will give an overview of the new functionalities and
some basic explanation of their semantics.

Note that the introduction of support for graphsets in the existing Query and Update
services does not affect their reliability or performance; queries and updates that do
not involve named graphs would be interpreted and executed using the original query
and update algorithms and would return the same results (since the services are
backwards compatible). However, the new, enhanced versions of the services allow
the execution of more complicated queries and updates (i.e., involving graphset
information).

Querying Named Graphs and Graphsets
At the level of queries, the introduction of graphset information allows the execution
of more sophisticated and complicated queries. In the original RQL, one could ask for
the triples (or nodes) that satisfy a certain property; in the new RQL, one can ask for
the triples, nodes, or graphsets that satisfy a certain property. The property which the
triple, node, or graphset, is required to satisfy may be determined taking into account
graphset information.

The above flexibility allows the user to ask for the information contained in a specific
graphset or which graphset contains a specific piece of information; the answers to
both queries can be filtered using filtering conditions regarding the triples and/or the
graphsets involved. Thus, the new functionality allows querying for different things,
such as: the graphset(s) in which specific triple(s) belong to; the graphset(s) that
satisfy a certain property (e.g., containing a triple); the existing named graphs in the
system; the triples that belong in certain graphset(s); the triples or nodes that satisfy a
certain property; the triples or nodes that satisfy a certain property within one or more
graphsets, or within the graphsets that satisfy a given property; or the triples or nodes
that satisfy a certain property, as well as the graphsets that participate in the
satisfaction of said property. For backwards compatibility purposes, when no graphset
information is provided in a query, then all graphsets are considered by default (note
that this is the behaviour of the original RQL, where graphsets are not supported).

26

The above types of queries can be also combined to form more complicated queries.
Some examples of queries, their syntax and their expected response by the system for
the RDF KB shown in Figure 4 can be found in the following table. For more details
on the extended RQL, refer to [Ped08].

Description Syntax Expected Result (Figure 4)
Find all graphsets that
define &b as an
instance of A

SELECT g
FROM g::A{x}
WHERE x=&b

{G1,G2}
{G3}

Find all instances of A
in {G2}

SELECT x
FROM g::A{x}
USING NAMEDGRAPH
g=&G2

&c

Find all graphsets in
which C is a subclass
of A

SELECT g
FROM g::A{;$X}
WHERE $X=C

{G2,G3}

Find all subclasses of A
and the graphsets in
which they are defined

SELECT $X,g
FROM g::$X
WHERE $X < A

B,{G3}
C,{G2,G3}
E,{G2}

Find all subproperty
relations and the
graphsets they belong
to

SELECT @X,@Y,g
FROM g::@X;@Y

P,Q,{G1}

Table 2: Examples of RQL Queries

Let us suppose that the RDF/S graph in Figure 4 was developed by a learner in order
to record the information found in different sources (books, web pages, other co-
learners, etc) as well as the source of each information. Then, each named graph in the
figure would represent one source of information. Using the above queries, the learner
would be able to find all the sources that support some given information (query #1,
#3), or the information of a certain form that can be found in a given source (query

Figure 4: Querying with Graphsets

rdf:type

rdfs:subclassOf

&a

C

B

{G1}

{G2}

A

{G3}

E

D

&b &c

{G1}

{G2}

{G2}

{G3}

{G3}

properties

P

Q

{G1}
{G1}

{G3}

Figure 4: Querying with Graphsets

rdf:type

rdfs:subclassOf

&a

C

B

{G1}

{G2}

A

{G3}

E

D

&b &c

{G1}

{G2}

{G2}

{G3}

{G3}

properties

P

Q

{G1}
{G1}

{G3}
rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

&a

C

B

{G1}

{G2}

A

{G3}

E

D

&b &c

{G1}

{G2}

{G2}

{G3}

{G3}

propertiesproperties

P

Q

{G1}
{G1}

{G3}

27

#2), or the information of a certain form that can be found in any source, as well as
the source that supports each such information (queries #4, #5).

Updating Named Graphs and Graphsets
At the level of updates, the new feature is that triples can now be added to (and
deleted from) graphsets. Note that the new, extended RUL (and, consequently, the
new Update Service) only supports the updating (adding/removing) of data triples,
just like the original RUL (and Update Service).

It is easier in the analysis that follows to view the new RUL as dealing with
quadruples, i.e., triples associated with graphset information. As in the original RUL,
the full expressive power and patterns of RQL can be used to specify the triple(s) to
be added and/or deleted to/from the respective graphset(s), i.e., the quadruples to add
and/or delete; this feature guarantees the flexibility of the language in terms of being
able to specify with accuracy the quadruple(s) to be added/deleted. The semantics of
executing an update operation are complicated by the fact that more housekeeping is
required in order to determine the side-effects and specify the triples’ assignments to
graphsets following an update. An additional feature of the new RUL is that we can
manipulate named graphs and graphsets, by allowing additions and deletions of entire
named graphs from the repository.

More specifically, the addition of a new data triple, associated with a graphset,
proceeds, as usual, by adding the new triple associated with the graphset that the RUL
statement requires; if no graphset information is specified, then the DEFAULT# graph
is assumed; if the quadruple exists already (i.e., the required triple exists and is
associated with the graphset that the insert statement requires), then the operation is
void and no insertion takes place.

Following the addition of the quadruple, redundancy elimination takes place, as usual,
the only difference being that redundancy elimination should now take into account
the graphset information as well (i.e., it works on the level of quadruples, rather than
the level of triples). For example, in Figure 5, the triple [&a rdf:type A] is redundant,
because it belongs to {G1,G2}, whereas in Figure 6, the same triple belongs to {G1},
so it is not redundant and is kept after the update.

rdf:type

rdfs:subclassOf

&a

B

A

{G1,G2}

{G2}

Insert
[&a rdf:type A]
to {G1}

&a

B

A

{G2}

{G1}

Insert

Figure 5: Insert Operation (1)

INSERT g::A(&a)
USING NAMEDGRAPH g=G1

rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

&a

B

A

{G1,G2}

{G2}

Insert
[&a rdf:type A]
to {G1}

&a

B

A

{G2}

{G1}

Insert

Figure 5: Insert Operation (1)

INSERT g::A(&a)
USING NAMEDGRAPH g=G1

28

The deletion of a quadruple is more complicated. Unlike insertion, deleting a triple
without specifying the graphset from which to delete it implies that the triple is
deleted from all the graphsets that it appears in; if the triple does not appear in any
graphset, the operation is void. Following the deletion of the triple from the
graphset(s) as required, the following actions must be taken:

1. Verify that the about-to-be-deleted quadruple will not re-emerge as an
implication of the remaining quadruples. If this is the case, then remove all
data quadruples participating in the implication of the about-to-be-deleted
quadruple. Note that, again, graphset information plays a critical role; for
example, in the operation shown in Figure 7, the triple [&a rdf:type C],
belonging in {G1}, must persist, because it is not involved in any implication
causing the generation of the deleted triple ([&a rdf:type B] in {G1}); this is
not the case in Figure 8, where the operation is different, and said triple must
be removed.

2. All (implicit) triples that are implied by the about-to-be-deleted quadruples, or
by the quadruples detected in step 1, must persist, unless they are included in
the list of triples to be deleted that was identified by the delete statement itself,
or in step 1. For this reason, we must explicitly add such triples, carefully
assigning them the correct graphset information. For example, in Figure 7, we
add the triple [&a rdf:type A] in {G1,G3}; in Figure 8, we add the triple [&a
rdf:type A] in {G1,G2,G3}, as well as the triple [&a rdf:type D] in {G1,G3} (the
latter is caused by the removal of [&a rdf:type C] from {G1}).

3. After all class instantiations have been fixed, per steps 1 and 2, we must make
sure that all explicit or implicit property instances are deleted or kept as
necessary. In particular, each explicit property instance which is originating
from (or leading to) one of the instances whose instantiation is affected by
steps 1, 2, is checked for validity; if its source (or target) is not correctly
classified (explicitly, or implicitly, and regardless of the graphset information)
under the domain (or range) of the respective schema property, then the
property instance is removed. Moreover, each implicit property instance
which is originating from (or leading to) one of the instances whose
instantiation is affected by steps 1, 2, is checked for validity; if its source (or
target) is correctly classified (explicitly, or implicitly, and regardless of the
graphset information) under the domain (or range) of the respective schema
property, then the property instance should be kept, so, given that it is
currently implicit, it is added (unless its addition would cause a redundancy).

rdf:type

rdfs:subclassOf

&a

B

A

{G1}

{G2}

Insert
[x rdf:type A]
to {G1}

&a

B

A

{G1}

{G2}

{G1}

Insert

Figure 6: Insert Operation (2)

INSERT g::A(&a)
USING NAMEDGRAPH g=G1

rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

&a

B

A

{G1}

{G2}

Insert
[x rdf:type A]
to {G1}

&a

B

A

{G1}

{G2}

{G1}

Insert

Figure 6: Insert Operation (2)

INSERT g::A(&a)
USING NAMEDGRAPH g=G1

29

The above steps (especially #3) are quite complicated; the general idea is the same as
in the original RUL, however, the critical difference that complicates the problem is
the fact that we are now dealing with quadruples, rather than triples. The reader is
referred to [MSCK05], [Ped08] for details on the semantics of the original and the
extended RUL respectively.

As already mentioned, the new RUL allows us also to explicitly manipulate named
graph and graphset information. In particular, it is possible to:

1. Insert a new named graph, whose semantics is that a new, empty named graph
(and the respective graphsets) are added in the repository.

rdf:type

rdfs:subclassOf

Delete
[&a rdf:type B]
from {G1}

&a

C

B

{G1}

{G2}

{G1}

Delete

A

D

{G3}

{G3}

&a

C

B

{G1,G3}

{G2}

{G1}

A

D

{G3}

{G3}

Figure 7: Delete Operation (1)

DELETE g::B(&a)
USING NAMEDGRAPH g=G1

rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

Delete
[&a rdf:type B]
from {G1}

&a

C

B

{G1}

{G2}

{G1}

Delete

A

D

{G3}

{G3}

&a

C

B

{G1,G3}

{G2}

{G1}

A

D

{G3}

{G3}

Figure 7: Delete Operation (1)

DELETE g::B(&a)
USING NAMEDGRAPH g=G1

rdf:type

rdfs:subclassOf

Delete
[&a rdf:type B]
from {G1,G2}

&a

C

B

{G2}

{G1}

Delete

A

D

{G3}

{G3}

&a

C

B

{G1,G2,G3}

{G2}

{G1,G3}

A

D

{G3}

{G3}

Figure 8: Delete Operation (2)

DELETE g::B(&a)
USING NAMEDGRAPH
g=gset(G1,G2)

rdf:typerdf:type

rdfs:subclassOfrdfs:subclassOf

Delete
[&a rdf:type B]
from {G1,G2}

&a

C

B

{G2}

{G1}

Delete

A

D

{G3}

{G3}

&a

C

B

{G1,G2,G3}

{G2}

{G1,G3}

A

D

{G3}

{G3}

Figure 8: Delete Operation (2)

DELETE g::B(&a)
USING NAMEDGRAPH
g=gset(G1,G2)

30

2. Delete all data contents of a named graph, whose semantics is that all data
triples in the given named graph are deleted. Optionally, one can also delete
the data contents (i.e., all the data triples) in all the graphsets in which the
given named graph participates in.

3. Delete an empty named graph from the system, whose semantics is that a
named graph, and all graphsets that contain said named graph, are removed
from the system. Note that this operation will fail if the named graph itself, or
any of the graphsets that include it, contain any triples (data or schema).

4. Force delete a named graph, whose semantics is that the data contents (i.e.,
the data triples) of the named graph and the graphsets that it participates in are
deleted (like in operation #2), and then, the named graph itself and the
graphsets that it participates in are deleted, if empty (like operation #3). Note
that this operation will fail (roll-back) if the named graph itself, or any of the
graphsets that include it, contain any schema triples.

It should be noted that the above operations can be applied only to user-defined
named graphs; they cannot be applied on the system-defined #DEFAULT named
graph.

The above operations (insert, delete, operations on named graphs) can be arbitrarily
combined forming more complicated update requests to be handled by the Update
Service. Furthermore, insert and delete operations that were supported by the original
RUL are supported by the enhanced version too; however, replace operations with
graphsets have not been defined, even though replace operations without graphset
information are still supported.

In the aforementioned example of the learner who records some information on a
domain and the related sources, the updating features would allow, for example, the
insertion of a piece of information (data triple) along with its related sources (i.e., the
sources where the information was found in), or the removal of the association of a
certain piece of information (data triple) with specific sources (meaning that we no
longer believe that the particular piece of information was provided by the particular
sources), or the removal of a certain piece of information (data triple) from the RDF/S
graph entirely (irrespectively of the source associations). In addition, the operations
on graphsets allow the manipulation of sources, such as the introduction of a new
source (as a preparation for adding information related to that source), or the deletion
of some source (which could be empty, or could be deleted along with its data
contents, if not empty).

Implications from the Introduction of Named Graphs
As already mentioned, the introduction of named graphs provides the user with a lot
of powerful features and allows a very flexible modularization of RDF/S graphs.
However, named graphs come also with a number of implications, outlined here.

First of all, the notion of “ownership” that presents itself once modules are
introduced, also causes the need for “co-ownership”. This need is due to the RDFS
inference mechanism (which causes implicit triples to be “co-owned”), as well as by
the RUL semantics (which causes explicit triples to be “co-owned”). Apart from
necessary, this feature is also very useful, because it allows us also to state explicitly
that some triple is “co-owned” by more than one named graphs. In order to support

31

this feature, the notion of graphsets was introduced as a first-class citizen in our
model.

The second major implication of the introduction of named graphs (and,
consequently, graphsets) is that the user should be able to query and update them.
Both features require the expansion of the existing RQL and RUL languages, which is
described in detail in [Ped08] (and in this deliverable).

More specifically, querying in the presence of graphsets means that a new, and more
powerful version of the RQL language (and the Query Service) should be introduced
in order to allow querying graphsets (and named graphs), as well as triples that
contain graphset (and named graph) information. During querying, graphset
information should be taken into account, and the query language should support the
feature of being able to detect those named graphs (or graphsets) that contributed in
determining the query answer.

Updating in the presence of graphsets is even more difficult. A new RUL (and Update
Service) is required, which, as expected, builds upon the new RQL language. The new
RUL should support the updating of graphset (and named graph) information, as well
as the updating of triple information in the presence of graphsets (and named graphs).
The main complications that arise in the specifications of the semantics of the new
RUL stem from the fact that inference and redundancy elimination in the presence of
graphsets is more complicated and takes into account where (i.e., in which graphsets)
the involved triples are assigned to.

A further implication from the introduction of named graphs is related to their
serialization; at the moment the TRIG format (only) supports the serialization of
named graphs (but not of graphsets).

Finally, fully exploiting the modularization power offered by named graphs (and
graphsets) implies that all SWKM services should support them. At the moment, we
have provided support for named graphs (and graphsets) at the level of the knowledge
repository (persistent storage). Support at the level of the main memory model is
pending. The support of named graphs by the Knowledge Mediator and Knowledge
MatchMaker services is inherently difficult and will be addressed in the future,
depending on whether such a need will be expressed by the partners in the context of
some Working Knot. Support for named graphs in the Import and Export services of
the Knowledge Repository is relatively easy (and has been implemented), but support
for graphsets presupposes the existence of a well-defined serialization format that
supports graphsets (which is not available at the moment). Finally, support at the level
of the Query and Update services has been already integrated, as described above.
This deliverable only covered the support of named graphs by the Query and Update
services, as described in the latest DoW [DoW3.2].

4.2 Knowledge Mediator

4.2.1 Persistent Comparison Service

The specifications and general design of the Persistent Comparison Service is, in most
respects, similar to the design of the main memory version of the service that was

32

described in detail in [D5.3]. Here, we will repeat the main points from [D5.3],
outlining the differences between the two versions of the service. The reader is
referred to [D5.3] and [ZTC07] for more details.

The Persistent Comparison Service is responsible for comparing two collections of
namespaces already stored in the repository and computing their delta in an
appropriate form. Unlike the Main Memory Comparison Service, the comparison is
made directly on the repository, without an intermediate phase of loading the two
collections of namespaces into the main memory. The result of the comparison is a
“delta” (or “diff”) containing the differences between the two collections of
namespaces, i.e., the change(s) that should be applied upon the first in order to get to
the second (see Figure 9 for an example).

The comparison is based on semantic, rather than syntactic considerations (see
[D5.3]), so our service is based on the comparison of the triples contained in the
namespaces. All four of the different methods for computing a semantic delta between
namespaces that were discussed in [ZTC07] and implemented in the Main Memory
Comparison Service [D5.3] are implemented in the Persistent Comparison Service as
well. More specifically, depending on whether the implicit knowledge (i.e., the
inferred triples) contained in the two collections of namespaces is, or is not, taken into
account, we have the following four modes of operation:

• Delta Explicit (∆e): Takes into account only explicit triples
– ∆e(K→K′) = {Add(t) | t∈K′–K} ∪ {Del(t) | t∈K–K′}

• Delta Closure (∆c): Takes into account both explicit and inferred triples
– ∆c(K→K′) = {Add(t) | t∈C(K′)–C(K)} ∪ {Del(t) | t∈C(K)–C(K′)}

• Delta Dense (∆d): Returns the explicit triples of one KB that do not exist at
the closure of the other KB

– ∆d(K→K′) = {Add(t) | t∈K′–C(K)} ∪ {Del(t) | t∈K–C(K′)}
• Delta Dense & Closure (∆dc): resembles ∆d regarding additions and ∆c

regarding deletions
– ∆dc(K→K′) = {Add(t) | t∈K′–C(K)} ∪ {Del(t) | t∈C(K)–C(K′)}

In the above bullets the operator C(.) stands for the consequence operator, which is a
function producing all the consequences (implications) of a set of triples (namespace
or collection of namespaces) K, i.e., all the triples that exist explicitly or implicitly in
K.

A

B

C

A

C

Compare

Delta (explicit):
Del Class B
Del C IsA B
Del B IsA A
Add C IsA A

A

B

C

A

C

Compare

Delta (explicit):
Del Class B
Del C IsA B
Del B IsA A
Add C IsA A

Figure 9: Comparing Two Namespaces

A

B

C

A

C

Compare

Delta (explicit):
Del Class B
Del C IsA B
Del B IsA A
Add C IsA A

A

B

C

A

C

Compare

Delta (explicit):
Del Class B
Del C IsA B
Del B IsA A
Add C IsA A

Figure 9: Comparing Two Namespaces

33

The output of the Persistent Comparison Service in each of the different modes of
operation (deltas) is identical to the output of the main memory version of the service
for the respective mode (delta). Therefore, all the observations and comments made in
[D5.3] regarding the property of delta correctness, the size of the various deltas and
the different update semantics that could be used to apply a delta, hold for the
persistent version of the service as well.

Just like its main memory counterpart, the input to the Persistent Comparison Service
is two collections of namespaces for comparison, and the delta function that should be
used for the comparison. The dependent namespaces of the compared ones (in the
input) are also considered in the comparison in both versions of the service (see
[D5.3] for details).

The format of the output of the service is identical to the one produced by the main
memory Comparison Service, namely, a pair of strings that represent the delta of the
two (collections of) namespaces. In particular, the first string of the pair represents the
RDF triples that exist in the second collection of namespaces but don’t exist in the
first, whereas the second represents the triples that exist in the first but not in the
second. The serialization of said triples in the output string is done using the TRIG
format.

5 Implementation

5.1 Overview and Preliminaries
The general architectural decisions related to the SWKM platform have not changed
since the latest M24 release (V2.0), and are described in detail in [D5.4]. In short, the
services are being deployed as web services, which use an RDBMS server as a
backend and the SWKM client as an API for contacting them. Here, we will describe
the (few) parts of the architecture that have changed since the M24 release, namely
the enhancements related to the SWKM client and the new automatic installation tool
that we developed for the SWKM platform.

5.1.1 The SWKM Client

As an aid for contacting the various SWKM services, an SWKM client is provided,
which is a collection of java classes and interfaces that can be used to contact the
SWKM web services in a concise and natural way. A client instance is an access
point to several interfaces in “gr.forth.ics.rdfsuite.services”, which group the
operations of each web service; these are the following:
• Importer accessed by client.importer()
• Exporter accessed by client.exporter()
• QueryHandler accessed by client.query()
• UpdateHandler accessed by client.update()
• DiffGenerator accessed by client.diffGenerator()
• ChangeImpact accessed by client.changeImpact()
• VersionManager accessed by client.versionManager()
• Registry accessed by client.registry()
• Delete accessed by client.deleter()

34

• Debug accessed by client.debug()

Note that there have been no changes with respect to the existing services. The new
Delete Service is being accessed through a dedicated interface (client.deleter).
The new Persistent Comparison Service has not been associated with a dedicated
interface, but shares the interface of the Main Memory Comparison Service; a boolean
parameter is used to determine whether the Main Memory Comparison Service or its
persistent counterpart should be used (false for the main memory version, true for
the persistent one). Note that, the determination of the version to use is made during
the initialization of the DiffGenerator; thus, if the user wants to use both versions, he
should initialize two instances of DiffGenerator. Finally, the new versions of the
Query and Update service are supported using the same interfaces as the original
ones; note that the changes needed to support the named graphs functionality are at a
lower level, namely at the level of the RQL and RUL languages, thus no changes are
required at the level of the function calls.

Each web service is modeled as a Java interface. These interfaces reside in swkm-
services-api.jar , in the package “gr.forth.ics.rdfsuite.services”. The mapping of
interface names and services is given below:

Web Services WSDL URL Paths Interfaces
Query Service /query?wsdl QueryHandler
Update Service /update?wsdl UpdateHandler
Import Service /importer?wsdl Importer
Export Service /exporter?wsdl Exporter
Versioning Service /versioning?wsdl VersionManager
Comparison Service /diffGenerator?wsdl DiffGenerator
Change Impact Service /changeImpact?wsdl ChangeImpactAnalyzer
Registry Service /registry?wsdl Registry
Delete Service /deleter?wsdl Deleter

Table 3: Web Services and Interfaces

As before, the only new interface required (with respect to the M24 release) is for the
Delete Service; the Persistent Comparison Service shares the interface of the Main
Memory Comparison Service, whereas the new, enhanced versions of the Query and
Update services use the interfaces of the original version.

5.1.2 Installation and Configuration

Details on the configuration, installation, optimization etc of the SWKM platform can
be found at [D5.4]. A new feature, with respect to [D5.4], is the development of an
easy-to-use, automatic installer that can be used in order to avoid the cumbersome
installation process described in [D5.4]; this installer can be found at
http://athena.ics.forth.gr:9090/SWKM.

The installer can be used to setup SWKM itself, as well as all the related services and
applications that SWKM depends on (such as glassfish, postgres, etc), as necessary,
depending on the services existing in the underlying system. There are two versions of
the installer (both can be found at the aforementioned URL,
http://athena.ics.forth.gr:9090/SWKM): the first version downloads the entire bundle

35

locally and executes the installation from there, whereas the second downloads only
the basic executable and the rest is downloaded during the installation on a need-to-
have basis. The reader is referred to http://athena.ics.forth.gr:9090/SWKM for further
details on the installer.

5.2 Knowledge Repository

5.2.1 Delete Service

Signature
• java.lang.Boolean delete(

java.lang.String uri)
• java.lang.Boolean deleteWithDependents(

java.lang.String uri,
java.lang.Boolean data)

Description
The purpose of these operations is to delete a namespace from the repository
(parameter uri). The delete method corresponds to the “soft delete” mode of
operation; depending on the value of the parameter data, the
deleteWithDependents method corresponds to either the “hard delete with
reclassification” (when data is false) or “hard delete” mode of operation (when
data is true).

Both methods will return true if the deletion was completed successfully; they will
return false if the deletion failed for some reason (indicative causes include:
existence of data classified under the namespace to be deleted while in “soft delete”
mode, dependent namespaces in “soft delete” mode, database connection problems,
non-existence of the URI to be deleted etc).
Preconditions
The namespace with URI uri should exist in the repository. For the “soft delete”
mode of operation, the service will succeed (return true) only if the input URI does
not have any dependents or data classified under it.
Effects
After the successful execution of the operation, the triples contained in the deleted
namespace no longer exist in the database. Moreover, the URI of the namespace itself
is deleted from the list of namespaces in the database, and all references to such a
namespace are deleted as well. This is true for all the namespaces that are deleted, and
includes either the input namespace only, or the input namespace along with its
dependents (depending on the mode of operation). All data classified under the
deleted namespaces is either deleted or reclassified, depending on the mode of
operation. If the operation fails, none of the deletions is committed and the database
remains in its original state. For details on the different modes of operation, refer to
section 4 of this deliverable.

5.2.2 Named Graphs

The implementation of the (enhanced) Query and Update services that support
graphsets (and named graphs) was based on the implementation of the original Query
and Update services. The only changes required are at the level of the individual
services’ implementation, which should be able to handle the more complex

36

(enhanced) RQL queries and RUL updates that are necessary to support graphsets
(and named graphs).

Therefore, the enhancement of these services does not affect the methods used as
contact points for the services; the signatures, descriptions, preconditions and effects
of the related methods (query, queryMultiple, update, updateMultiple) are
identical to those presented in [D5.4] and are omitted from this deliverable.

The only difference between the two versions is that the new services can also handle
the enhanced queries and updates related to graphsets (which would fail under the old
versions); attempting to execute, for example, a query involving graphsets with the
old service would result in a failure to execute the query, as the old version cannot
interpret a query that involves graphsets. On the other hand, the new methods are
backwards compatible with the old ones, since the queries (and updates) that are not
related to graphsets are handled in the same way in the new services.

5.3 Knowledge Mediator

5.3.1 Persistent Comparison Service

The implementation of the interface calling the Persistent Comparison Service was
based on the interface that calls the Main Memory Comparison Service; as already
mentioned, a boolean variable during the initialization of DiffGenerator (of the
SWKM client) determines whether the main memory or the persistent version of the
service should be used. As a result, the signature, description, preconditions and
effects of the related method are very similar to the ones described in [D5.4]. In this
section, we describe the (few) differences that have been introduced due to the
inclusion of the persistent version of the service; for additional details, the reader is
referred to [D5.4].
Signature
Delta diff(
java.util.List<java.lang.String> namespacesOrGraphspaces1,
java.util.List<java.lang.String> namespacesOrGraphspaces2,
DeltaFunction deltaFunction)
Description
The Comparison Service is responsible for comparing two collections of namespaces
already stored in the repository and computing their delta in an appropriate form. The
compared RDF KBs (or ontologies) are determined by the parameters
namespacesOrGraphspaces1, namespacesOrGraphspaces2 (see [D5.4] for
details), whereas the parameter deltaFunction determines the delta function to use
(see [ZTC07], [D5.3] for details).

The expected input, output, preconditions and behaviour of the algorithm is identical
to the ones described in [D5.4], regardless of whether the initialization required the
main memory or the persistent version of the service to be used; the two services have
been designed so as to produce the same results, so the only thing that is affected is
the performance and the scalability of the service, as described in the previous section,
because the original version of the service works on the main memory, whereas the
persistent version works on the persistent storage.
Preconditions

37

The preconditions for the service are identical to the preconditions of the Main
Memory Comparison Service, outlined in [D5.4].
Effects
None.

6 Conclusion

In this deliverable we described some new services and functionalities which are
included in the new M36 release (V3.0) in the KP-Lab project. These services and
functionalities are the following:

• The Delete Service, which is a new service allowing the deletion of
namespaces from the repository. The Delete Service has been implemented as
part of the SWKM Knowledge Repository.

• The named graphs feature, which allows flexible modularization of the
information found in RDF/S KBs. This functionality is expected to be used in
various interesting ways within the project. At the present deliverable we only
described in detail the support for named graphs that has been integrated in the
Query and Update Services of the SWKM Knowledge Repository, per DoW
3.2 [DoW3.2].

• The Persistent Comparison Service, which is used to compare, in a scalable
way, conceptualizations, in a manner similar to the Main Memory Comparison
Service described in [D5.3], [D5.4]. The Persistent Comparison Service, like
its main memory counterpart, is part of the SWKM Knowledge Mediator.

We described in a detailed fashion each of these services and functionalities, based on
certain motivating scenarios and the subsequent functional requirements. In addition
to the abstract description of their functionality, we also gave technical details on their
implementation, how they can be accessed, and how each parameter of the related
method calls affects the functionality of the respective service or feature.

In addition to those services and functionalities, we developed an enhancement of the
streaming capabilities of the existing TRIG parser, as part of our activities related to
the Knowledge Repository (see also [DoW3.2]). Under the new implementation, the
input TRIG file is read in a streaming manner, thereby reducing the space
requirements and improving the performance of the Import Service. This
enhancement has been included in the new release, but it does not affect the usage of
the service in any way, because it is an internal change.

Finally, it should be noted that the Persistent Change Impact Service (see [DoW3.2]),
which was designed to improve the scalability of the original, main memory version
of the Change Impact Service [D5.3] by executing the changes directly upon the
persistent storage, has not been developed and is not included in this deliverable. The
reason is that the problem turned out to be much more difficult than expected and
additional work is required for an adequate specification and implementation of the
service; in addition, up to now, we did not find requirements for such a service in any
of the Working Knots. The development of such a service can be reconsidered later
on, if such a requirement appears within the project. Note that persistent updates upon
data is already supported using the Update Service [D5.1], whereas main memory
updates upon both data and schema are supported using the Change Impact Service
[D5.3], [D5.4].

38

7 Bibliography

[BHLT06] T. Bray, D. Hollander, A. Layman, R. Tobin. Namespaces in XML 1.0
(Second Edition). W3C Recommendation, 2006. Available at:
http://www.w3.org/TR/REC-xml-names/

[CBHS05] J. Carroll, C. Bizer, P. Hayes, P. Stickler. Named Graphs, Provenance and
Trust. In Proceedings of the 14th International World Wide Web Conference
(WWW-05), 2005.

[ColMol] End User Requirements for Collaborative Semantic Modelling. KP-Lab
internal document, v.0.6, August 2007.

[D2.4] Driving Objectives and High-level Requirements for KP-Lab Technologies.
KP-Lab project Deliverable D2.4, November 2008.

[D4.2.3II] Annex II: “TLO and Ontologies Engineering in the KP-Lab Platform” of
the D4.2.3: “KP-Lab Platform Architecture Dossier - Release 3”. KP-Lab project
Deliverable D4.2.3, Annex II, June 2008.

[D5.1] Specification of the SWKM Architecture (V1.0) and Core Services. KP-Lab
project Deliverable D5.3, July 2006.

[D5.3] Specification of the SWKM Knowledge Evolution, Recommendation, and
Mining services. KP-Lab project Deliverable D5.3, November 2007.

[D5.4] Prototype (V2.0) of the SWKM Knowledge Mediator, MatchMaker and
Manager. KP-Lab project Deliverable D5.4, March 2008.

[D5.6] Specifications for the Knowledge Matchmaker (V.2.0), the Knowledge
Synthesizer (V.1.0) and the Analytical and Knowledge Mining Services (V.1.0).
KP-Lab project Deliverable D5.6, January 2009.

[D6.6] M33 Specification of End-user Applications. KP-Lab project Deliverable
D6.6, December 2008.

[DKKC08] M. Doerr, A. Kritsotaki, D. Kotzinos, V. Christophides. Reference
Ontology for Knowledge Creation Processes. KP-Lab Internal Document
(currently in draft status), December 2008. Available at: http://www.kp-
lab.org/intranet/work-packages/wp4/t4-4-services-management/t4-4-3-creation-
and-support-of-semantic-models-based-on-pedagogical-models-created-in-the-
project/material-of-the-heraklio-reference-model-
workshop/Reference%20Ontology%20for%20Knowledge%20Creation%20Proces
ses.doc/view

[DoW3.2] Description of Work 3.2 Months 25–42. KP-Lab Consortium, July 2008.

[KMACPST04] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D.
Plexousakis, M. Scholl, K. Tolle. RQL: A Functional Query Language for RDF. In
Functional Approach to Data Management, pages 435-465, 2004.

39

[MSCK05] M. Magiridou, S. Sahtouris, V. Christophides, M. Koubarakis. RUL: A
Declarative Update Language for RDF. In Proceedings of the 4th International
Semantic Web Conference (ISWC-05), 2005.

[NCLM06] N. Noy, A. Chugh, W. Liu, M. Musen. A Framework for Ontology
Evolution in Collaborative Environments. In Proceedings of the 5th International
Semantic Web Conference (ISWC-06), 2006.

[Ped08] P. Pediaditis. Querying and Updating RDF/S Named Graphs. Master thesis,
Computer Science Department, University of Crete, 2008.

[PH05] S. Paavola, K. Hakkarainen. The Knowledge Creation Metaphor – An
Emergent Epistemological Approach to Learning. In Science Education, 14(6),
pages 535-557, 2005.

[SemTag] Specifications for Annotating Knowledge Objects with Semantic Tags. KP-
Lab internal document, October 2007. Available at: http://www.kp-
lab.org/intranet/design-teams/wk-management-and-analysis-of-complex-
knowledge-structures/semantic-tagging/annotating-knowledge-objects-with-
semantic-tags/AnnotatingObjectsWithSemanticTags-specifications-v1.doc/view

[Tan07] W.-C. Tan. Provenance in Databases: Past, Current, and Future. Bulletin of
the IEEE Computer Society, Technical Committee on Data Engineering, 2007.

[TCFKMPS06] Y. Tzitzikas, V. Christophides, G. Flouris, D. Kotzinos, H.
Markkanen, D. Plexousakis, N. Spyratos. Emergent Knowledge Artefacts for
Supporting Trialogical E-Learning. In Proceedings of the 1st International
Workshop on Building Technology Enhanced Learning Solutions for Communities
of Practice (TEL-CoPs-06), pages 162-176, 2006.

[TCFKMPS07] Y. Tzitzikas, V. Christophides, G. Flouris, D. Kotzinos, H.
Markkanen, D. Plexousakis, N. Spyratos. Emergent Knowledge Artefacts for
Supporting Trialogical E-Learning. In International Journal of Web-Based
Learning and Teaching Technologies (IJWLTT), 2(3), pages 16-38, 2007.

[WN06] E. Watkins, D. Nicole. Named Graphs as a Mechanism for Reasoning About
Provenance. In Frontiers of WWW Research and Development - APWeb, 2006.

[ZTC07] D. Zeginis, Y. Tzitzikas, V. Christophides. On the Foundations of
Computing Deltas Between RDF Models. In Proceedings of the 6th International
Semantic Web Conference (ISWC-07), 2007.

