
HAL Id: hal-00593214
https://hal.science/hal-00593214v1

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KP-LAB Knowledge Practices Laboratory –
Specification of the SWKM Knowledge Evolution,

Recommendation, and Mining services
Pavel Smrz, Vilem Sklenak, Vojtech Svatek, Martin Kavalec, Martin Svihla,

Jan Paralic, Karol Furdik, Peter Bednar, Peter Smatana, Nicolas Spyratos, et
al.

To cite this version:
Pavel Smrz, Vilem Sklenak, Vojtech Svatek, Martin Kavalec, Martin Svihla, et al.. KP-LAB Knowl-
edge Practices Laboratory – Specification of the SWKM Knowledge Evolution, Recommendation, and
Mining services. 2007. �hal-00593214�

https://hal.science/hal-00593214v1
https://hal.archives-ouvertes.fr

1

27490

KP-LAB

Knowledge Practices Laboratory

Integrated Project

Information Society Technologies

D5.3: Specification of the SWKM Knowledge
Evolution, Recommendation, and Mining services

Due date of deliverable: 30/09/07
Actual submission date: 09/11/07

Start date of project: 1.2.2006 Duration: 60 Months

Organisation legal name of lead contractor for this deliverable:
UEP: Vysoká škola ekonomická v Praze (University of Economics, Prague)

 Final

Project co-funded by the European Commission within
the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public ����
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

2

Contributor(s): Pavel Smrz UEP smrz@fit.vutbr.cz
Vilem Sklenak UEP sklenak@vse.cz
Vojtech Svatek UEP svatek@vse.cz
Martin Kavalec UEP kavalec@vse.cz
Martin Svihla UEP svihla@vse.cz
Jan Paralic TUK Jan.Paralic@tuke.sk
Karol Furdik TUK kfurdik@stonline.sk
Peter Bednar TUK Peter.Bednar@tuke.sk
Peter Smatana TUK Peter.Smatana@tuke.sk
Nicolas Spyratos LRI-ORSAY spyratos@lri.fr
Hanen BelhajFrej LRI-ORSAY hanen@lri.fr
Mamadou Nguer LRI-ORSAY nguer@lri.fr
Vassilis Christophides ICS-FORTH christop@ics.forth.gr
Dimitris Kotzinos ICS-FORTH kotzino@ics.forth.gr
Yannis Tzitzikas ICS-FORTH tzitzik@ics.forth.gr
Giorgos Flouris ICS-FORTH fgeo@ics.forth.gr
Giorgos Markakis ICS-FORTH geomark@ics.forth.gr

Editor(s): Pavel Smrz UEP smrz@fit.vutbr.cz
Partner(s): UEP, TUK, LRI-ORSAY, ICS-FORTH
Work Package: WP5 − Semantic Web Knowledge Middleware
Nature of the
deliverable:

Report

Internal
reviewers:

Hadj Batatia INPT hadj.batatia@enseeiht.fr
Markus Holi EVTEK markuho@evtek.fi

Review
documentation:

http://www.kp-lab.org/intranet/work-
packages/wp5/result/deliverable-5.3

3

Version history

Version Date Editors Description
0.1 June 16,

2007
Karol Furdik,
Pavel Smrz

Initialization document, tasks and
responsibilities.

0.2 June 29,
2007

Hanen BelhajFrej Notification module specification.

0.3 July 18,
2007

Giorgos Flouris Initial comments, structure
modification, inputs to Knowledge
Mediator section.

0.4 August 14,
2007

Karol Furdik,
Peter Bednar,
Peter Smatana

Integration of inputs, Requirements
section, Text Mining services
functionality and architecture.

0.5 August 28,
2007

Giorgos Flouris,
Karol Furdik, Jan
Paralic

Sections 1 and 2 upgraded by
FORTH and TUK

0.6 August 30,
2007

Pavel Smrz Sections 3.2.5 and 4.2.2 updated, +
minor modifications in the
Executive Summary and
Introduction; an update of section 3
from FORTH included

0.7 September
21, 2007

Pavel Smrz Integrated version, updates from all
partners

0.8 September
24, 2007

Karol Furdik, Jan
Paralic, Peter Bednar

Renumbering of sect. 3.2.2, new
text added to sect. 3.2.2.3.

0.9 September
26, 2007

Pavel Smrz Last changes from Giorgos, service
signatures normalized

1.0 November
09, 2007

All contributors Incorporation of reviewers
comments and other minor changes

4

Executive summary

This deliverable presents the deep-level specification for the second release (M24)
of the components responsible for advanced manipulation with the knowledge
stored in the KP-Lab Semantic Web Knowledge Middleware (SWKM). The two
components were defined in [D5.1] as Knowledge Mediator and Knowledge
Matchmaker.

The Knowledge Mediator services (change, comparison, versioning and registry)
aim at providing functionalities to support evolving ontologies and RDF Knowledge
Bases (KBs). Upon a change request, the change service will automatically
determine the effects and side-effects of the request and present it to the caller for
validation. A comparison service is necessary to allow one to compare two versions
of an ontology or RDF KB and identify their differences. The above functionalities
are coupled with a versioning system, which is used to make different versions of
the same ontology (or RDF KB) persistent, and with the registry service, which
allows the user to classify the stored ontologies, using some related metadata for
easy access and manipulation.

The Knowledge Matchmaker supports advanced mining and notification services for
knowledge artefacts. It essentially enables to cluster/classify available information
resources with respect to the employed ontologies, as well as, to notify about
changes to content items produced/consumed within a group of learners according
to explicitly subscribed preferences [DoWB].

The Notification service supports access to the knowledge repository for KP-Lab
users (i.e. individual human users as well as various tools or software components)
by keeping them aware of changes. Users will be able to subscribe their preferences
to the KP-Lab system in order to be notified about the changes in the knowledge
repository. Events (modifications) in the repository are matched with the
subscriptions and notifications are propagated automatically to the users.

Text Mining services are used to assist users when creating or updating the semantic
descriptions of KP-Lab knowledge artefacts. The Classification Service, after a
software-training period, will classify the artefacts under some pre-defined set of
categories (e.g., ontology concepts), resulting in a semi-automatic generation of
semantic descriptions. The Clustering Service will look for clusters of similar
artefacts and automatically acquire conceptual maps from knowledge artefacts. This
can lead to the update or even the creation of (new) KP-Lab ontologies managed in
the sequel by the Knowledge Mediator.

The services are described along with the proposed functionality for each one, based
upon the motivating scenarios and the subsequent functional requirements. The
functionality of the services is presented from the end-user perspective and divided
into parts that form the major components of the SWKM knowledge evolution,
recommendation and mining services architecture.

5

Table of Contents

TABLE OF CONTENTS ...5

1 INTRODUCTION...6

2 REQUIREMENTS..7

2.1 MOTIVATING SCENARIOS...7
2.1.1 Semantic tagging ..8
2.1.2 (Re-)Constructing arguments ...9

2.2 HIGH-LEVEL FUNCTIONAL REQUIREMENTS...10
2.2.1 Evolution and Use of Multiple Ontologies and RDF KBs ..10
2.2.2 Semantic Annotation of Artefacts ...12
2.2.3 Semi-automatic Building of Ontologies and Clustering of Artefacts..............................13
2.2.4 Keeping Users Aware of Changes ..14
2.2.5 Summary of the Requirements ..15

3 FUNCTIONAL AND ARCHITECTURAL DESIGN..16

3.1 KNOWLEDGE MEDIATOR..16
3.1.1 Change Service ...16
3.1.2 Comparison Service..20
3.1.3 Versioning Service..24
3.1.4 Registry Service ..26

3.2 KNOWLEDGE MATCHMAKER ...31
3.2.1 Notification service...32
3.2.2 Text Mining Services...36

3.2.2.1 Pre-processing of texts ..36
3.2.2.2 Clustering and Automatic Creation of Concept Maps...38
3.2.2.3 Classification...42

4 CONCLUSIONS AND FUTURE WORK ..46

BIBLIOGRAPHY...47

APPENDIX ...50

6

1 Introduction

In the context of KP-Lab we need to support the creation, evolution and management
of conceptualizations for various domains. Such conceptualizations are necessary for
learners to engage in trialogical learning and have a shared space, upon which they
can represent their own, as well as other learners’, knowledge and understanding of
the domain at hand. The role of the conceptualization in this respect is to be used as a
mediator tool among people attempting to describe and understand the domain at
hand.

The simplest way to represent knowledge in such a conceptualization is by
introducing structure in a vocabulary of terms, in effect producing a taxonomy. A
taxonomy enriched with different types of constraints, relationships and rules forms
an ontology. There are various formal languages that can be used to represent these
relationships; for the purposes of KP-Lab, we adopt the RDF model with the
semantics of RDF Schema (RDF/S); for a detailed description of RDF and RDF/S, see
[KMACPST04]. An ontology can be viewed as the schema upon which data can be
classified; an RDF ontology coupled with data items (instances) is called an RDF
Knowledge Base (or RDF KB for short).

The descriptions of knowledge artefacts as well as their involved conceptualizations
will be represented and handled in SWKM as RDF/S schemas and resource
descriptions (i.e., ontologies and RDF KBs). In order to support personal and group
knowledge management based on multiple conceptualizations the knowledge
repository should be able to distinguish schemas and descriptions according to the
actors (individual or group) involved in their creation. To this end, the SWKM
knowledge repository will be able to store, retrieve and update RDF/S schemas and
descriptions based on the name spaces or graph spaces they belong to, where a
namespace is a collection of RDF/S classes and properties, whereas a graph space is a
collection of RDF triples (see [D5.1] for more details). Name and graph spaces will be
uniquely identified using URI references. Name and graph spaces may depend on
other name or graph spaces, in the sense that they may reuse elements (e.g., classes)
or declarations from other name and graph spaces (see [D5.2] for more details); such
dependencies may need to be taken into account in certain services, as we will see in
later sections.

Notice that mediation of activities is not limited to physical tools but encompasses
linguistic, conceptual, as well as cognitive artefacts, including theories, models and
languages [Sta03]; a conceptualization (and an ontology representing a
conceptualization) is such a non-physical mediator tool. Apart from mediating
artefacts used to carry out purposive activities, ontologies (and RDF KBs) can also be
seen as knowledge-artefacts on their own. This understanding imposes a number of
implications [AMR06]. First of all, the ontology (or RDF KB) is part of the activity
system; as a result, its utility for the task at hand is bound to the activity itself and
cannot be assessed independently. Secondly, an ontology (or RDF KB), like any other
mediating artefact, is the result of a cultural-historical development process within a
certain community. As mediating artefacts are objectifications of socially shared
knowledge and are built on specific premises it is likely that ontologies (and RDF
KBs) not only vary in their terminology but also reflect different theoretical

7

foundations. Thirdly, an ontology (or RDF KB) can become the object of an activity
itself and can be modified or transformed.

2 Requirements

The requirements process of the WP5 software release 2 follows the general KP-Lab’s
design approach [D2.1] and is based on the idea of intertwined design of software
components, practices and agents [D2.2]. The initial set of requirements was given by
the reactions of developers and end-users, given on the first release of the SWKM.
This includes all the inputs obtained from partners to the first prototype (V1.0) of the
Knowledge Mediator, Repository and Manager [D5.2].

In parallel, the analysis of the current educational and professional scenarios was
carried out within the Working Knots co-ordinated by WP2. The co-design process
can be exemplified by the process followed in the Working Knot “Collaborative
Semantic Modelling”, the requirement engineering for collaborative semantic
modelling was performed in a highly interactive manner [CSMWK]. The
requirements are related to the tool for “Collaborative Visual Language and Models
editing”, for the functional specification on “Creating and modifying ontology based
concept maps (visual models)” M6.2 as well as the one on “Creating and Modifying
visual modelling languages” M6.4.

Motivating scenarios were specified in co-operation with pedagogical and technical
partners to define a practical usage of extended ontology manipulations in a real-
world learning environment. The motivating scenarios selected for presentation in this
section were originally defined in the [D8.1] and further elaborated within the
Working Knots “Project and Content Management” [STBPL] and “Collaborative
Semantic Modelling” [CSMWK].

Prototypes for particular components and services were produced as a result of
requirements elicited in the face-to-face and virtual workshops of pedagogical and
technical partners. High level requirements as well as consequent usage scenarios
were specified by technical and pedagogical partners. In addition, the pedagogical
partners provided a set of resources – real course materials and artefacts that were
used by technical partners for development and testing of knowledge evolution
services (especially the text mining services for classification, clustering and concept
map creation).

2.1 Motivating scenarios
This section introduces two motivating scenarios that were chosen as the most
relevant for the use of SWKM services. Motivating scenarios were specified as a
framework for using the collaborative modelling in practice. This includes such
procedures as collaborative development of visual models as well as the underlying
modelling language, specification of semantics for the modelling elements, comparing
multiple model’s, preserving mutual consistency of the models, etc.

8

The major advantage of the two scenarios presented below is that they motivate all the
services described in the following sections. The scenarios were developed by
“Collaborative Semantic Modelling” and “Project and Content Management”
Working Knots. For more details and additional scenarios, please refer to [CSMWK]
and [STBPL]. The scenarios mention domain-specific ontologies to be determined
and designed by KP-Lab system users.

2.1.1 Semantic tagging
A group of students, researchers, or co-workers is given a set of research papers and
asked to identify the topics discussed in these papers and to build an ontology
representing the topics discussed. Moreover the group is asked to annotate the original
set of papers according to the derived ontology. The members of this group should
collaborate in order to carry out this task [TCFKMPS06].

Two particular subtasks can be identified within this basic scenario, namely ontology
creation procedure and semantic annotation of the artefacts. These two subtasks can
be supported by semi-automatic mechanisms of concept map creation, clustering and
classification, using the text mining capabilities [Smrz et al 2007].

The semantic annotation of learning materials (papers, documents, or knowledge
artefacts in general) according to a pre-defined classification ontology
(PBL vocabulary [STPBL]) and consequent semantic search [SEMSRCH] are
required capabilities of the Shared Space, since they enable to share and exchange the
information together with its semantic context (meaning) between learners. The
classification based on text mining methods is an effective way to support the
semantic tagging in the Shared Space. That is why the semantic tagging was taken as
a main motivating scenario for classification services.

The semantic tagging, also sometimes referenced as (semantic) annotation1, is a
procedure of enriching a document (or knowledge artefact in general) by an additional
information that somehow expresses the content or features of the document. The
information that describes the document is taken from hierarchically organised
vocabulary of terms (keywords, phrases) – semantic tags. This way, the semantic
tagging helps to manage and maintain the (possibly large) set of documents produced
by learners during the project within Shared Space. It also enables to understand
connections and relations between different documents and activities required in the
producing of the product in a particular project. Consequently, the semantic tagging
supports a search that can be made according to the used semantic tags – the semantic
search.

In [STPBL], the PBL vocabulary was designed as a hierarchy of different types of
items that are produced during the Shared Space project, and describes activities
related to the project management and production of end artefacts. Furthermore, a list
of terms describing the possible linking alternatives between the content items and
defined tasks are presented in the end of the vocabulary. However, the PBL

1 Semantic annotation is a broader term than tagging. The annotation enriches an artefact by means of
concepts from general ontology, while tagging uses a predefined hierarchically organised vocabulary of
keywords (terms, tags).

9

vocabulary does not present the existing metadata that is already in the current Shared
Space. These are, for example, the automatically created metadata as e.g. Creator,
Creating date, Modified date, or the user defined metadata Responsible of, etc.

Various variants of the basic scenario for collaborative annotation can be imagined.
For example, the collaboration could be either synchronous (i.e., all learners make
changes in the classification ontology and the classification data synchronously), or
asynchronous (i.e., the learners edit the classification ontology and data in a separate
space and commit the changes they want). Moreover, each learner could have his or
her own personal space with a copy of the ontology; in such a case, the central
ontology could be derived from the personal ones. Commitment of a learner’s changes
upon the central ontology could be either instantaneous, or it could pass through a
process which could include some kind of approval mechanism, according to the
policy of the user application. The latter mechanism could also include some kind of
argumentation (see the next scenario).

The aforementioned group collaboration requires often changes in the classification
ontology, as the members of the group constantly discuss the information found in the
classification ontology, leading to additions, deletions or other edits and corrections to
the ontology. The same is true during the classification of the various documents (e.g.,
papers) to the resulting ontology. During the process, the learners may need to keep
different versions of the ontology (and classification data), so as to revisit older
versions in case they want to undo some change. In addition, they may need to view
the changes that some member of the group made, by comparing two different
versions of the ontology (before and after the change).

Notice that the described requirements imply that there may be more than one
(versions of) ontologies that are stored in the repository. This indicates the need for an
ontology registry that will classify the stored ontologies based on the ontologies’
related metadata information for easy access and retrieval.

The classification process may be enhanced using text mining services, whose output
may be useful as a suggestion tool for a semi-automatic classification of the
documents in the ontology, in effect initiating an evolution process. A notification
mechanism may be also useful, as the learners may need to be notified when changes
in the classification of papers arise. The same might happen when the ontology
evolves.

2.1.2 (Re-)Constructing arguments
The main idea of this scenario is having a group of people (students, researchers, co-
workers, etc), possibly with different backgrounds and/or from different fields, that
meet in order to reach a decision on some issue. In order to scaffold this process the
group is presented with an argumentation ontology which could be inspired by similar
efforts in the literature (e.g., [GK97], [Tou58]). Said ontology could also be used to
annotate related resources. For example, a certain claim might be backed up with a
link to a respective resource.

In a scientific environment [BSD05], this scenario could involve re-constructing pre-
existing scientific arguments based on a set of research papers, or explicating the

10

group members’ own arguments. In a professional environment, it could involve the
improvement of the design and function-ability of a company’s new products. For
example, there can be a group of a market-analyst, an information technology expert,
a person responsible for PR and a businessperson from an undisclosed big Finish
company which should collaboratively acquire knowledge on how to improve their
new mobile phones and increase the company profit. Every member of the group
prepares a set of resources describing his or her current understanding (view) of the
given topic. The extraction engine produces an overall conceptual map, which
integrates the individual views and provides a basis for the core discussions of the
group.

The group of people collaborating in this scenario need to reconstruct their
argumentation in a KB using the provided argumentation ontology; there is a single
RDF KB representing the arguments of the entire group. During collaboration,
differences in opinions may arise which should be discussed and resolved in a
synchronous manner. Such dispute resolution will cause changes in the original
construction of the argument, thus leading to changes in the original argumentation; in
this case however, the changes affect the data portion of the RDF KB rather than the
schema. Moreover, changes are only additions, i.e., there are no deletions or
modifications.

Like in the previous scenario, the learners may need to store different versions of their
argumentation and compare them using appropriate delta functions. We may have
different groups of people who use different argumentation frameworks, in which
case the system may need to support the storage, classification and retrieval of more
than one namespaces through the use of some registry. Moreover, the learners may
want to be notified for new entries in the registry.

2.2 High-level functional requirements

2.2.1 Evolution and Use of Multiple Ontologies and RDF KBs
Learners should be able to create and use different conceptualizations (ontologies and
related instances) to describe the underlying domain; similarly, they should be able to
describe the domain from different viewpoints and under different perspectives. This
implies that the learners should not be in any way restricted to a predefined set of
ontologies, but should have the ability to develop their own. Similarly, it should be
possible to easily switch between changing the schema of an ontology and changing
the data classified under the ontology schema.

The ability to change such ontologies and instances (called in short RDF KBs) should
be provided in an integrated way by the system. This integrated functionality is based
on the idea that the need to extend or change a KB arises when it is used. For
example, it might become obvious that an aspect of the phenomenon to be modelled
cannot be classified properly or it might appear that relations relevant for the task at
hand cannot be modelled.

In this context, a learner or group of learners should have the ability to adapt given
KBs to the particular needs of the activities they are involved in. This adaptation
includes the evolution of both the ontology schema and the classified instances. Even

11

though ontologies by definition provide shared conceptualizations for a domain of
interest [Gru93], they also provide the means to carry out activities and hence need to
be adapted to local practices and task requirements. For example, a learner might
decide that a given ontology does not provide the necessary concepts for the task at
hand, and hence might want to extend it. While stable and widely accepted ontologies
are useful from a technical point of view, locally adapted and adaptable ontologies
seem to be more apt to the needs of trialogical learning. Furthermore, the local
adaptation of the so created RDF KBs also allows creating different perspectives on a
shared object of activity, which might help to get a better understanding of the
phenomenon at hand.

The above requirements raise a number of needs, including some peripheral ones.
First, the use of multiple RDF KBs raises certain accessibility issues, as KBs should
be easily accessible by the learners. Thus, simple storage is not enough and we need
to provide means to describe the stored conceptualizations; this is done through the
use of some registry which stores metadata describing the ontologies represented in an
RDF KB. Such metadata would help in the classification of ontologies, would
simplify accessibility and would allow keeping track of an ontology’s lifecycle in the
KB.

The updatability requirement is mainly supported through the provision of a service
that would effectively support changes in the ontologies and the related instances
hosted by a KB. Such changes should be supported automatically and transparently by
the system, so that the learner does not have to deal with the technicalities and side-
effects of any single change upon his KB; it should be enough for him to indicate the
required changes in a declarative way and let the KB do the rest. As
conceptualizations change over time, different versions of a KB may need to be stored
and made persistent, so a service should be in place that would keep track of such
versions and their relationships. Learners should be notified for certain types of
changes that are of interest either in the registry or in the KBs themselves. In other
cases, it would make sense for a learner to compare the old version of a KB with the
new one in order to see the newly submitted changes.

One of the central properties of trialogical learning, which is also present in the
scenarios described in the previous subsection, is the element of collaboration.
Collaboration implies that different professional experiences, different social and
cultural backgrounds, participants’ individual interests and goals, as well as inherent
business rules and practices (including tacit ones) may cause misconceptions and
frustrating ambiguities and misunderstandings [DLM07]. To smoothen the effects of
such differences, the shared background of the collaborating group (partners) should
be continuously negotiated until common concepts, characteristics and values have
been agreed upon. In this respect, ontologies and RDF KBs, being shared
conceptualizations of the domain under discussion [Gru93], are useful in this process,
as they provide the means to describe shared resources of semantics [DLM07].

The above requirements, which arise from the need for the Knowledge Manager to
support such collaborative activities and collaborative semantic modelling
[CSMWK], imply that RDF KBs may have to be viewable, accessible and updatable
by learners. View and access is necessary in order for a learner to grasp the
understanding of other learners regarding the domain at hand, whereas updatability is

12

necessary in order learner to be able to provide their own arguments and feedback
regarding a domain of discourse.

2.2.2 Semantic Annotation of Artefacts
Collaborative work with knowledge artefacts requires proper organization and
structuring the artefacts according to their content (i.e., their meaning in the context of
other artefacts), expressed by means of semantic annotation. The task of semantic
annotation of an artefact can be defined as a selection of the concepts from a given
ontology, that represent the content of the artefact. In other words, it can be
considered as a classification of artefacts under the schema of an ontology, according
to the textual content of the artefacts.

Selection of proper ontology concepts for description of an artefact can be a
challenging task, especially if the set of artefacts is large and/or the domain ontology
is complex. In addition, the learners need to deal with several different ontologies
(conceptualisations) that were created as models of the underlying domain from
different perspectives. Moreover, the ontologies can evolve in time, when the learners
need to adapt given ontologies to the particular needs of the activities they are
involved in. In this case, the semantic description of artefacts should also be updated
according to the changes in the underlying ontology to keep the structure of
conceptual model and annotated artefacts consistent, valid, and up-to-date.

The described semantic annotation of artefacts in the collaborative environment can
be solved by means of text mining capabilities. This approach uses a machine learning
technique to create internal mining objects (e.g. classification model, indexes and
settings) from a set of already annotated (i.e., classified) artefacts. This means that a
training set of artefacts (i.e., their textual content) classified to pre-defined categories
(i.e., concepts from classification ontology) is required as an input for this approach.
To create the mining objects properly, the global settings as a mining algorithm and
its parameters need to be specified. Since the setting-up of proper algorithms and
parameters is a specific feature of the mining approach, it is required that this should
be hidden from users. The provided solution should select the most adequate mining
algorithms and its parameters automatically, according to the quantitative properties
of the training set (as e.g., the number of artefacts, frequency and distribution of
words in the textual content of artefacts, etc.).

After the mining objects are created, the classification procedure will use the mining
objects (especially the classification model) to examine the textual content of the rest
of artefacts (i.e., those that were not included into the training set). The set of
classification categories will be given in the output and provided to users (learners) as
a result of the classification procedure. However, since the text mining approach to
classification uses heuristic algorithms, the precision and overall quality of the results
can not be guaranteed. So only a semi-automatic usage of classification results is
required by users. This means that the results of the classification will not be
automatically included in the semantic description, but will be provided for learners as
suggestions for the annotation.

13

2.2.3 Semi-automatic Building of Ontologies and Clustering of Artefacts
Manual creation of concept maps from scratch presents a tedious work. Moreover, it
is often the case that authors forget to enter a concept or a relation that can be crucial
for the particular domain in question. To cope with these issues, the KP-Lab system
should offer services that will help to identify the most relevant concepts and relations
for a particular domain.

The basic functional requirement in this respect is to identify concept candidates from
a defined set of documents (the textual content or the description of knowledge
artefacts). Especially for the collaborative creation of ontologies by learners, an
advanced function should extract defining contexts (definitions, if they are present in
the texts). As it is expected that users will interact with the tool (invoking the
particular service) and choose appropriate terms representing the concepts, the
candidate list should be sorted according to the estimated relevancy for the domain.

Another step in the supported building of ontologies is to identify the most significant
relations in which the chosen concepts participate. Given a subset of the concepts
returned in the previous step, the system should analyse the input documents and find
relevant relation candidates. Browsing the resulting list of potential relations and
choosing the correct ones is necessary in this case so that the list of relation candidates
needs to be sorted according to the estimated relevancy for the domain again. If
possible, the system should also suggest names for the extracted relations and identify
the most frequent classes such as “is-a”, “part-of” etc.

Some users may prefer less interactive way of building ontologies. Providing there is
enough data for the task, the system should offer a fully automatic creation of a
concept map that covers the most significant terms and relations among them. The
result should be provided as a named graph and stored into the Knowledge Repository
for further use.

The above description of the functional requirements supposes creation of a new
ontology from scratch. However, in many cases, there is an existing ontology that
covers a part of the domain and the task is to extend or update it to embrace the entire
field. Thus, the above-mentioned functions should take into account the possible pre-
existing knowledge and adjust their results accordingly. As such an ontology can be a
result of other activities in the KP-Lab project, it is expected to be stored in the
Knowledge Repository in a standard form.

In addition to other modes, KP-Lab tools should support an asynchronous way of
learning in which one user, e.g, a lecturer, collects and pre-processes a set of relevant
materials first and other users, e.g., students, work with the prepared set later on. For
ontology creation, this mode means separation of the initial data collection and pre-
processing from the actual extraction of concept/relation candidates or the automatic
creation of concept maps. Dividing the task to the two phases can be advantageous
also from efficiency point of view – the time necessary to process a potentially large
amount of text can be considerably high.

The users of the KP-Lab system are often confronted with the task to look through a
lot of texts, e.g., contributions to a discussion group, and group them according to
their content. This tedious work should be supported by an automatic clustering

14

service that will take a set of artefacts as its input and groups them based on their
textual content or description.

2.2.4 Keeping Users Aware of Changes
User notification constitutes one of the key elements to the development of large scale
data retrieval and dissemination systems. The notification services allow the users to
register their topics of interest in the form of subscriptions and inform them whenever
an event that affects the content of the application matches their subscriptions.
From a general point of view, to function, this kind of service needs 2 types of
information about the users and the application content. The first one corresponds to
descriptions of the data present in the application. The second corresponds to the
topics of interest of the users or their subscriptions.

The notification module is “triggered” with each data update (insertion, modification
and/or removal). Through a comparison of the description of the updated data and the
users’ subscriptions, it determines the set of the users to notify about the update. The
final action is to the users or user level applications previously identified (those
associated to the matched subscriptions).

In order to specify the context of the notification module, it is necessary to answer
certain questions:

- Which data will be concerned with the notification?

- How the users will be notified?

- Which events will trigger the notification service?
In what follows we try to answer these question by describe the basic ingredients of
the notification service based on the scenario of teachers training communities.

A - The data to notify about
For the Kp-lab project, several objects could be subject of notifications: the shared
spaces, the knowledge artifact or the knowledge processes.
Indeed, all of them are concerned with updates made by certain users and these
updates may interest other users.
At this stage of the project, we decided that the notification service will be interested
only in the knowledge artifacts because they contain the data most likely to interest
the users. However, it is possible to extend this work to the other objects later on.

B- How to notify users (The notification problem):

The notification module manages the various subscriptions of the users. When a
knowledge artifact is being updated, the notification module receives the update event
(including the document description) from the knowledge repository. In order to find
the users who are interested in this knowledge artifact update, the Matching Module
compares the description with the subscriptions of the users. The users interested in
the update are those associated to at least one of the subscriptions which match the
description of the knowledge artifact.

15

The notification problem is “matching” events to subscriptions. In other words, given
an event, the problem is how to find efficiently all users that should be notified, and
this under a high number of events and for a large number of subscriptions.

C - Events that fire the notification service

Once the subscription chosen, it is necessary to define the events which will use it for
the notification. Indeed a user has the choice between 3 possible and nonexclusive
events: the insertion of a knowledge artifact, the removal of a knowledge artifact
and/or the modification of a knowledge artifact. A user do not choose to be notified
about the update of a given knowledge artifact, but about all the knowledge artifacts
having a description that matches at least one of the subscriptions of this user.

When he chooses a subscription, the user defines also the update event (insertion,
suppression or modification) for which the notification module will check the
matching of this subscription with the description of the updated knowledge artifact

2.2.5 Summary of the Requirements
The following table summarizes the above high-level functional requirements for
evolution and use of ontologies, for the text mining tasks as well as user notification
(see also [DoWA] and [CSMWK], where a variant of this table appeared):

Functionality Short description What a particular SWKM service provides
Browsing the set of
available
conceptualizations

Users are retrieving the
available conceptualizations
already stored in the system.

Registry allows users to browse the
conceptualizations taking advantage of the
metadata provided

Introducing a new
conceptualization

Users are collaboratively
creating a new
conceptualization (a new
ontology or RDF KB)

ConceptMapCreation can help to identify the
most relevant concepts and relations among
them
Import provides the initial step to store the
new conceptualization
Registry adds metadata for easy access and
manipulation
Subscription enables users to be notified
about manipulation with the conceptualization

Using/Retrieving a
conceptualization

Users are retrieving and
visualizing an already stored
conceptualization

Registry facilitates access to the
conceptualization in question by means of
metadata
Export provides the requested data in the
appropriate format

Creating a new
version of an
existing
conceptualization

Users are retrieving, changing
and subsequently storing an
already existing in the system
conceptualization as a new
version

ConceptMapCreation can help to update the
conceptualization
Versioning relates the updated
conceptualization to previous versions
Registry adds metadata for easy access and
manipulation

Inserting/Updating/
Deleting an element
of the
conceptualization

Users are changing the
conceptualization

ChangeImpact shows all the consequences of
the manipulation step the user asked for
Update makes actual changes
Registry takes care of metadata for the
modified conceptualization

16

Collecting and
preparing materials
for text mining

Users collect a set of
documents and prepare data
for semi-automatic concept
map building

Prepare4Mining computes an internal
representation to enable fast and easy use of
the extracted concepts and relations

Clustering artefacts Users are grouping
knowledge artefacts
according to their content

Clustering identifies groups of artefacts based
on their textual content or metadata description

Training and setting-
up the classification.

Users are creating a mining
model, using a set of
annotated artefacts.

Learning Classification processes the training
set and provides the classification model

Using the
classification for
semantic annotation
(tagging)

Users are classifying the
artefacts to some pre-defined
categories (i.e. ontology
concepts).

Classification applies a previously trained
classification model for a new set of
knowledge artefacts.

3 Functional and Architectural Design

3.1 Knowledge Mediator
The Knowledge Mediator provides high-level registry, discovery and evolution
services for knowledge artefacts. It essentially mediates access to and changes of
knowledge artefacts by employing personal or group conceptualizations under the
form of RDF/S ontologies and RDF KBs; such ontologies and RDF KBs are then
manageable using the mediator’s services, namely change, comparison, versioning
and registry, which are described below.

3.1.1 Change Service
The Change Service is responsible for determining the actual changes that should
occur on an ontology or the related instances in response to a change request. Recall
that in an RDF KB ontologies are represented by RDF namespaces while their
instances by RDF graphspaces. The actual changes are not always the same as the
requested ones, as the original change request could lead to invalidities if performed
straightforwardly. In short, given a change request, the change service attempts to
apply it to the target name or graph space in a straightforward way; if this naïve
application leads to an RDF KB that is meaningless, invalid or does not obey the RDF
formation rules [KFAC07], then additional updates (called side-effects) are added to
the original request to guarantee validity.

As an example, consider the removal of an ontology class shown in Figure 1. In that
case, the removal of class B would render all associations of this class with
neighbouring classes invalid. In such cases, the change service needs to determine
additional change operations (side-effects) to be executed along with the original
change request which would restore the validity of the KB. In our example, one such
set of side-effects would be to remove all invalid associations. In addition, the implicit
subsumption relation between A and C that exists (implicitly, as a consequence of the
other subsumptions) in the original RDF KB, need not be lost, so it is reinstated in the
result, this time in an explicit manner; this is another type of side-effect, which
guarantees that only information relevant to the update is lost during the change.

17

Figure 1: Change service - removal of a class

The main input to this service is an RDF KB and a change request. The RDF KB is
specified using any, arbitrarily large, collection of name and/or graph spaces. The
change request could affect any of the RDF triples in this collection. However, the
side-effects of the request could potentially affect triples in other, depended or
depending name or graph spaces; as a result, in order for the change request to be
processed in a correct way, all the depended and depending name and graph spaces
should be taken into account. Therefore, the RDF KB in this case is the union of all
the triples that appear in all the name or graph spaces that are directly or indirectly
depending on (or are dependants of) the given ones.

Having said that, the caller of the service is given the option to restrict the considered
KB, as well as the changes and their side-effects to happen in the given collection of
name or graph spaces, plus, of course, those name or graph spaces that the members
of this collection depend on; it should be clear that this option may not give the best
possible results, as certain side-effects may not be computed.

A simple update can be either a removal or an addition of a specific RDF triple in the
RDF KB. Such simple updates can be arbitrarily combined in the same update
request, to form a more complicated request; thus, in principle, an update request can
be an arbitrarily large set of primitive additions and removals. For example, a simple
update request would be “Remove Class B”, whereas a complex update request would
be “Remove Class B; Remove A IsA C; Add property P with range A and domain C”.

The output of the service is of the same form, i.e., a set of change operations
(additions and removals), capturing all the effects and side-effects of the original
change request upon the target KB (actual changes). In the example of Figure 1, the
output would contain the deletion of B (direct effect), the deletion of the two IsAs
(side-effect) and the explicit addition of the previously implicit IsA (side-effect).
These effects and side-effects are returned to the caller, in order to be visualized and
either accepted or rejected.

The set of effects and side-effects that is produced in the output has been designed to
satisfy certain properties. Firstly, the output update request should have no side-
effects of its own, i.e., the straightforward application of the service’s output upon the
original KB should always result to a valid KB. This is necessary in order for the
output update request to be easily implementable without further post-processing.

A

B

C

Delete
Class B

A

B

C

A

C

A

B

C

A

B

C

Delete
Class B

A

B

C

A

B

C

A

C

A

C

18

Secondly, the original change request should be part of the output, i.e., no operation
belonging to the input should be ignored. This is intuitively necessary, as the user
wants his update request to be part of the actual changes executed. However, there are
two exceptions to this rule. The first is technical and related to the operations of the
input change that encode void requests (e.g., a request to add a triple that is already
present in the KB); as far as the output change is concerned, it makes no difference
whether such void requests will be included or not, so, for efficiency reasons, the
resulting set of effects and side-effects is filtered out. Secondly, it could be the case
that a change request is infeasible, i.e., that the operation is such that it is not possible
to implement it without rendering the KB invalid, regardless of what side-effects we
choose to use; in such cases, the update request is rejected in its entirety (an exception
is returned by the service). An example of an infeasible operation would be “Remove
Class B; Add an IsA between A and B”; such an operation is infeasible, because the
addition of the IsA presupposes the existence of class B, so the operation of removing
class B cannot be executed together with the addition of the IsA.

Notice that, in many cases, there may be more than one possible actual changes (i.e.,
side-effects) that satisfy the above properties; in such cases, the service will select the
action that has the minimal possible impact upon the original RDF KB, without
negating its validity. In other words, the result of the change should be “as close as
possible” to the original KB, according to the “Principle of Minimal Change”
[Gar92], i.e., the actual change should have the “mildest” possible effects and side-
effects upon the original KB. One possible manifestation of this principle can be
found in Figure 1, in which case it caused the explicit addition of the subsumption
relation between A and C, to avoid unnecessary loss of information.

The impact of a change upon an RDF KB is measured by means of a preference
ordering, which allows the service to determine the most plausible out of the different
options for side-effects that restore the KB’s validity (i.e., the one with the minimal
impact) by comparing the impact of different sorts of update operations (side-effects)
upon the RDF KB. Therefore, this preference ordering is a critical parameter that
affects the determination of the actual change, thus implicitly allowing us to fine-tune
the behaviour of the service (i.e., the returned side-effects). One such preference
ordering is currently built-in into the current implementation of the service, but its
modular design allows for alternative preference ordering can be used in the place of
default one..

As already mentioned, an update request can contain any number of simple operations
(additions or removals of triples). It should be emphasized that there is no particular
order of execution of these simple updates, i.e., the entire update request is treated as a
whole, in a transactional and deterministic manner, and, while searching for the
minimal impact of such an update request, we consider the impact of the entire
request, rather than the impact of each change operation separately. Notice that the
selected (minimal) set of side-effects computed in this manner may be different from
the one we would get if we processed each update operation separately.

In order for the system to guarantee the described behaviour in a consistent and
deterministic manner, the service implementation is backed up by a formal theory
which is described in detail in [KFAC07]. Based on this theory we have developed a

19

general-purpose algorithm that has been proved to exhibit the described behaviour for
any kind of update request (simple or complex).

This general-purpose algorithm is backed up by a set of special-purpose algorithms
which calculate the proper effects and side-effects for simple operations only; this
way, we are able to provide faster, special-purpose implementations of our general-
purpose algorithm, which are applicable only for simple update requests (thus trading
generality for performance). The special-purpose algorithms exhibit the same
behaviour as the general-purpose one, but are no substitute for it; recall that there is an
infinite number of possible update requests, so this effort is inherently incomplete,
and we will necessarily have to resort to the general-purpose algorithm for certain
update requests. The process of selecting the proper algorithm (special-purpose or
general-purpose) to use for a particular update request is transparent to the user: the
service determines whether the given update request is supported by a special-purpose
algorithm and adapts the execution sequence accordingly.

Change Service

Trig files of
insertions &
deletions
(added, deleted)

nameGraphSpaceURI

Construct
update
operations

Export Service

XML/RDF Trig Parser

M.M. RDF APIs

Trig

Internal Change Impact Implementation

Input set
of update
requests

Transform to
Trig files of
insertions &
deletions

Set of update
requests

Output:

Two TRIG files
(effects+side-
effects)

added

deleted
mode

nameGraphSpaceURI

mode

Change Service

Trig files of
insertions &
deletions
(added, deleted)

nameGraphSpaceURI

Construct
update
operations

Export Service

XML/RDF Trig Parser

M.M. RDF APIs

Trig

Internal Change Impact Implementation

Input set
of update
requests

Transform to
Trig files of
insertions &
deletions

Set of update
requests

Output:

Two TRIG files
(effects+side-
effects)

added

deleted
mode

nameGraphSpaceURI

mode

Figure 2: The high-level view of the Change Service

Figure 2 shows the general architecture of the web service. As shown in the figure, the
change service exposes a single service which is used to apply an update request upon
an RDF KB. The signature of the method is as follows:

String[] changeImpact(String added, String deleted,
String[] nameGraphSpaceURI, String mode)

The output of the above method is a pair of strings; the first string represents the RDF
triples that should be added to the KB, whereas the second represents the RDF triples
that should be removed from the RDF KB. Both strings should encode the triples in
TRIG format. As already mentioned, these triples include both the effects that were
directly dictated by the original update request, and the ones dictated by validity

20

considerations, i.e., the side-effects used to avoid introducing invalidities in the
original RDF KB due to the update request. Void additions and removals have been
filtered from the output.

The input of the method is the update request and the RDF KB upon which the update
should be applied, as well as a flag (mode) indicating the mode of the change. The
nameGraphSpaceURI[] parameter is an array of strings, each string representing
the URI of a name or graph space. Depending on the mode parameter, the update
request will be applied either upon the union of the triples in those URIs and those
that these URIs depend on, or upon the union of the triples in all name or graph spaces
that are directly or indirectly depended or depending upon the URIs in the
nameGraphSpaceURI[] parameter (i.e., their full dependency closure). These
parameters are passed to the Export Service in order to get the exact triples that the
implementation of the Change Impact Service will take into account in order to
calculate the result of the change operation and are parsed to produce the necessary
data structures to be used in the rest of the implementation.

The update request is specified using the string parameters added and deleted,
representing the set of triples that should be added and deleted respectively from the
RDF KB (i.e., the original update request). The triples should be encoded using TRIG
syntax. The added and deleted triples are combined with the parsed output of the
Export Service in order to determine the types of update operations that need to be
executed upon the RDF KB and are ultimately fed, along with the RDF KB that was
produced by the parsed output of the Export Service, to the Internal Change Impact
Implementation to produce the output. A related restriction is that all the schema
resources (classes, properties) that are used inside the added and deleted
parameters (i.e., all the schema resources that appear in the update request) should
have the same URI (including version ID – see the versioning service below) as (one
of) the URI(s) of the input describing the RDF KB (i.e., one of the URIs in the
nameGraphSpaceURI[] parameter); in a different case, an error is reported by the
service.

3.1.2 Comparison Service
The Comparison Service is responsible for comparing two collections of name or
graph spaces (KBs) already stored in the repository and compute their delta in an
appropriate form. The result of the comparison is a “delta” (or “diff”) describing the
differences between the two collections of name or graph spaces, i.e., the change(s)
that should be applied upon the first in order to get to the second (see Figure 3 for an
example). The intended use of the service is the comparison of two different versions
of the same name or graph space to identify their differences; comparing unrelated
name or graph spaces (i.e., name or graph spaces which are not different versions of
the same name or graph space) would give results which have no intuitive meaning.

21

A

B

C

A

C

Compare

Delta (explicit):
Del Class B
Del C IsA B
Del B IsA A
Add C IsA A

A

B

C

A

C

Compare

Delta (explicit):
Del Class B
Del C IsA B
Del B IsA A
Add C IsA A

Figure 3: Comparing two name spaces

This problem is related to the problem of evolution that is handled by the Change
Service; in the case of the Change Service, we know the original conceptualization
and the changes that occurred, and want to determine the most adequate new
conceptualization of the domain; in the case of the Comparison Service, we know the
old and the new conceptualization of the domain, but lack the knowledge (control or
access) of what caused the transition (i.e., we would like to determine what forced us
to change our conceptualization).

Notice that the problem of comparing two name or graph spaces is very different from
the problem of comparing the source files (e.g., TRIG files) which describe them.
This is true because (a) a name (or graph) space carries semantics, as well as implicit
knowledge which is not part of the source file; (b) there are alternative ways to
describe syntactically the same construct (triple) in a name or graph space, which
could result to erroneous differences if resorting to a source file comparison method;
and (c) source files may contain irrelevant information, e.g., comments, which should
be ignored during the comparison.

It is clear by the above analysis that the comparison should be based on semantic,
rather than syntactic considerations, so our comparison service will be based on the
comparison of the triples contained in the name or graph spaces. Our research has
shown that there are alternative methods for computing a semantic delta between
name or graph spaces [ZTC07]. In particular, the implicit knowledge (i.e., the inferred
triples) contained in the two name or graph spaces may or may not be taken into
account, leading to the following four cases:

• Delta Explicit (∆e): Takes into account only explicit triples
– ∆e(K→K′) = {Add(t) | t∈K′–K} ∪ {Del(t) | t∈K–K′}

• Delta Closure (∆c): Takes also into account inferred triples
– ∆c(K→K′) = {Add(t) | t∈C(K′)–C(K)} ∪ {Del(t) | t∈C(K)–C(K′)}

• Delta Dense (∆d): Returns the explicit triples of one KB that do not exist at
the closure of the other KB

– ∆d(K→K′) = {Add(t) | t∈K′–C(K)} ∪ {Del(t) | t∈K–C(K′)}
• Delta Dense & Closure (∆dc): resembles ∆d regarding additions and ∆c

regarding deletions
– ∆dc(K→K′) = {Add(t) | t∈K′–C(K)} ∪ {Del(t) | t∈C(K)–C(K′)}

22

In the above bullets the operator C(.) stands for the consequence operator, which is a
function producing all the consequences (implications) of a name or graph space K,
i.e., all the inferred triples of K. In the example in Figure 3, only the explicit
knowledge is taken into account in the comparison, so the shown result corresponds to
∆e. If the implicit knowledge was also taken into account, the result would be
different (e.g., ∆c, ∆d and ∆dc, would not report the addition of the [C IsA A] triple).

One of the main properties that we intuitively expect to hold in a comparison function
is that its output, when applied upon the first name or graph space, should give the
second; this property is called correctness. In order to study which of the four delta
functions guarantees correctness, we should first determine what it means for the
output of the diff service to be “applied” upon the first name or graph space. The latter
issue is related to the semantics of the update operations considered, i.e., a formal
description of how the output of the diff should be “applied” upon the name or graph
space.

There are three options in this respect, namely: (a) that the operations (additions and
deletions of triples) that are included in the delta are viewed as plain set additions and
deletions (plain semantics − Up); (b) that they are coupled with redundancy
elimination and computation of logical implications (inference and reduction
semantics − Uir); or (c) that they are handled using the change semantics introduced
by the Change Service (change service semantics − Ucs).

Using this definition of update semantics, in [ZTC07] it was shown that only certain
pairs of delta functions with update semantics are correct, namely: (∆e,Up), (∆dc,Uir)
and (∆c,Uir). Most existing comparison tools rely on the (∆e,Up) pair. If we consider
the update semantics Ucs, then the ∆c function guarantees correctness, so (∆c,Ucs) is
also correct. Based on this result, we can guarantee that the output of the Comparison
Service is compatible with the Change Service, i.e., that the output of the Comparison
Service (under the ∆c function) is a set of primitive update operations which, if
applied (using the Change or Update Service) to the first name or graph space, would
result to the second one.

Another critical consideration is related to the size of the delta; in this respect, delta
dense (∆d) is best, compared to any other delta function, whereas ∆dc gives smaller in
size delta than ∆c; on the other hand, ∆c and ∆e are incomparable. Notice however
that, as we saw above, ∆d (the smallest possible delta) does not guarantee correctness.

For the purposes of the KP-Lab project, we don’t adopt any particular policy
regarding the “correct” or “best” delta function; in particular, the delta function to be
used is just a parameter of the service, and the caller is assumed to understand the
implications of using any particular delta function.

23

Comparison Service

Export Service

XML/RDF Trig Parser

M.M. 1 RDF APIs

XML/RDF Trig Parser

M.M. 2 RDF APIs

TRIG

nameGraphSpaceURI1

Name/Graph spaces

nameGraphSpaceURI2

Name/Graph spaces

Internal Diff Implementation

delta
Function

Transform
to Trig files
of insertions
& deletions

Set of performed
updates

nameGraphSpaceURI1

deltaFunction

nameGraphSpaceURI2

TRIG

Output:

Two TRIG
files (delta)

Comparison Service

Export Service

XML/RDF Trig Parser

M.M. 1 RDF APIs

XML/RDF Trig Parser

M.M. 1 RDF APIs

XML/RDF Trig Parser

M.M. 2 RDF APIs

TRIG

nameGraphSpaceURI1

Name/Graph spaces

nameGraphSpaceURI2

Name/Graph spaces

Internal Diff Implementation

delta
Function

Transform
to Trig files
of insertions
& deletions

Set of performed
updates

nameGraphSpaceURI1

deltaFunction

nameGraphSpaceURI2

TRIG

Output:

Two TRIG
files (delta)

Figure 4: The Comparison Service

Figure 4 shows the general architecture of the web service of diff. As shown in the
figure, the Comparison Service exposes a single service which is used to compare two
collections of name or graph spaces and return their delta (diff) according to the
selected delta function. The signature of the method is as follows:

String[] diff(String[] nameGraphSpaceURI1, String[]
nameGraphSpaceURI2, String deltaFunction)

The output of the above method is a pair of strings representing the delta of the two
models. In particular, the first string of the pair represents the RDF triples that exist in
the second model but don’t exist in the first, whereas the second represents the triples
that exist in the first but not in the second. This way, the delta can be viewed as an
update request (see also the Change Service above), which, when applied to the first
model, will (should) result to the second; under this viewpoint, the first string of the
output can be viewed as the added triples, while the second can be viewed as the
deleted triples. Both strings encode those triples in TRIG format.

The input of the method is the two collections of the name or graph spaces to be
compared, as well as a parameter indicating the mode of the comparison (delta
function). These two collections are passed using the nameGraphSpaceURI1[]
and nameGraphSpaceURI2[] parameters. Each such parameter is an array of
strings, each string containing the URI of a name or graph space (so each of
nameGraphSpaceURI1[] and nameGraphSpaceURI2[] represents a
collection of name or graph spaces). It should be emphasized that the comparison is
not performed upon the name and graph spaces in the input only, but also upon the
name and graph spaces that they depend on. In other words, the compared
conceptualizations occur by taking the union of the triples in the URIs indicated by
nameGraphSpaceURI1[] (and nameGraphSpaceURI2[]) plus the triples in
the name or graph spaces that the input name or graph spaces depend on. This is
implemented through two independent calls to the Export Service (one for each of the

24

compared collections), followed by the parsing of the results to produce the related
data structures used by the Internal Diff Implementation.

The deltaFunction parameter indicates the type of the delta function to be used
in the comparison. In the current implementation, possible values for the
deltaFunction parameter are: “D1”, indicating that Delta Dense (∆d) should be
used; “D2”, indicating that Delta Closure (∆c) should be used; “D3”, indicating that
Delta Explicit (∆e) should be used; and “D4”, indicating that Delta Dense & Closure
(∆dc) should be used. The information on the delta function to be used, along with the
parsed output of the Export Service are then fed into the Internal Diff Implementation
to produce the output (diff) of the service.

3.1.3 Versioning Service
The Versioning Service is responsible for constructing a new persistent version of a
name or graph space already stored in the repository, in effect allowing the creation of
several versions of an ontology or their instances in an RDF KB, while keeping the
logical relationships between each of its versions, i.e., which version was created as
an evolution of which pre-existing one etc.

The initial functionality of the Versioning service will offer versioning at the level of
single RDF name or graph spaces. To this end, it takes as input the information
regarding the version’s URI, the parent versions’ URI and the contents of the new
version and creates a persistent version of the name or graph space in the given URI,
with a new version ID.

More specifically, the URI of a version is assumed to be “split” in two appropriately
delimited parts; the first part contains the URI prefix, which is shared between all
different versions of the same name or graph space, while the second part contains the
version ID that allows us to discriminate between the various versions. For example,
the URI of version v1 or namespace ns1 would be “ns1~_~v1”.

The version IDs are generated automatically by the service each time a new version is
requested. The service guarantees that no two versions of the same name or graph
space will get the same version ID. The user of the service relies on the use of the full
URI to refer to the name or graph version, whereas the Registry Service offers the
necessary functionality for accessing the different versions and querying their
interrelationships, in a transparent way.

Figure 5 summarizes the functionality of the service. Initially, a new version identifier
is created; this identifier will be associated with the new version. Moreover, the
contents of the new version are validated before being fed to the Import Service
(along with the new version ID), which will make the version persistent. During the
import, the URIs of the various elements of a namespace need to be changed as they
no longer correspond to the same elements as the old ones. As an example, consider a
resource A that exists in version v1 of the namespace ns1; then its full name (fylly-
qualified) will be “ns1~_~v1#A”. Following the creation of the new version, say v2,
the name of A will change to “ns1~_~v2#A”. This renaming process is necessary
because, if any particular triple appeared unchanged in both versions, we would end
up having the same triple appearing in more than one namespaces, which is invalid.

25

As the uniqueness requirement is true only for the namespaces, the renaming process
is performed only for namespace versions. Following the renaming, appropriate calls
to the Registry Service guarantee that the new version is properly recorded in the
registry; to this end, the information on the new version’s parent(s) is necessary.

It should be emphasized that the creation of the new version does not remove the old
version(s) from the repository. Since the old version’s URI does not change,
references to old versions, are still valid. Changes of references to old versions is
under the responsibility of the programmers.

One of the requirements of the method is that the new version and its parents should
have the same URI prefix, as they are assumed to be different versions of the same
name or graph space. Therefore, the validity of the input URIs should be verified
before making the new version persistent, and success of the validation (and the
import) is a prerequisite for the new version to be recorded in the registry. If
validation succeeds, the Registry Service is used to record the new version of the
name or graph space. The final output of the service is a URI that includes the URI
prefix and the version ID of the new version.

Figure 5: The Versioning Service

Programmatically, the versioning service exposes a single service for making a
particular name or graph space persistent. The signature of the method is as follows:

String importVersion(String nameGraphSpaceURI, String[]
storedParentNameGraphSpaceURI, String newVersionFile,
String format)

The output of the above method is a string containing the full URI, which includes
both the URI prefix (i.e., the common URI prefix that is shared among all the versions
of this name or graph space) and the version ID of the new version. This URI could be

Versioning Service

nameGraphSpaceURI

URI prefix for the new URI

newVersionFile
Trig or RDF/XML

Import Service

Create new
Version ID

URI prefix +
new Version ID

M.M.
Validation

Output:
new URI +
new
Version ID

nameGraphSpaceURI

newVersionFile
format

Registry Service

storedParentNameGraphSpaceURI

nameGraphSpaceURI
storedParentNameGraphSpaceURI

Validate URI
prefixes

If ok

Parent
information

Versioning Service

nameGraphSpaceURI

URI prefix for the new URI

newVersionFile
Trig or RDF/XML

Import Service

Create new
Version ID

URI prefix +
new Version ID

M.M.
Validation

M.M.
Validation

Output:
new URI +
new
Version ID

nameGraphSpaceURI

newVersionFile
format

Registry Service

storedParentNameGraphSpaceURI

nameGraphSpaceURI
storedParentNameGraphSpaceURI

Validate URI
prefixes

If ok

Parent
information

26

later used by the caller in order to get the contents of the new version, through a call
to the Export Service.

The input consists of the nameGraphSpaceURI parameter, which is used to
determine the URI prefix to be used in the new version’s URI. The
storedParentNameGraphSpaceURI[] parameter is an array of strings, each
containing the URI of one of the parent(s) of the current version. If there is no
previous version of the given name or graph space (i.e., if the currently created
version is the first one), then there are no parents, so the array is empty. Notice that
the URI prefix could also be determined using the parents’ prefixes, but this approach
would fail for versions with no parents (i.e., for new name or graph spaces).

The newVersionFile parameter contains a string describing all the triples of the
new version of the name or graph space. These triples should be stored as the content
of the new version. The format of the string in newVersionFile could be either
TRIG or RDF/XML; the exact format is determined using the format parameter.

3.1.4 Registry Service
The role of the Registry Service is to record and manage metadata information about
ontologies, schemas or namespaces stored in the knowledge repository. Furthermore,
the registry offers the possibility to keep track of the development lifecycle of a
schema through the support of storing versions, their metadata and the relationships
among them. Both schema and version information follow the Ontology Registry
Schema that is stored in the knowledge repository and is appropriately instantiated for
each schema and version stored. Applications using the registry have the possibility to
update and retrieve information about the already recorded schemas and their versions
by using the available service methods. Notice that the Registry Service offers support
for namespaces only; extending the service to also support graphspaces is rather
straightforward and can be implemented if this is deemed necessary.

A comparison of some of the existing registries is presented in [DF01]. All of the
mentioned systems provide certain searching facilities, but only some of them support
editing functions that modify stored information about ontologies and add new ones
(such as WebOnto [Dom98], Ontolingua [FFR96] and Ontology Server [ONTSRV]).
Moreover, only a few provide reasoning mechanisms that make it possible to derive a
query-answering mechanism such as WebOnto and Ontolingua. Furthermore, only
one of the systems, SHOE [HHS99], supports a versioning mechanism in order to
maintain the changes of ontologies in the registry. Our ontology registry provides all
of the aforementioned functionalities, since it is using a query/update service based
mechanism. Furthermore, it supports versioning in its more general sense as it will be
described later.

The Registry Service is implemented as a web service and the different functionalities
offered by it are implemented as web methods. However, this web service is not a
self-contained module but rather depends on and uses the services provided by the
knowledge repository, such as the Import, Update and Query Services. In particular,
the Import Service is used to persistently store ontological descriptions, the Update
Service is used to update the metadata information on the ontologies (which is stored
in the Ontology Registry Schema, which is an ontology itself and described below)

27

and the Query Service is used to query the metadata information stored in the
Ontology Registry Schema (for retrieval purposes). The dependencies between the
Registry Service and the aforementioned services are schematically depicted in Figure
6.

Registry Service

RDF/Trig
Ontology
Descriptions

Registry
MM-schema

Update Statement
Predefined RUL

Query Statement
Predefined RQL

Import
Service

Query
Service

Update
Service

Output:
RDF/XML
Trig

File

descriptions

queries

OR Registry Service

RDF/Trig
Ontology
Descriptions

Registry
MM-schema

Update Statement
Predefined RUL
Update Statement
Predefined RUL

Query Statement
Predefined RQL
Query Statement
Predefined RQL

Import
Service

Query
Service

Update
Service

Output:
RDF/XML
Trig

File

descriptions

queries

OR

Figure 6: High-level view of the Registry Service

As already mentioned, the Registry Service is using its own ontology, encoded in
RDF and following the RDF/S, in order to explicitly describe every other ontology
stored in the Knowledge Repository. This ontology is called the Ontology Registry
Schema and is described in detail later in this section (see Figure 8). For every
ontology stored in the Knowledge Repository, an instance of the proper type is
created and stored under the Ontology Registry Schema. The Registry is also
supporting the recording of the versioning of schemas by allowing for each ontology
the creation of multiple instances of the corresponding class Version and relating
these instances to the proper instance of the class Schema. Thus, the metadata stored
for each namespace are divided into two main categories regarding to whether their
values are changing with each version (e.g., the number of classes or the related
namespaces) or they are permanent characteristics of the namespace (e.g., the
encoding or the URI prefix). This, in turn, imposes the rule that at least one version
should exist in the Knowledge Repository for any stored namespace and its instance
should be correctly related to the instance representing the namespace in the registry.

Since keeping track of versions has a significant role in the lifecycle of a schema, the
registry supports a sophisticated versioning mechanism, accounting for and
supporting the fact that different versions of a schema can be developed in parallel.
Thus, during the lifecycle of a schema its versions can create a Direct Acyclic Graph
(DAG). This means that a version might depend on more than one versions (like
Version5 in Figure 7), which might be considered as merging two or more versions.
Similarly, two or more versions might depend on a single one (like Version1 and
Version2 in Figure 7), which might be considered as forking or parallel development.
This way the maximum possible flexibility is provided and all known versioning
schemes can be easily supported. The related information is provided by the
Versioning Service. Apart from the versioning mechanism, the registry additionally
offers the possibility to document the changes that occur on a schema when moving

28

from one version to the next one(s). These changes have the format of the results of
the Comparison Service that compares two RDF models (see section 3.1.2).

Finally, as mentioned above, the Registry Service offers the possibility to retrieve
ontology metadata information from the repository and also update the information
that is already stored. In order to retrieve data from the registry, one can either type an
RQL query, or use a query from a set of predefined ones. The latter type (the
predefined queries) are exposed through a set of web service methods and are highly
configurable by the developer of the service allowing for the necessary flexibility and
taking advantage of the knowledge of the Ontology Registry Schema. Similarly, in
order to update the information stored in the registry a set of implemented web
methods is exposed accounting for most actions that might be needed by the user and
assuring the necessary consistency of the information in the registry, imposing for
example the rule of necessitating at least one version per schema; nevertheless, the
user can always post updates in RUL, in which case (s)he bares also the responsibility
for keeping the consistency rules.

Figure 7: A possible DAG created by the versions of a schema. In this example, the
first version is version0 and from it are emanating two versions, version1 and

version2 that are developed in parallel. These two versions are merged by Version5.
Version3 and Version4 are labelled as permanent versions, meaning that the authors

do not plan to work anymore on them.

The schema of Ontology Registry consists of five basic classes: Schema, Version,
Change, foaf#Person and foaf#Organization.

• The Schema class represents a stored namespace (or ontology or schema)
and includes, besides the URI of the schema, information about the creator,
the title, the purpose, the keywords etc. Regarding the organization of the
concepts described by a namespace, the kind of their interrelations and the
level of conceptualization, further classification is offered through the
subclasses of class Schema. These subclasses are the following:
Ontology, Thesaurus, Taxonomy, SemanticNetwork,
DomainOntology, UpperOntology, TaskOntology,
CoreOntology, ApplicationOntology,
FederatedThesaurus, FacetedThesaurus and
NetworkedThesaurus.

29

• The Version class is correlated to class Schema by the property
hasVersion and describes attributes of a schema that might change
between versions such as statistical characteristics of a schema (number of
classes, number of properties, maximum length of a hierarchy). As one
might see, this class also contains properties that correlate one schema to
another with the relationships import, extend and instanceOf.
Moreover, class Version has a property with predefined values that is
used to indicate the intended uses of a version regarding its evolution
during the version lifecycle. The predefined values are instances of
VersionType class. The evolution can be seen in two ways: versions that
are going to be developed in parallel and versions that are developed
sequentially and depend on one another. Thus, the VersionType class
can take the form of one of the following subclasses: Permanent (not to
be merged in the future), Temporal (might be merged in the future) and
Revision (replacing its previous versions). An example of the use of
these values can be seen in Figure 7.

• The Change class is correlated with class Version through the property
changeRequest and describes the insertions/deletions of RDF
statements that have led to the creation of this version (in the form of
add/delete statements like the ones produced by the Comparison Service).

• The (FOAF#)Person and (FOAF#)Organization classes from the
schema FOAF are correlated to both classes Schema and Version
through the properties creator, publisher and contributor
respectively.

Moreover, some additional classes have been specified that are related to the
language, encoding, and physical language used in the document describing a specific
namespace. The main classes and properties of Ontology Registry Schema are
illustrated in Figure 8. The recording of a schema namespace by the Registry Service
might also include the storing into the registry not only of the instances of classes
Schema and Version but also instances of the classes Change, foaf#Person,
foaf#Organization, Language, Encoding and PhysicalLanguage.

30

Figure 8: The Ontology Registry Schema

The Registry Service offers functionalities for:

• Storing information into the Ontology Registry Schema
• Updating information in the Ontology Registry Schema
• Retrieving information related to any object stored under the Ontology

Registry Schema

As already mentioned, the methods exposed by the Registry Service are using the
underlying methods offered by the Knowledge Repository, more specifically the
Import, Update and Query Services. The Registry Service builds on top of these
services in order to provide a more intuitive interface between the Knowledge
Repository and the applications using the registry. These methods try to hide the
possible complexity of producing the right (and optimized) RQL queries or RUL
updates by predefining the correct ones, account for the consistency and imposing the
necessary rules (which otherwise would have to be imposed manually) and exploit on
the knowledge of the Ontology Registry Schema which the application need not know
in detail.

So the available methods (web services) of the Ontology Registry API for inserting
information into the Registry are:

void insertSchema(String schemaURI, String[] versionID,
String file, Format format)

void insertSchemaURI(String className, String
instanceURI, String[] versionID)

void insertPerson(String classURI, String[] personURI,
String[] property, String file, Format format)

31

void insertPersonURI(String classURI, String[]
personURI, String[] property)

void insertOrganization(String classURI, String[]
organizationURI, String[] property, String file,
Format format)

void insertOrganizationURI(String classURI, String[]
organizationURI, String[] property)

void insertInstance(String className, String str1,
String[] str2, String file, Format format)

void insertInstanceURI(String className, String str1,
String[] str2)

boolean existInstanceURI(ClassName className, String
instanceURI)

The corresponding ones for updating information already stored in the Registry
(including deletion of instances from the registry, update of the range properties with
the constraint that the properties have literals as a range, etc.) are:

void removeInstance(String className, String
instanceURI)

void editInstanceURI(String className, String oldURI,
String newURI)

void insertProperty(ClassName className, String
instanceURI, String propertyName, String[]
propertyValue, PropertyRangeType rangeType)

void editProperty(ClassName className, String
instanceURI, String propertyName, String oldValue,
String newValue, PropertyRangeType rangeType)

Finally, the Registry Service uses the Query Service in order to retrieve data from the
registry by evaluating RQL queries. The user can directly pose RQL queries through
the query() method of the Query Service or use the method that is implemented by
the Registry Service API, called:

String evaluatePredefinedQuery(String queryCategory,
String queryID, String param, Format format)

that can be used when the application needs to use one of the predefined queries
which are in turn dynamically specified by the service developer in an XML file.

3.2 Knowledge MatchMaker

The Knowledge Matchmaker module supports advanced manipulation of content
items, namely mining and notification [DoWB]. It enables concept map creation,
clustering and classification of the available information resources associated with
employed ontologies; and also notification of changes to content items
produced/consumed within a collaborating group of individual users or application
programs, according to explicitly subscribed preferences.

32

3.2.1 Notification service
The objective of this service is to support individual (human) users as well as various
tools or software components accessing the knowledge repository by keeping them
aware of changes. This objective will be achieved by designing and implementing a
notification service [D5.1]. In describing this service below, we use the term “users”
to refer collectively both to individual users and to the various tools or software
components accessing the knowledge repository.

The notification service as we conceive it relies on the following basic concepts:

• The objects of interest:
In the KP-Lab project the objects of interest are content items of various kinds
as far as they have a description.

• The description of the objects of interest:
The description of an object of interest is composed of a set of RDF statements
according to an already given RDF schema. (see Section 3.2.2).

• The subscribers (or receivers) of notification:
Subscribers are those users that have submitted to the notification service a
description of the content items that are of interest to them. Such a description
is called a subscription. A user can be a “physical” person or another module
of the project.

• The subscriptions of the objects of interest:
A user subscription is of the same nature as the item description (i.e. a set of
RDF statements.)

• The events that fire the notification service:
In the KP-Lab project the knowledge repository can change in several ways:
- insertion, deletion, or modification of a content item;
- locking of a content item (for reading or writing purposes).

We use the term “event” to refer to one such change together with one content
item involved in the change; and we consider as “event description” the
description of the corresponding content item.

• The matching algorithm that supports the notification service:
This algorithm is invoked, or “triggered” by each event occurring at the
knowledge repository and determines the set of subscribers to be notified of
the occurrence of that event. Its basic function is to compare user
 subscriptions to the description of an event (based on an appropriately defined
partial ordering structure) and to determine the set of subscribers to be notified
of the event.

In simple terms, the basic principle of notification can be expressed as follows: for
each subscription, if the subscription matches the description of the triggering event
then notify all users having that subscription.

In fact, a user subscription can be seen as a conjunctive query expressing long term
interests of a user for content items of a certain type – a query that the user would like
to submit to the repository from time to time. The notification service on the other

33

hand can be seen as the functionality that does this in place of the user (so that the
user does not have to submit the same query again and again), and informs the user
only if the answer to the query has changed. Clearly, two or more users might have
the same interests, hence the same subscription.

The basic problem of notification is how to determine efficiently the set of all users to
be notified, under a high number of events and a large number of subscriptions. The
matching algorithm that we have designed during the first year of the project will be
implemented to answer this need.

In implementing the notification service, care will be taken so that transposing the
algorithm in a different context will require minimal changes and effort. In other
words, the idea is to provide an implementation as generic as possible.

Our implementation will be conducted under a number of assumptions, including the
following:

1/ The form in which a subscriber receives notifications may differ from one user to
another. For example, a human user might prefer to be notified via email whereas an
application program will most likely be notified via RSS. The choice of a form of
notification should therefore appear in the subscription. The first version of our
prototype will simply produce the set of users to be notified, disregarding the form in
which notification will be sent to the users concerned.

2/ User notification can be made in one of several ways:
- immediately after an event has occurred;
- after a fixed number of events have occurred (number to be specified in the
subscription);
- periodically (periodicity to be specified in the subscription, e.g. weekly).
The user must indicate in the subscription in which way notification is to be done. In
the KP-Lab project we shall implement the first approach (“immediate” notification).
We note that the second and third approach require the storing of events until the next
notification time.

3/ As all users do not have the same access rights on all content items, it is important
to take into account access rights during notification. Indeed, it makes no sense to
notify a user about a content item which the user cannot access. The first version of
our prototype will not be concerned with access rights (i.e., every user has access
rights to every content item).

The notification service is composed of 2 main web services (see figure 9):

(a) Subscription service: It is responsible for the following task:

Subscription update: It consists in registering a new subscription and unregistering or
modifying an already registered subscription.

34

String RegisterSubscription(URI userId, RdfDocument
Subscription, String schemaURI, String EventType,
String[] notificationForm)
input:
- userId: the identifier of the user invoking this method
- Subscription: An RDF document representing the subscription of the user according
to the the RDF schema specified by schemaURI.
- schemaURI : the RDF schema of the subscription
- EventType : the type of the event the user is interested in (insertion, deletion or
modification of a document)
- notificationForm: the form by which the notifications will be delivered to the
subscriber.
output: if the registration failed returns an error message, else returns ok.

Preconditions:
A user who is already registered (who has an identifier). The subscription is submitted
as an RDF document according to a given RDF schema. The user has to specify the
type of the event to which he wants to subscribe, as well as the form of the
notification (for the first version of our prototype, only “RSS feeds” will be used for
the notifications).

String ModifySubscription(URI userId,URI SubsURI,
RdfDocument NewSubscription, String schemaURI, String
EventType, String[] notificationForm)
input:
- userId: the identifier of the user invoking this method
- SubsURI : the URI of the old subscription (to be changed)
- NewSubscription: An RDF document representing the subscription of the user
according to the the RDF schema specified by schemaURI.
- schemaURI : the RDF schema of the subscription
- EventType : the new type of the event the user is interested in (insertion, deletion or
modification of a document)
- notificationForm: the form by which the notifications will be delivered to the
subscriber.
output: if the registration failed returns an error message, else returns ok

Preconditions:
A user who is already registered (who has an identifier). The user has to specify only
the parameters to be changed. For example if he wants to change only the subscription
and keep the same event type and the same notification form, he only has to specify
the new subscription.
The subscription is submitted as an RDF document according to a given RDF schema.
The user has to specify the type of the event to which he wants to subscribe, as well as
the form of the notification (for the first version of our prototype, only “RSS feeds”
will be used for the notifications).

String UnregisterSubscription(URI userId, URI SubsURI)

35

input:
- userId: the identifier of the user invoking this method
- SubsURI: the identifier of the subscription the user wants to unregister.
output: if the unregistration failed returns an error message, else returns ok.

Preconditions :
A user who is already registered (who has an identifier).

(b) Notification propagation module:
This module delivers the notifications: After the matching process, this module sends the
notifications to the module responsible for the delivery of notifications (an RSS aggregator
for example).
RSSfeed Propagate(URI DocumentId, RdfDocument Description,
String EventType)
input:
- DocumentId: the identifier of the document being added, modified or deleted.
- Description: An RDF document representing the desctiption of the document
- EventType : the type of the event (insertion, deletion or modification of a document)
output: the RSSstreams corresponding to the susbscriptions to be notified.

The notification service uses a repository called “Awareness Repository” to save the
data needed to perform the notifications (see figure 9), it’s main tasks are:

(a) Storage of the users subscriptions
(b) Storage of the events to be processed.

(c)

Figure 9. Notification service

36

3.2.2 Text Mining Services
Text mining and extraction services are designed to assist users in the process of
creating or updating the semantic descriptions of KP-Lab knowledge artefacts. The
semi-automatic generation of these descriptions or even of new KP-Lab ontologies
relies on the textual information attached to particular artefacts as a textual content
itself, or as a set of text-based metadata.

Although the knowledge artefacts can be stored in various forms (e.g., textual
documents, conceptual maps, video sequences, images, etc.), they often contain
textual information directly in its content, or indirectly in metadata or textual
annotations given by users. The textual description is analysed using different text
mining techniques. As a result of the text mining analysis, relevant concepts from the
KP-Lab ontologies are suggested to the users during the formal description (i.e.,
annotation) of knowledge artefacts. Moreover, unsupervised text mining techniques –
concept map creation and clustering – can be used to find some unseen concepts and
relations in the set of analyzed textual resources and to group (cluster) the resources
according to their content. These may lead to, e.g., the suggestion to upgrade existing
KP-Lab ontologies, as the knowledge of a user group evolves.

The fundamental tasks for the envisioned text mining services are concept map
creation, clustering and classification of knowledge artefacts. Classification groups a
given set of artefacts into predefined or ad hoc categories. Concept map creation
automatically extracts significant terms from textual resources and converts them to a
structure of concepts and their relations. In addition, the derived text mining tasks,
such as keyword extraction / summarisation and information extraction, can also be
used by KP-Lab tools to create an initial dictionary for ontologies and to extract the
values of various metadata properties.

The functionality and the algorithms used for the specified text mining tasks were
already briefly outlined in [D5.1] and are described in more detail in the following
sections.

3.2.2.1 Pre-processing of texts
Basic text mining tasks, i.e., text classification, clustering and concept map creation,
need to manipulate textual documents in a specific form (e.g., the “bag of words”
representation, vector space model, etc.). The pre-processing phase is responsible for
transforming data into the appropriate form. It consists of several language-dependent
NLP (natural language processing) steps that provide annotations of the plain-text
resources.

For the purposes of concept map creation, clustering and classification of knowledge
artefacts in the KP-Lab, we decided to employ unified modules for tokenization
(splitting input text to individual tokens), stemming (or more sophisticated
lemmatization in morphologically rich languages), elimination of stop words, and
POS (part-of-speech) tagging. Other advanced NLP techniques such as chunking,
WSD (word-sense disambiguation) or the full syntactic analysis are used by
individual modules (e.g., they are crucial for some methods of concept map creation
but not for the classification).

37

The pre-processing of texts is handled by GATE – General Architecture for Text
Engineering [GATE]. GATE is an infrastructure for developing and deploying
software components that process human language.
GATE helps in three ways:

1. by specifying an architecture, or organisational structure, for language
processing software;

2. by providing a framework, or class library, which implements the architecture
and can be used to embed language processing capabilities in diverse
applications;

3. by providing a development environment built on top of the framework made
up of convenient graphical tools for developing components.

The pre-processing component, which provides common functionality for concept
map creation, clustering and classification tasks, is implemented as a pipeline of
processing resources on top of the GATE engine. Additional language processing
resources, that are necessary for the concept map creation service, integrate language-
dependent tasks such as parsing, keyword extraction, co-occurrence statistics and
semantic-distance computation. Figure 10 shows an example of NLP methods applied
in the pre-processing step of the automatic concept map creation.

Figure 10. Pre-processing for the automatic concept map creation

To access the knowledge artefacts and their textual descriptions, we take advantage of
the Gateways to the Knowledge Repository and Content Repository [D4.2.2]. The
results of pre-processing (e.g., vector models of texts) as well as dictionaries and
settings for NLP analysis methods are stored in the Mining Object Repository [D5.1].
This repository contains all the data of text mining services that requires permanent

38

storage; in addition to the mentioned data, there are also training sets and
classification models, as well as external settings for classification, clustering and
concept map creation services. Mining object URIs or moURIs are provided as the
identifiers of the stored data.

Let us summarize the general part of the functionality implemented in the services for
concept map creation, clustering, and classification (see the following sections for
detailed schemata):
1. Retrieve the textual content and metadata of knowledge artefacts from the KP-Lab

Knowledge Repository and Content Repository.
2. Extract the plain text from the retrieved data (which can be stored in various

formats, encodings, etc.).
3. Apply the NLP analysis methods to process the input texts, e.g., parse the text into

elementary words (tokens), eliminate the words of less impact on the text meaning
(so-called stop-words, i.e., very frequent words, prepositions, etc.), eliminate the
declination alternatives (by means of stemming, POS tagging, etc.), convert the
text to a set of weighted terms. Weights correspond to the relative frequency of a
particular word in the text and express its relevance or contribution to the overall
text content.

4. Produce the weighted term-document matrix, which is the input for further
processing.

5. Save the term-document matrix into the Mining Object Repository.
6. Return a mining object URI (moURI) of the data.

3.2.2.2 Clustering and Automatic Creation of Concept Maps
The clustering task enables finding clusters in an input set of artefacts (based on their
textual content and/or metainformation). As opposed to classification, the clustering
task does not require a training phase. The resulting clusters of artefacts are, in
general, unnamed but they can be labelled, e.g., by the most common words in textual
data. Unsupervised machine learning algorithms for partitional clustering are
considered in the Knowledge MatchMaker, namely the K-means algorithm and its
derivatives [MacQueen 1967].

The task of an automatic creation of concept maps identifies the most significant
terms (representing concepts) and identifies relations among them. A set of artefacts
provided by the user is processed first. The service can then identify concept
candidates. The user can also specify a set of seed concepts and ask the service to find
relation candidates, as well as the type of the relation. The full concept map can be
generated in the form of a named graph.

The clustering and concept map services provide the following functionality:
- Pre-process documents (textual parts of the knowledge artefacts) by means of the

methods described in section 3.2.2.1, produce an internal representation and store
it into the Mining Object Repository. A moURI (mining object URI) is provided
as an output, which can be subsequently used for accessing the data.

- Delete the pre-processed data from the Mining Object Repository which will not
be needed any more.

39

- Identify concept candidates and rank them according to the estimated relevance,
extract defining contexts for the terms

- Given a set of concepts, find related concepts from the documents provided by the
user. Return a ranked list of candidate relations together with their types.

- Build the concept map, generate the named graph and store it to the Knowledge
Repository.

- Find clusters in the specified set of documents (the set is given by artefactURIs)

To support the possible division of the user roles, namely the setting in which one
user collects and pre-processes a set of relevant materials and others use the data to
build own conceptualization later on, the concept map creation service defines two
phases – the initial data collection and pre-processing and the actual extraction of
concept/relation candidates or the automatic creation of concept maps.

According to the division, the concept map creation consist in the Prepare4Mining
service (that should be invoked first) and the actual ConceptMapCreation service.
Both services are implemented as web services and use the Mining Object Repository
to store and retrieve mining objects.

The Prepare4Mining service exposes the following methods for creation,
modification, and removal of mining objects:

String createMo(String[] settings,

String[] artefactURIs,
String namedGraphURI)

input:
settings: specification of mining parameters
artefactURIs: a training set, i.e. an array of URIs of semantically annotated

artefacts (retrieved from the SWKM Knowledge Repository)
namedGraphURI: a seed conceptualization in the form of the named graph

output:
moURI: URI of the prepared mining object

void modifyMo (String moURI,

String[] settings,
String[] artefactURIs,
String namedGraphURI)

input:
moURI: URI of the mining object to be modified
settings: specification of mining parameters
artefactURIs: a training set, i.e. an array of URIs of semantically annotated

artefacts (retrieved from the SWKM Knowledge Repository)
namedGraphURI: a seed conceptualization stored in the SWKM Knowledge

Repository

40

void deleteMo(String moURI)
input:

moURI: URI of the mining object to be removed from the repository

The Prepare4Mining service is implemented as a web service and the different
functionalities offered by it are implemented as web methods. Figure 11 shows
internal procedures for creation of a mining object within the Prepare4Mining service.
Blue boxes represent references to existing KP-Lab services, yellow boxes the newly
designed SWKM services.

Prepare4Mining Service

artefactURIs

settings

Pre-processing

Store to the
Mining Object
Repository

Output:
moURI of the
mining object

settings

artefactURIs[]

Gateways to Content
Repository a current set

of concepts
and relations

mining object

Internal Prepare4Mining Implementation

SWKM Knowledge Repository

Content items

URI of
Content items

namedGraphURI
namedGraphURI
s

properties of
artefacts

Figure 11: The Prepare4Mining Service

ConceptMapCreation service provides the following methods for (semi-)automatic
building of concept maps:

String[] findConceptCandidates(String moURI,

String[] settings)
input:

moURI: URI of the mining object returned by the previous call of the
Prepare4Mining service
settings: restrictions on the resulting list of concept candidates

output:
a ranked list of extracted concept candidates and extracted defining contexts.
A score (0.0 – 1.0) is assigned to each candidate according to the estimated
relevancy. A temporary moURI is generated for each concept candidate.

String[] findRelationCandidates(String moURI,

String[] settings,
String[] concepts)

input:

41

moURI: URI of the mining object returned by the previous call of the
Prepare4Mining service
settings: restrictions on the resulting list of relation candidates
concepts: a set of moURIs of concepts from which the relations should lead

output:
a ranked list of most relevant relations; types of the relations (such as “is-a”,
“part-of”, …) are also provided

String buildConceptMap(String moURI, String[] settings)
input:

moURI: URI of the mining object returned by the previous call of the
Prepare4Mining service
settings: restrictions on the resulting concept map

output:
URI of the named graph representing the created concept map stored in the
Knowledge Repository

The ConceptMapCreation Service is also implemented as a web service that exposes
its functionality via the given web methods. Figure 12 shows the internal procedures
of the ConceptMapCreation services, focusing on the buildConceptMap method.

ConceptMapCreation Service

moURI

Store to the
Knowledge
Repository

moURI

Internal ConceptMapCreation Implementation

Mining Object Repository

Output:
namedGraphURI

internal
representatio
of the mining
object

namedGraphURI

setings

setings

Figure 12: The ConceptMapCreation service

Clustering service provides the following method for clustering artefacts:

String[] findClusters(String moURI, String[] settings)
input:

42

moURI: URI of the mining object returned by the previous call of the
Prepare4Mining service
settings: restrictions on the resulting clusters

output:
a set of sets of cluster labels that identify the clusters in the given set of
artefacts based on their textual content

The Clustering Service is also implemented as a web service that exposes its
functionality via the given web method. Figure 13 summarizes the internal procedure
of the Clustering service.

Clustering Service

moURI

moURI

Internal Clustering Implementation

Mining Object Repository

Output:
identified
clusters

internal
representatio
of the mining
object

setings

setings

Figure 13: The Clustering service

The ConceptMapCreation and Clustering services themselves have no user interface
for their functions. It is assumed that the services are invoked by other KP-Lab tools,
e.g., by the Shared Space, and that their functionality will be used in the context of
those tools.

3.2.2.3 Classification
The classification task is used in order to automatically organize a set of knowledge
artefacts into predefined categories. The predefined categories are the concepts of an
existing ontology, which are selected to semantically annotate the artefact. The
ontology (or RDF KB) is supposed to be collaboratively created by learners within the
Shared Space, possibly using the assistance of the Clustering and Concept Map
Building services. Ontologies, as well as the knowledge artefacts (including their
properties and annotations) are stored in the SWKM Knowledge Repository and are
accessible by Knowledge Mediator services. The textual content of the artefacts can
be retrieved from the Content Repository according to the URI of proper content item,
stored as a property of the artefacts in the SWKM Knowledge Repository.

43

Classification is a supervised machine-learning method based on a training set of
already semantically annotated artefacts. The internal mining objects are created from
the annotations and textual descriptions of the artefacts included in the training set.
The mining objects (sometimes also referenced as classification model) contain binary
representation of term-document matrixes, text indexes, plain text extractions, and a
set of parameters (weights, rules, etc. – based on the used algorithm) created in the
process of training. The mining objects are used for the classification of unknown
examples (artefacts).

The following algorithms are considered to be used for classification: simple term
matching, kNN, SVM, Winnow, Perceptron, Naive Bayes (multinomial and
binomial), boosting, decision rules, and decision trees (various combinations of
growing and pruning methods) [Lewis 1998, Quinlan 1996, Yang 2001].

The classification service will be implemented as an extension of the JBowl library
[Bednar et al 2005] and will provide the following functionality:
- Create a training data set from documents (knowledge artefacts containing a

textual description) already categorised to a pre-defined set of categories. The
textual descriptions of the documents are pre-processed (using the pre-processing
methods described above) and transformed into a term-document matrix. The
classification service indexes the training data set and stores it into the Mining
Object Repository.

- Create classification objects, based on the selected algorithm and on a given
training data set.

- Enable modifications (tuning) of the existing classification objects, by changing
the texts and/or categories in the training data set, as well as by editing the settings
of the algorithm or switching to another algorithm.

- Provide statistics on the existing classification objects, by means of standard
measures as precision and recall. Enable to create, index, and store a separate
testing data set (composed also from categorised documents) that can be used for
more exact examination of the quality of the classification process.

- Provide verification and validation of the existing classification. The classification
objects are no longer valid if a portion of training data set (e.g., the term-document
matrix or the set of pre-defined categories) was modified. In this case, re-indexing
of the objects is needed to make them valid again.

- Classify a set of unknown documents (knowledge artefacts) to the same categories
that were used for training. The output of this function is a set of weighted
categories for each of the classified documents.

Based on the outlined functionality, two phases of the classification can be specified:
1) Creation and maintenance of classification objects, based on a given training set

of already classified documents (i.e. annotated artefacts).
2) Actual classification of unknown documents (artefacts).

According to this division, the classification service is composed of two main sub-
services: TrainClassifier service and Classify service. Both sub-services are
implemented as web services and use the Mining Object Repository to store and
retrieve classification objects and settings needed to perform the classification.

44

TrainClassifier service exposes the following methods for creation, modification,
and removal of classification objects:

String moURI createClassifier(String settings, String[]
artefactURIs)
input:

settings: a specification of classification algorithm and its settings. This
algorithm will be used for the creation of the classification object.
artefactURIs: a training set, i.e. an array of URIs of semantically annotated
artefacts (retrieved from the SWKM Knowledge Repository).

output: moURI: URI of the created classification object.

void modifyModel(String moURI, String[] settings,
String[] artefactURIs)
input:

moURI: URI of a classification model to be modified.
settings: a specification of classification algorithm and its settings, as well as a
mode of modification (i.e. replace training set or add to existing training set).
artefactURIs: a training set, i.e. an array of URIs of semantically annotated
artefacts.

void deleteModel(String moURI)
input:

moURI: URI of a classification object to be removed from the repository.

The TrainClassifier service is implemented as a web service and the different
functionalities offered by it are implemented as web methods. Figure 14 depicts
internal procedure for creation of a classification model within the TrainClassifier
service. Blue boxes are references to existing KP-Lab services, yellow boxes
reference to newly designed SWKM services.

TrainClassifier Service

artefactURI

settings

Pre-processing

Store to the
Mining Object
Repository

Plain text

Output:
moURI of the
classification
object

settings

artefactURIs[]

Gateways to Content
Repository

properties
of artefact

classification
object

Internal TrainClassifier Implementation

Categories

SWKM Knowledge Repository

Content item

URI of
Content item

Figure 14: The LearningClassification Service

45

Classify service provides the following method for classification of artefacts:

String classify(String moURI, String[] artefactURIs,

String format)
input:

moURI: URI of selected classification object.
artefactURIs: array of the artefacts to be classified. The artefacts are retrieved
from the SWKM Knowledge Repository.
format: the format of output string. It can be TRIG or RDF/XML.

output: The output string contains a) an URI of the classified artefact, b) a category to
which the artefact was classified, and c) a weight (score) of this particular
classification. The format of the output string could be either TRIG or
RDF/XML; the exact format is determined using the format parameter.

The Classify Service is also implemented as a web service that exposes its
functionality via the Classify web method. Figure 15 summarizes the internal
procedure of the Classify service.

Classify Service

moURI

Retrieve from the
Mining Object
Repository

Plain text

Output:
Array [URI of
classified artefact,
category, weight]

moURI

artefactURI[]

classification
model

Internal Classify Implementation

artefactURI

Pre-processing

Gateways to Content
Repository

properties
of artefact

SWKM Knowledge Repository

Content item

URI of
Content item

Figure 15: The Classify Service

The classification services itself have no user interface for these methods. It is
assumed that the services are used in other KP-Lab tools, e.g. in the Shared Space (see
example in Appendix) and the classification functionality will be used in the context
of those tools. However, the Mining Engine Console is envisioned as a web-based
application that exposes classification (as well as some clustering) functionality for
KP-Lab users. It will enable to manage the Mining Object Repository, maintain
classification models together with training and testing sets, view statistical reports for
particular classification tasks, etc. The prototype of the Mining Engine Console was
already developed and is available at http://kplab.fei.tuke.sk:8080/tmweb/admin/.

46

4 Conclusions and Future Work

The deep-level specification for the second release (M24) of the Knowledge Mediator
and Knowledge Matchmaker components responsible for advanced manipulation with
the knowledge stored in the SWKM was presented in this deliverable. Particularly, the
change, comparison, versioning and registry services of the Knowledge Mediator
component as well as the notification and text mining services of the Knowledge
Matchmaker component were described along with the proposed functionality for
each service, based upon the motivating scenarios and the subsequent functional
requirements.

According to the [DoWB], the implementation of these components and services is
planned to be delivered in M24. This deliverable, together with the previous
deliverables [D5.1] and [D5.2], provide the specification that is sufficient for the
implementation of the components and their integration with other KP-Lab tools.

47

Bibliography

[AMR06] Allert, H., Markkanen, H., Richter, C. (2006). Rethinking the Use of
Ontologies in Learning. Proceedings of the Joint International Workshop on
Professional Learning, Competence Development and Knowledge Management -
LOKMOL and L3NCD, Crete, Greece, 8-18.

[Bednar et al 2005] Bednár, P., Butka P., Paralič, J.: Java Library for Support of Text

Mining and Retrieval. In Proc. from the Czech-Slovak scientific conference
Znalosti (Knowledge) 2005, Stará Lesná, Slovakia, 2005, pp. 162-169.

[Belhaj Frej et al 2006] Belhaj Frej, H., Rigaux, Ph., Spyratos, N.: User Notification
in Taxonomy Based Digital Libraries (Invited Paper), ACM SIG-DOC Conference on
the Design of Communication, Myrtle Beach SC, U.S.A., Oct 18-20, 2006.

[Belhaj Frej et al 2007] Belhaj Frej, H., Rigaux, Ph., Spyratos, N.: Fast User
Notification in Large-Scale Digital Librairies: Experiments and Results, ADBIS 2007:
Eleventh East-European Conference on Advances in Databases and Information
Systems, Varna, Bulgaria, Sep 29 - Oct 03, 2007.

[BSD05] Benn, N., Shum, B.S., Domingue, J. (2005). Integrating Scholarly
Argumentation, Texts and Community: Towards an Ontology and Services. Tech
Report kmi-05-5, http://kmi.open.ac.uk/publications/pdf/kmi-05-5.pdf

[CSMWK] End User Requirements for Collaborative Semantic Modelling. Internal

Report for the Working Knot on Collaborative Semantic Modelling, version 0.6,
30.07.2007.

[D2.1] KP-Lab project deliverable 2.1; http://www.kp-lab.org/intranet/work-

packages/wp2/deliverable-2.1/)

[D2.2] KP-Lab project deliverable 2.2; http://www.kp-lab.org/intranet/work-
packages/wp2/deliverable-2.2/)

[D4.2.2] Kp-Lab project Deliverable 4.2.2. Technical Framework Architecture

Dossier - Release 2; http://www.kp-lab.org/intranet/work-packages/wp4/result/d4-
2-2/

[D5.1] Specification of the SWKM Architecture (V1.0) and Core Services. KP-Lab

project Deliverable D5.1, July 2006.

[D5.2] Prototype (V1.0) of the Knowledge Mediator, Repository and Manager. KP-

Lab project Deliverable D5.2, December 2006.

[D8.1] Scenarios and User Requirements for KP-Labs in Education. KP-Lab project

Deliverable D8.1, July 2006.

[DLM07] De Leenheer, P., Meersman, R. Towards Community-based Evolution of

Knowledge-intensive Systems. In Ontologies, Databases, and Applications of
Semantics, 2007.

48

[DF01] Ding, Y., Fensel, D. Ontology Library Systems: The Key to Successful

Ontology Re-Use. In Proceedings of the 1st International Semantic Web Working
Symposium (SWWS'01), 2001.

[Dom98] Domingue, J. Tadzebao and WebOnto: discussing, browsing, and editing

ontologies on the Web. In Gaines, B., Musen, M. (eds): Proceedings of the 11th
Workshop on Knowledge Acquisition, Modelling and Management, 1998.

[DoWA] Description of Work 2.1 Months 13–30, Part A. KP-Lab Consortium.

[DoWB] Description of Work 2.1 Months 13–30, Part B. KP-Lab Consortium.

[FFR96] Farquhar, A., Fikes, R., Rice, J. The Ontolingua server: Tools for

collaborative ontology construction. Technical Report. - Stanford KSL 96-26,
September 1996.

[Gar92] Gärdenfors, P. Belief Revision: An Introduction. In Gärdenfors, P. (ed).

Belief Revision, pages 1-20, Cambridge University Press, 1992.

[GATE] GATE - General Architecture for Text Engineering - http://www.gate.ac.uk

[GK97] Gordon, T.F., Karacapilidis, N. The Zeno argumentation framework. In

Proceedings of the 6th International Conference on Artificial Intelligence and Law,
ACM Press, New York. 1997.

[Gru93] Gruber, T.R. A Translation Approach to Portable Ontology Specifications.

1993. Available at: http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html

[HHS99] Heflin, J., Hendler, J., Luke, S. SHOE: A Knowledge Representation

Language for Internet Applications. Technical Report CS-TR-4078 (UMIACS TR-
99-71), Department of Computer Science, University of Maryland at College Park,
1999.

[KMACPST04] Karvounarakis, G., Magkanaraki, A., Alexaki, S., Christophides, V.,

Plexousakis, D., Scholl, M., Tolle, K. RQL: A Functional Query Language for
RDF. TheFunctional Approach to Data Management, pages 435-465, 2004.

[KFAC07] Konstantinidis, G., Flouris, G., Antoniou, G., Christophides, V. Ontology

Evolution: A Framework and its Application to RDF. In Proceedings of the Joint
ODBIS & SWDB Workshop on Semantic Web, Ontologies, Databases (SWDB-
ODBIS-07), 2007.

[Lewis 1998] Lewis, D. D.: Naive (Bayes) at forty: the independence assumption in

information retrieval. Machine learning: ECML-98, 10th European conference on
machine learning. 1998, pp. 4-15.

[MacQueen 1967] MacQueen, J. B.: Some Methods for classification and Analysis of

Multivariate Observations, Proceedings of 5th Berkeley Symposium on

49

Mathematical Statistics and Probability, Berkeley, University of California Press,
1967 1:281-297

[ONTSRV] Ontology Server research:
http://www.starlab.vub.ac.be/research/dogma/OntologyServer.htm#index

[Quinlan 1996] Quinlan, J. R.: Learning first-order definitions of functions. Journal of

Artificial Intelligence Research, 1996, 5: 139-161.

[SEMSRCH] Bauters, M. et al: Semantic search draft requirements. Draft of

requirements for semantic search in Shared Space M21 specifications. Internal
Report for the Working Knot on Project and Content Management, version 0.1,
23.07.2007.

[Smrz et al 2007] Smrž, P., Paralič, J., Smatana, P., Furdík, K.: Text Mining Services

for Trialogical Learning. In Proc. from the Czech-Slovak scientific conference
Znalosti (Knowledge) 2007, Ostrava, Czech Republic, February 2007, pp. 97-108,
ISBN 978-80-248-1279-3.

[Sta03] Stahl, G.. Meaning and Interpretation in Collaboration. In: Wasson, B.,

Ludvigsen, S., Hoppe, U. (eds.): Designing for Change (pp. 523-553). Dordrecht:
Kluwer. 2003.

[STPBL] Bauters, M. et al: Semantic tagging according to PBL vocabulary

requirements. Draft of requirements for semantic tagging in Shared Space M18
specifications. Internal Report for the Working Knot on Project and Content
Management, version 0.5, 20.07.2007.

[Tou58] Toulmin, S. The Uses of Argument. Cambridge: Cambridge University

Press. 1958.

[TCFKMPS06] Tzitzikas, Y., Christophides, V., Flouris, G., Kotzinos, D.,

Markkanen, H., Plexousakis, D., Spyratos, N. (2006). Emergent Knowledge
Artifacts for Supporting Trialogical E-Learning. Proceedings of the TEL-CoPs'06:
1st International Workshop on Building Technology Enhanced Learning solutions
for Communities of Practice, Crete, Greece, 162-176.

[Yang 2001] Yang, Y.: A Study on Thresholding Strategies for Text Categorization.

Proceedings of SIGIR-01, 24th ACM International Conference on Research and
Development in Information Retrieval, 2001, pp. 137-145.

[ZTC07] Zeginis, D., Tzitzikas, Y., Christophides, V. On the Foundations of

Computing Deltas Between RDF Models. In Proceedings of the 6th International
Semantic Web Conference (ISWC-07), 2007.

50

APPENDIX

A1. Example: Classification in the Shared Space

A student wants to create a new content item for the final report using the form in the
Shared Space. He or she at first uploads a document file into the Shared Space and
then specifies the metadata for the new item in the form for creation of the content
item. The student can specify metadata like title or description, and add one or more
tags from the predefined vocabulary to semantically annotate the new knowledge
artefact (Figure A1-1).

Figure A1-1. Create new content dialog with semantic tagging

After the user has uploaded the document file, the Shared Space stores the file in the
content repository and sends the content URL to the classification service. The
Classification Service will request new content item from the repository, analyze its
text content and/or structure and apply various classification models. The result of the
classification is a set of vocabulary terms suggested to the user. Each term included in
the result can have additionally assigned real-valued score, which denotes the
confidence that the content should be annotated with the given term.

One possibility on how to represent terms from the vocabularies in the Share Space
dialog is to use a drop down menu (Figure A1-2). Suggestions for semantic
annotations provided by the classification service are presented in a separate section
of this menu. The user can browse the results ordered according to the confidence
score, as well as to browse other terms of the vocabulary to supplement or correct
suggestions.

This button opens drop
down menu with
suggestions provided by
the classification services.

This section allows to add
semantic tags from the
predefined controlled
vocabulary.

51

Figure A1-2. Drop-down menu for semantic tagging with suggested terms for PBL
vocabulary

Various dictionaries can be specified for metadata tags including dictionaries for
document type as is specified in PBL vocabulary [STPBL] or domain specific
dictionaries to describe document subject. The subset of the tags and corresponding
dictionaries supported by the classification service is the subject of ongoing research
and depends mainly on the accuracy of the implemented models.

The previous case is an example of a single classification when the only new item is
classified for semantic annotation. It is possible that a client of the classification
service, i.e., the Shared Space application, sends a set of content items to be classified
by the Classification Service. For example, the user can select content items in his/her
shared space and then use the classification service to additionally classify all these
items according to the selected controlled vocabulary. With this “batch” classification,
the user can dynamically create temporal views of his/her shared space. The result of
the classification can then be permanently stored as a list of semantic annotations of
the classified items and can be used later to visualize the shared space.

suggested terms (ordered
according to the confidence
score)

other terms (top of the
dictionary hierarchy)

