N
N

N

HAL

open science

KP-LAB Knowledge Practices Laboratory —
Specification of the SWKM Knowledge Evolution,
Recommendation, and Mining services
Pavel Smrz, Vilem Sklenak, Vojtech Svatek, Martin Kavalec, Martin Svihla,

Jan Paralic, Karol Furdik, Peter Bednar, Peter Smatana, Nicolas Spyratos, et

» To cite this version:

Pavel Smrz, Vilem Sklenak, Vojtech Svatek, Martin Kavalec, Martin Svihla, et al.. KP-LAB Knowl-
edge Practices Laboratory — Specification of the SWKM Knowledge Evolution, Recommendation, and

Mining services. 2007. hal-00593214

al.

HAL Id: hal-00593214
https://hal.science/hal-00593214

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00593214
https://hal.archives-ouvertes.fr

& KPP b

KNOWLEDGE PRACTICES LABORATORY Information SOCiﬁLV
Technologies !

27490

KP-LAB

Knowledge Practices Laboratory

Integrated Project

Information Society Technologies

D5.3: Specification of the SWKM Knowledge
Evolution, Recommendation, and Mining services

Due date of deliverabl&0/09/07
Actual submission dat€9/11/07

Start date of project: 1.2.2006 Duration: 60rths

Organisation legal name of lead contractor for tlakverable:
UEP: Vysoka Skola ekonomicka v Praze (UniversitEobnomics, Prague)

Final

Project co-funded by the European Commission within
the Sixth Framewor k Programme (2002-2006)

Dissemination L evel

PU | Public v

PP | Restricted to other programme participants (ineclgdhe Commission Services)

RE | Restricted to a group specified by the consortiind{ding the Commission Services)

CO | Confidential, only for members of the consortiumc{uding the Commission Services)

Contributor(s):

Editor(s):
Partner (s):
Work Package:
Nature of the
deliverable:

Internal
reviewers
Review
documentation:

Pavel Smrz UEP smrz@fit.vutbr.cz

Vilem Sklenak UEP sklenak@vse.cz
Vojtech Svatek UEP svatek@vse.cz

Martin Kavalec UEP kavalec@vse.cz
Martin Svihla UEP svihla@vse.cz

Jan Paralic TUK Jan.Paralic@tuke.sk
Karol Furdik TUK kfurdik@stonline.sk
Peter Bednar TUK Peter.Bednar@tuke.sk
Peter Smatana TUK Peter.Smatana@tuke.sk
Nicolas Spyratos LRI-ORSAY spyratos@Iri.fr

Hanen BelhajFrej LRI-ORSAY hanen@lri.fr
Mamadou Nguer LRI-ORSAY nguer@lri.fr

Vassilis Christophides ICS-FORTH christop@ics.fagth
Dimitris Kotzinos ICS-FORTH kotzino@ics.forth.gr
Yannis Tzitzikas ICS-FORTH tzitzik@ics.forth.gr
Giorgos Flouris ICS-FORTH fgeo@ics.forth.gr
Giorgos Markakis ICS-FORTH geomark@ics.forth.gr
Pavel Smrz UEP smrz@fit.vutbr.cz

UEP, TUK, LRI-ORSAY, ICS-FORTH
WP5- Semantic Web Knowledge Middleware
Report

Hadj Batatia INPT hadj.batatia@enseeiht.fr
Markus Holi EVTEK markuho@evtek.fi
http://www.kp-lab.org/intranet/work-
packages/wp5/result/deliverable-5.3

Version history

Version Date Editors Description
0.1 June 16| Karol Furdik, | Initialization document, tasks and
2007 Pavel Smrz responsibilities.
0.2 June 29| Hanen BelhajFrej Notification module specification.
2007
0.3 July 18,| Giorgos Flouris Initial comments, structure
2007 modification, inputs to Knowledge
Mediator section.
0.4 August 14, Karol Furdik, Integration of inputs, Requiremerts
2007 Peter Bednar, section, Text Mining services
Peter Smatana functionality and architecture.
0.5 August 28, Giorgos Flouris,| Sections 1 and 2 upgraded py
2007 Karol Furdik, Jan FORTH and TUK
Paralic
0.6 August 30, Pavel Smrz Sections 3.2.5 and 4.2.2 updated, +
2007 minor modifications in the
Executive Summary and
Introduction; an update of section 3
from FORTH included
0.7 September | Pavel Smrz Integrated version, updates from all
21, 2007 partners
0.8 September | Karol Furdik, Jan Renumbering of sect. 3.2.2, new
24, 2007 Paralic, Peter Bednar| text added to sect. 3.2.2.3.
0.9 September | Pavel Smrz Last changes from Giorgos, seryice
26, 2007 signatures normalized
1.0 November | All contributors Incorporation of reviewers
09, 2007 comments and other minor changes

Executive summary

This deliverable presents the deep-level specifinafor the second release (M24)
of the components responsible for advanced martipolavith the knowledge

stored in the KP-Lab Semantic Web Knowledge Mid@ew(SWKM). The twa
components were defined in [D5.1] as Knowledge M and Knowledge
Matchmaker.

The Knowledge Mediatorservices ¢hange comparison versioning and registry)

aim at providing functionalities to support evolyiontologies and RDF Knowledge

Bases (KBs). Upon a change request, the changdacesewill automatically

determine the effects and side-effects of the reigaled present it to the caller for

validation. A comparison service is necessary limaabne to compare two versio

of an ontology or RDF KB and identify their differees. The above functionalities
are coupled with a versioning system, which is usethake different versions of

the same ontology (or RDF KB) persistent, and witl registry service, whic
allows the user to classify the stored ontologiesng some related metadata
easy access and manipulation.

The Knowledge Matchmakesupports advancedining andnotification services for
knowledge artefacts. It essentially enablegltsterclassify available informatior]
resources with respect to the employed ontologisswell as, tonotify about

changes to content items produced/consumed witlgroap of learners according

to explicitly subscribedpreferences [DoWB].

The Notification servicesupports access to the knowledge repository forLKP:

users (i.e. individual human users as well as vartools or software componen
by keeping them aware of changes. Users will be si8ubscribetheir preference

A1%

h
for

S)

[72)

to the KP-Lab system in order to betified about the changes in the knowledge

repository. Events (modifications) in the repositoare matched with the
subscriptions and notifications gyeopagatedautomatically to the users.

Text Mining serviceare used to assist users when creating or upddingemantic

descriptions of KP-Lab knowledge artefacts. T@kassification Servigeafter a
software-training period, will classify the artefsainder some pre-defined set
categories (e.g., ontology concepts), resultingaisemi-automatic generation
semantic descriptions. Th€lustering Servicewill look for clusters of similaf

artefacts and automatically acquire conceptual nfraps knowledge artefacts. Thjs

can lead to the update or even the creation of \vLab ontologies managed
the sequel by the Knowledge Mediator.

The services are described along with the propasexdionality for each one, base
upon the motivating scenarios and the subsequerdtifumnal requirements. Th
functionality of the services is presented from émel-user perspective and divid
into parts that form the major components of the KB¥Vknowledge evolution
recommendation and mining services architecture.

of
of

in

bd
e
ed

Table of Contents

TABLE OF CONTENTS ...ttt bbbt s bbbt b et e e e nenresnennis 5
1 INTRODUGCTIONttt se e bbbttt e b sbesb e s be s bt ebe e e e nennennenbenneas 6
2 REQUIREMENT Sttt bt b e b bt be e e e e e b e b nne s 7
2.1 MOTIVATING SCENARIOS.uttutrrrreerreteteetaeaaeaasaasassaaaanssnssnseereresseeseeessessessannsnasnnsnnnnsne o
P20 I A 1= 0 o F= Vg ol = Vo To [T I PP PUUPRRRPRR 8
2.1.2 (Re-)CONSLIUCHING ArgQUIMENTSuuutetees s e s eeaeennennbesbeseeeeeeeeeeaaaaaaaaeaaaaannnnnnnnes 9
2.2 HIGH-LEVEL FUNCTIONAL REQUIREMENTS .. cttiitiitiiteeteitieeieesiiesneesnesssnssnnsstesanssneennns 10
2.2.1 Evolution and Use of Multiple Ontologies and RDFSKB............cccccuviiiiiiiiiiiiienannnnnnn. 10
2.2.2 Semantic ANNOtation Of ArtefaCtScommmmererrimiieiiieiiieie e 12
2.2.3 Semi-automatic Building of Ontologies and Clustgriri Artefacts..............ccccccinnneee 13
2.2.4 Keeping Users Aware of ChanQescommmmeereerrriiiieieeeeaaasissiisssesnnsvseeeeeeses 14
2.2.5 Summary of the REQUIFEMENTSuueuiiiiiceeeeeeeiiiiiiieeeir e e e e 15
3 FUNCTIONAL AND ARCHITECTURAL DESIGN.....ccciiiiiiieieeiee e 16
3.1 KNOWLEDGEMEDIATOR. ... uuiittittitteeeeeeeeeeteeeaeeeasassaaassssbe e et eteeeteeaaeaeasessasaannnnnnnes
3.1.1 Change ServiCe......cccccvvvrrrrereeeenn..
3.1.2 COMPAIISON SEIVICEuuuuuruuurreeerereessimmmmmms s e s eassssnssstearasasrereraraaaaeeeeseaaaaassnsssrnnneeees
3.1.3 VErSIONING SEIVICE ..coeiiiiiieeeeiei ettt ettt eeeeeeaeas
314 REQISINY SEIVICE ..ttt e e e e e e e e
3.2 KNOWLEDGE MATCHMAKER ...ttt eeaeteeeeettttata s s s e e e e e e e e e eeeeaeessssbab e e s e e e aeaeaeeeesssnnnnnnnns
3.2.1 NOUfICAION SEIVICEeeeiiieiiieieeee ettt e e e e e eeeeeeeas
3.2.2 TeXt MINING SEIVICES.ccii ittt e e aaaae e e e e e e e aaannas
3.221 Pre-processing of texts
3.2.22 Clustering and Automatic Creation of Concept MapS...........ccccvrvivieeeeeeiiiciiinieeenn. 38
3.2.2.3 ClaSSIfICALION. ...ttt ettt e e et e s et e e e e e s nbreeeaaa 42
4 CONCLUSIONS AND FUTURE WORK ..ottt st se e sne s 46
BIBLIOGRAPHY ...ttt ettt e et e e b e e b e ae e s e e e e b e sbeebeebeeneenee e anseseeseeenas 47
F N o | RSSO 50

1 Introduction

In the context of KP-Lab we need to support thatoa, evolution and management

of conceptualizations for various domains. Suchceptualizations are necessary for
learners to engage in trialogical learning and hahared space, upon which they
can represent their own, as well as other learnkngwledge and understanding of

the domain at hand. The role of the conceptuatimat this respect is to be used as a
mediator tool among people attempting to describ@ @nderstand the domain at

hand.

The simplest way to represent knowledge in suchoaceptualization is by
introducing structure in a vocabulary of terms,eiifiect producing @axonomy A
taxonomy enriched with different types of constrainelationships and rules forms
anontology There are various formal languages that can bd ts represent these
relationships; for the purposes of KP-Lab, we adtm RDF model with the
semantics of RDF Schema (RDF/S); for a detailedri@son of RDF and RDF/S, see
[KMACPSTO04]. An ontology can be viewed as the scharpon which data can be
classified; an RDF ontology coupled with data itefimstances) is called aRDF
Knowledge Basér RDF KBfor short).

The descriptions of knowledge artefacts as wellhag involved conceptualizations
will be represented and handled in SWKM as RDF/&esw@s and resource
descriptions (i.e., ontologies and RDF KBs). Inesrtb support personal and group
knowledge management based on multiple concepatisis the knowledge
repository should be able to distinguish schemas dascriptions according to the
actors (individual or group) involved in their ctiea. To this end, the SWKM
knowledge repository will be able to store, reteieand update RDF/S schemas and
descriptions based on theme spacesor graph spacesthey belong to, where a
namespace is a collection of RDF/S classes anceprep, whereas a graph space is a
collection of RDF triples (see [D5.1] for more dita Name and graph spaces will be
uniquely identified using URI references. Name gmdph spaces may depend on
other name or graph spaces, in the sense thanthgyreuse elements (e.g., classes)
or declarations from other name and graph spaees[[35.2] for more details); such
dependencies may need to be taken into accoumtriaic services, as we will see in
later sections.

Notice that mediation of activities is not limitéd physical tools but encompasses
linguistic, conceptual, as well as cognitive artéfaincluding theories, models and
languages [Sta03]; a conceptualization (and an laygyo representing a
conceptualization) is such a non-physical mediatml. Apart from mediating
artefacts used to carry out purposive activitiegolmgies (and RDF KBs) can also be
seen as knowledge-artefacts on their own. This nstaleding imposes a number of
implications [AMRO6]. First of all, the ontology (&RDF KB) is part of the activity
system; as a result, its utility for the task ahdhas bound to the activity itself and
cannot be assessed independently. Secondly, alogyni{@r RDF KB), like any other
mediating artefact, is the result of a culturakdrical development process within a
certain community. As mediating artefacts are dffjeations of socially shared
knowledge and are built on specific premises iliksly that ontologies (and RDF
KBs) not only vary in their terminology but alsofleet different theoretical

foundations. Thirdly, an ontology (or RDF KB) caacbhme the object of an activity
itself and can be modified or transformed.

2 Requirements

The requirements process of the WP5 software rel2dsllows the general KP-Lab’s

design approach [D2.1] and is based on the ideateftwined design of software

components, practices and agents [D2.2]. The Irs@hof requirements was given by
the reactions of developers and end-users, givetherirst release of the SWKM.

This includes all the inputs obtained from partrterghe first prototype (V1.0) of the

Knowledge Mediator, Repository and Manager [D5.2].

In parallel, the analysis of the current educaticarad professional scenarios was
carried out within the Working Knots co-ordinated WP2. The co-design process
can be exemplified by the process followed in therkihg Knot “Collaborative
Semantic Modelling”, the requirement engineering fcollaborative semantic
modelling was performed in a highly interactive men [CSMWK]. The
requirements are related to the tool for “CollatiggaVisual Language and Models
editing”, for the functional specification on “Cteay and modifying ontology based
concept maps (visual models)” M6.2 as well as the on “Creating and Modifying
visual modelling languages” M6.4.

Motivating scenarios were specified in co-operatath pedagogical and technical
partners to define a practical usage of extendddlayy manipulations in a real-
world learning environment. The motivating scenagelected for presentation in this
section were originally defined in the [D8.1] andrther elaborated within the
Working Knots “Project and Content Management” [$¥LB and “Collaborative
Semantic Modelling” [CSMWK].

Prototypes for particular components and servicesewproduced as a result of
requirements elicited in the face-to-face and wirtworkshops of pedagogical and
technical partners. High level requirements as wsllconsequent usage scenarios
were specified by technical and pedagogical pastnker addition, the pedagogical
partners provided a set of resources — real comeerials and artefacts that were
used by technical partners for development andntestf knowledge evolution
services (especially the text mining services fassification, clustering and concept
map creation).

2.1 Motivating scenarios

This section introduces two motivating scenarioat tivere chosen as the most
relevant for the use of SWKM services. Motivatingeisarios were specified as a
framework for using the collaborative modelling pmactice. This includes such
procedures as collaborative development of visuadiets as well as the underlying
modelling language, specification of semanticsiiermodelling elements, comparing
multiple model’s, preserving mutual consistencyhaf models, etc.

The major advantage of the two scenarios presdrgiedy is that they motivate all the
services described in the following sections. Tlenarios were developed by
“Collaborative Semantic Modelling” and “Project an@ontent Management”
Working Knots. For more details and additional scers, please refer to [CSMWK]
and [STBPL]. The scenarios mention domain-spe@ftologies to be determined
and designed by KP-Lab system users.

2.1.1 Semantic tagging

A group of students, researchers, or co-workergvien a set of research papers and
asked to identify the topics discussed in theseeqgaj@and to build an ontology
representing the topics discussed. Moreover thepgioasked to annotate the original
set of papers according to the derived ontologye members of this group should
collaborate in order to carry out this task [TCFK&®].

Two particular subtasks can be identified withirs thasic scenario, namely ontology
creation procedure and semantic annotation of ttedagts. These two subtasks can
be supported by semi-automatic mechanisms of comoap creation, clustering and
classification, using the text mining capabilitjsnrz et al 2007].

The semantic annotation of learning materials (pgpdocuments, or knowledge
artefacts in general) according to a pre-definedassification ontology
(PBL vocabulary [STPBL]) and consequent semantiarde [SEMSRCH] are
required capabilities of the Shared Space, sineg ¢nable to share and exchange the
information together with its semantic context (meg) between learners. The
classification based on text mining methods is #ectve way to support the
semantic tagging in the Shared Space. That is iMaygémantic tagging was taken as
a main motivating scenario for classification seegi.

The semantic tagging, also sometimes reference(semantic) annotatidn is a
procedure of enriching a document (or knowledgefact in general) by an additional
information that somehow expresses the conteneatufes of the document. The
information that describes the document is takesmfrhierarchically organised
vocabulary of terms (keywords, phrases) — semadatis. This way, the semantic
tagging helps to manage and maintain the (postbdje) set of documents produced
by learners during the project within Shared Spdtelso enables to understand
connections and relations between different docusnand activities required in the
producing of the product in a particular projecanSequently, the semantic tagging
supports a search that can be made according tesdtesemantic tags — the semantic
search.

In [STPBL], the PBL vocabulary was designed aseanchy of different types of
items that are produced during the Shared Spagecpr@and describes activities
related to the project management and productiendfartefacts. Furthermore, a list
of terms describing the possible linking alternasivbetween the content items and
defined tasks are presented in the end of the wbmab However, the PBL

! Semantic annotation is a broader term than tagdihg annotation enriches an artefact by means of
concepts from general ontology, while tagging wsesedefined hierarchically organised vocabulary of
keywords (terms, tags).

vocabulary does not present the existing metatatas already in the current Shared
Space. These are, for example, the automaticalgted metadata as e@teator,
Creating dateModified date or the user defined metad&asponsible oktc.

Various variants of the basic scenario for collatge annotation can be imagined.
For example, the collaboration could be either Bymigous (i.e., all learners make

changes in the classification ontology and thestliaation data synchronously), or

asynchronous (i.e., the learners edit the classifio ontology and data in a separate
space and commit the changes they want). Moreeaeh learner could have his or
her own personal space with a copy of the ontologysuch a case, the central

ontology could be derived from the personal onesn@itment of a learner’'s changes
upon the central ontology could be either instagbais, or it could pass through a
process which could include some kind of approvatcimanism, according to the

policy of the user application. The latter mechanould also include some kind of

argumentation (see the next scenario).

The aforementioned group collaboration requiresrofthanges in the classification
ontology, as the members of the group constandigudis the information found in the
classification ontology, leading to additions, dieles or other edits and corrections to
the ontology. The same is true during the classifin of the various documents (e.g.,
papers) to the resulting ontology. During the psscehe learners may need to keep
different versions of the ontology (and classificatdata), so as to revisit older
versions in case they want to undo some changaddition, they may need to view
the changes that some member of the group madesomparing two different
versions of the ontology (before and after the glejn

Notice that the described requirements imply therd may be more than one
(versions of) ontologies that are stored in thesé@pry. This indicates the need for an
ontology registry that will classify the stored oloigies based on the ontologies’
related metadata information for easy access dndval.

The classification process may be enhanced uskigrtiming services, whose output
may be useful as a suggestion tool for a semi-aationclassification of the
documents in the ontology, in effect initiating amolution process. A notification
mechanism may be also useful, as the learners e&y to be notified when changes
in the classification of papers arise. The samehimitappen when the ontology
evolves.

2.1.2 (Re-)Constructing arguments

The main idea of this scenario is having a groupetiple (students, researchers, co-
workers, etc), possibly with different backgrouradsd/or from different fields, that
meet in order to reach a decision on some issuetder to scaffold this process the
group is presented with an argumentation ontolobicvcould be inspired by similar
efforts in the literature (e.g., [GK97], [Tou58Baid ontology could also be used to
annotate related resources. For example, a cegfaiim might be backed up with a
link to a respective resource.

In a scientific environment [BSDO05], this scenacmuld involve re-constructing pre-
existing scientific arguments based on a set odaieh papers, or explicating the

group members’ own arguments. In a professionair@mment, it could involve the
improvement of the design and function-ability ot@mpany’s new products. For
example, there can be a group of a market-analgsinformation technology expert,
a person responsible for PR and a businesspersam dn undisclosed big Finish
company which should collaboratively acquire knalge on how to improve their
new mobile phones and increase the company pi¥ery member of the group
prepares a set of resources describing his or ureerd understanding (view) of the
given topic. The extraction engine produces an alveronceptual map, which
integrates the individual views and provides a $dsr the core discussions of the

group.

The group of people collaborating in this scenaneed to reconstruct their
argumentation in a KB using the provided argumeémabntology; there is a single
RDF KB representing the arguments of the entireugroDuring collaboration,

differences in opinions may arise which should b&cussed and resolved in a
synchronous manner. Such dispute resolution willseachanges in the original
construction of the argument, thus leading to ckang the original argumentation; in
this case however, the changes affect the dateopat the RDF KB rather than the
schema. Moreover, changes are only additions, ileere are no deletions or
modifications.

Like in the previous scenario, the learners maylneestore different versions of their
argumentation and compare them using appropridta fenctions. We may have
different groups of people who use different argotagon frameworks, in which

case the system may need to support the storaagsifatation and retrieval of more
than one namespaces through the use of some yedwireover, the learners may
want to be notified for new entries in the registry

2.2 High-level functional requirements

2.2.1 Evolution and Use of Multiple Ontologies and RDF KBs

Learners should be able to create and use diffemrteptualizations (ontologies and
related instances) to describe the underlying dopsamilarly, they should be able to
describe the domain from different viewpoints amdier different perspectives. This
implies that the learners should not be in any westricted to a predefined set of
ontologies, but should have the ability to develogir own. Similarly, it should be
possible to easily switch between changing the mehef an ontology and changing
the data classified under the ontology schema.

The ability to change such ontologies and instagcaited in short RDF KBs) should
be provided in an integrated way by the systems Tiftegrated functionality is based
on the idea that the need to extend or change aaKd®s when it is used. For
example, it might become obvious that an aspetih@ijphenomenon to be modelled
cannot be classified properly or it might appeat tielations relevant for the task at
hand cannot be modelled.

In this context, a learner or group of learnersusthdvave the ability to adapt given

KBs to the particular needs of the activities ttaeg involved in. This adaptation
includes the evolution of both the ontology scheand the classified instances. Even

10

though ontologies by definition provide shared @ptoalizations for a domain of
interest [Gru93], they also provide the means toyoaut activities and hence need to
be adapted to local practices and task requiremé&iats example, a learner might
decide that a given ontology does not provide theessary concepts for the task at
hand, and hence might want to extend it. Whilelstabhd widely accepted ontologies
are useful from a technical point of view, locallyapted and adaptable ontologies
seem to be more apt to the needs of trialogicainieg. Furthermore, the local
adaptation of the so created RDF KBs also allowsatang different perspectives on a
shared object of activity, which might help to getbetter understanding of the
phenomenon at hand.

The above requirements raise a number of needsiding some peripheral ones.
First, the use of multiple RDF KBs raises certazgessibility issues, as KBs should
be easily accessible by the learners. Thus, sistplage is not enough and we need
to provide means to describe the stored concepauans; this is done through the
use of some registry which stores metadata desgrihie ontologies represented in an
RDF KB. Such metadata would help in the classiieatof ontologies, would
simplify accessibility and would allow keeping tkaaf an ontology’s lifecycle in the
KB.

The updatability requirement is mainly supportedtigh the provision of a service
that would effectively support changes in the amjes and the related instances
hosted by a KB. Such changes should be supportechatically and transparently by
the system, so that the learner does not haveaowdth the technicalities and side-
effects of any single change upon his KB; it shdu#denough for him to indicate the
required changes in a declarative way and let thB #o the rest. As
conceptualizations change over time, differentiea@sof a KB may need to be stored
and made persistent, so a service should be ire gkt would keep track of such
versions and their relationships. Learners showdnbtified for certain types of
changes that are of interest either in the registrin the KBs themselves. In other
cases, it would make sense for a learner to contpareld version of a KB with the
new one in order to see the newly submitted changes

One of the central properties of trialogical leamyi which is also present in the
scenarios described in the previous subsectiorthaes element of collaboration.
Collaboration implies that different professionadperiences, different social and
cultural backgrounds, participants’ individual irgsts and goals, as well as inherent
business rules and practices (including tacit omeay cause misconceptions and
frustrating ambiguities and misunderstandings [DIZJA0Fo smoothen the effects of
such differences, the shared background of thalwothting group (partners) should
be continuously negotiated until common conceptgracteristics and values have
been agreed upon. In this respect, ontologies abF KBs, being shared
conceptualizations of the domain under discusdinu93], are useful in this process,
as they provide the means to describe shared @af semantics [DLMO7].

The above requirements, which arise from the needhie Knowledge Manager to
support such collaborative activities and collabgea semantic modelling

[CSMWK], imply that RDF KBs may have to be viewabéecessible and updatable
by learners. View and access is necessary in dialera learner to grasp the
understanding of other learners regarding the domthand, whereas updatability is

11

necessary in order learner to be able to provieg thwn arguments and feedback
regarding a domain of discourse.

2.2.2 Semantic Annotation of Artefacts

Collaborative work with knowledge artefacts regsirproper organization and

structuring the artefacts according to their confee., their meaning in the context of
other artefacts), expressed by means of semantiotation. The task of semantic
annotation of an artefact can be defined as atsmbeof the concepts from a given
ontology, that represent the content of the artefét other words, it can be

considered as a classification of artefacts ungeisthema of an ontology, according
to the textual content of the artefacts.

Selection of proper ontology concepts for desariptiof an artefact can be a
challenging task, especially if the set of artefastlarge and/or the domain ontology
is complex. In addition, the learners need to deth several different ontologies
(conceptualisations) that were created as modelth@funderlying domain from
different perspectives. Moreover, the ontologies eaolve in time, when the learners
need to adapt given ontologies to the particulagdeeof the activities they are
involved in. In this case, the semantic descriptbmrtefacts should also be updated
according to the changes in the underlying ontoldgykeep the structure of
conceptual model and annotated artefacts consisi@id, and up-to-date.

The described semantic annotation of artefacthiencbllaborative environment can
be solved by means of text mining capabilities sTdpproach uses a machine learning
technique to create internal mining objects (elgsgfication model, indexes and
settings) from a set of already annotated (i.asgified) artefacts. This means that a
training set of artefacts (i.e., their textual @nj classified to pre-defined categories
(i.e., concepts from classification ontology) isjuged as an input for this approach.
To create the mining objects properly, the gloletisgs as a mining algorithm and
its parameters need to be specified. Since thengetp of proper algorithms and
parameters is a specific feature of the mining @g@gh, it is required that this should
be hidden from users. The provided solution sheeléct the most adequate mining
algorithms and its parameters automatically, adogrtb the quantitative properties
of the training set (as e.g., the number of artefatequency and distribution of
words in the textual content of artefacts, etc.).

After the mining objects are created, the classifom procedure will use the mining
objects (especially the classification model) taraine the textual content of the rest
of artefacts (i.e., those that were not includetb ithe training set). The set of
classification categories will be given in the aittpnd provided to users (learners) as
a result of the classification procedure. Howewamce the text mining approach to
classification uses heuristic algorithms, the miea and overall quality of the results
can not be guaranteed. So only a semi-automatigeusé classification results is
required by users. This means that the resultshef dlassification will not be
automatically included in the semantic descriptiaut, will be provided for learners as
suggestions for the annotation.

12

2.2.3 Semi-automatic Building of Ontologies and Clustering of Artefacts

Manual creation of concept maps from scratch ptesanedious work. Moreover, it
is often the case that authors forget to entemaejt or a relation that can be crucial
for the particular domain in question. To cope whkse issues, the KP-Lab system
should offer services that will help to identifyetinost relevant concepts and relations
for a particular domain.

The basic functional requirement in this respetb iglentify concept candidates from
a defined set of documents (the textual contenther description of knowledge
artefacts). Especially for the collaborative creatiof ontologies by learners, an
advanced function should extract defining contédefinitions, if they are present in
the texts). As it is expected that users will iat¢rwith the tool (invoking the

particular service) and choose appropriate ternmgesenting the concepts, the
candidate list should be sorted according to thienesed relevancy for the domain.

Another step in the supported building of ontolggito identify the most significant
relations in which the chosen concepts particip@igen a subset of the concepts
returned in the previous step, the system shoudtysa the input documents and find
relevant relation candidates. Browsing the resgliiist of potential relations and
choosing the correct ones is necessary in thisszafieat the list of relation candidates
needs to be sorted according to the estimated aetgvfor the domain again. If
possible, the system should also suggest namésd@xtracted relations and identify
the most frequent classes such as “is-a”, “partetd’

Some users may prefer less interactive way of mgldntologies. Providing there is
enough data for the task, the system should offéullg automatic creation of a

concept map that covers the most significant teamd relations among them. The
result should be provided as a nhamed graph anedsioto the Knowledge Repository
for further use.

The above description of the functional requireraesuipposes creation of a new
ontology from scratch. However, in many cases,etheran existing ontology that
covers a part of the domain and the task is toneixée update it to embrace the entire
field. Thus, the above-mentioned functions shoalatinto account the possible pre-
existing knowledge and adjust their results acemigi As such an ontology can be a
result of other activities in the KP-Lab projedt,is expected to be stored in the
Knowledge Repository in a standard form.

In addition to other modes, KP-Lab tools shouldpgrp an asynchronous way of
learning in which one user, e.g, a lecturer, ctdl@nd pre-processes a set of relevant
materials first and other users, e.g., studentsk wath the prepared set later on. For
ontology creation, this mode means separation @firtltial data collection and pre-
processing from the actual extraction of concelatii@n candidates or the automatic
creation of concept maps. Dividing the task to tihe phases can be advantageous
also from efficiency point of view — the time nesasy/ to process a potentially large
amount of text can be considerably high.

The users of the KP-Lab system are often confronii¢ial the task to look through a

lot of texts, e.g., contributions to a discussiooup, and group them according to
their content. This tedious work should be suppmbitgy an automatic clustering

13

service that will take a set of artefacts as ifsutnand groups them based on their
textual content or description.

2.2.4 Keeping Users Aware of Changes

User notification constitutes one of the key eleta¢a the development of large scale
data retrieval and dissemination systems. Theioatibn services allow the users to
register their topics of interest in the form obsariptions and inform them whenever
an event that affects the content of the applicati@tches their subscriptions.

From a general point of view, to function, this diof service needs 2 types of
information about the users and the applicationterdn The first one corresponds to
descriptions of the data present in the applicatiime second corresponds to the
topics of interest of the users or their subsarii

The notification module is “triggered” with eachtdaipdate (insertion, modification
and/or removal). Through a comparison of the dpson of the updated data and the
users’ subscriptions, it determines the set ofuers to notify about the update. The
final action is to the users or user level appiora previously identified (those
associated to the matched subscriptions).

In order to specify the context of the notificatiorodule, it is necessary to answer
certain questions:

- Which data will be concerned with the notificaito
- How the users will be notified?

- Which events will trigger the notification sergl2
In what follows we try to answer these questiondiegcribe the basic ingredients of
the notification service based on the scenari@athers training communities.

A - The data to notify about

For the Kp-lab project, several objects could bejestt of notifications: the shared

spaces, the knowledge artifact or the knowledgegases.

Indeed, all of them are concerned with updates madeertain users and these
updates may interest other users.

At this stage of the project, we decided that tbgfication service will be interested

only in the knowledge artifacts because they contiae data most likely to interest
the users. However, it is possible to extend tluskwio the other objects later on.

B- How to notify users (The notification problem):

The notification module manages the various supsoris of the users. When a
knowledge artifact is being updated, the notificatmodule receives the update event
(including the document description) from the knesge repository. In order to find
the users who are interested in this knowledgéaattupdate, the Matching Module
compares the description with the subscriptionthefusers. The users interested in
the update are those associated to at least otte afubscriptions which match the
description of the knowledge artifact.

14

The notification problem is “matching” events tdosariptions. In other words, given
an event, the problem is how to find efficiently aders that should be notified, and
this under a high number of events and for a latgaeber of subscriptions.

C - Events that fire the notification service

Once the subscription chosen, it is necessaryfionadthe events which will use it for

the notification. Indeed a user has the choice éetw3 possible and nonexclusive
events: the insertion of a knowledge artifact, thmoval of a knowledge artifact

and/or the modification of a knowledge artifactuser do not choose to be notified
about the update of a given knowledge artifact,didut all the knowledge artifacts
having a description that matches at least onkeo$tibscriptions of this user.

When he chooses a subscription, the user defirsgstheé update event (insertion,
suppression or modification) for which the notifioa module will check the
matching of this subscription with the descriptafrthe updated knowledge artifact

2.2.5 Summary of the Requirements

The following table summarizes the above high-lefugictional requirements for
evolution and use of ontologies, for the text mintasks as well as user notification
(see also [DoWA] and [CSMWK], where a variant abttable appeared):

Functionality Short description What a particular SWKM service provides
Browsing the set of | Users are retrieving the Registry allows users to browse the
available available conceptualizations| conceptualizations taking advantage of the

conceptualizations |already stored in the system.metadata provided
Introducing a new | Users are collaboratively | ConceptM apCreation can help to identify the

1%

conceptualization |creating a new most relevant concepts and relations among
conceptualization (a new |[them
ontology or RDF KB) Import provides the initial step to store the

new conceptualization
Registry adds metadata for easy access and
manipulation

Subscription enables users to be naotified
about manipulation with the conceptualization
Using/Retrieving a |Users are retrieving and Registry facilitates access to the
conceptualization |visualizing an already stored conceptualization in question by means of
conceptualization metadata

Export provides the requested data in the
appropriate format

Creating a new Users are retrieving, changingonceptM apCreation can help to update the

version of an and subsequently storing an| conceptualization

existing already existing in the systenYersioning relates the updated

conceptualization |conceptualization as a new | conceptualization to previous versions
version Registry adds metadata for easy access and

manipulation

Inserting/Updating/ | Users are changing the Changel mpact shows all the consequences|of

Deleting an element| conceptualization the manipulation step the user asked for

of the Update makes actual changes

conceptualization Registry takes care of metadata for the

modified conceptualization

15

Collecting and Users collect a set of LPrepare4M ining computes an internal
preparing materials |documents and prepare datarepresentation to enable fast and easy use pf

for text mining for semi-automatic concept |the extracted concepts and relations
map building

Clustering artefacts| Users are grouping Clustering identifies groups of artefacts based
knowledge artefacts on their textual content or metadata description

according to their content
Training and setting: Users are creating a mining | Lear ning Classification processes the training

up the classification| model, using a set of set and provides the classification model
annotated artefacts.
Using the Users are classifying the Classification applies a previously trained

classification for artefacts to some pre-definertlassification model for a new set of
semantic annotation categories (i.e. ontology knowledge artefacts.
(tagging) concepts).

3 Functional and Architectural Design

3.1 Knowledge Mediator

The Knowledge Mediator provides high-level registdiscovery and evolution
services for knowledge artefacts. It essentiallydistes access to and changes of
knowledge artefacts by employing personal or groapceptualizations under the
form of RDF/S ontologies and RDF KBs; such ontadsgand RDF KBs are then
manageable using the mediator's services, nameings) comparison, versioning
and registry, which are described below.

3.1.1 Change Service

The Change Servicés responsible for determining the actual changpe$ should
occur on an ontology or the related instances spoase to a change request. Recall
that in an RDF KB ontologies are represented by Ridfespaces while their
instances by RDF graphspaces. The actual changesoaralways the same as the
requested ones, as the original change requedd tead to invalidities if performed
straightforwardly. In short, given a change requést change service attempts to
apply it to the target name or graph space in aigsttforward way; if this naive
application leads to an RDF KB that is meaninglesslid or does not obey the RDF
formation rules [KFACOQ7], then additional updatealled side-effectsare added to
the original request to guarantee validity.

As an example, consider the removal of an ontoldggs shown in Figure 1. In that
case, the removal of class B would render all aaBons of this class with
neighbouring classes invalid. In such cases, ttangh service needs to determine
additional change operations (side-effects) to heceted along with the original
change request which would restore the validityhef KB. In our example, one such
set of side-effects would be to remove all invalg$ociations. In addition, the implicit
subsumption relation between A and C that existplfcitly, as a consequence of the
other subsumptions) in the original RDF KB, neetb®lost, so it is reinstated in the
result, this time in an explicit manner; this isotrer type of side-effect, which
guarantees that only information relevant to theat@ is lost during the change.

16

(A) (A)
® [

© ©

Figure 1: Change service - removal of a class

The main input to this service is an RDF KB ancharmge request. The RDF KB is
specified using any, arbitrarily large, collectioh name and/or graph spaces. The
change request could affect any of the RDF triphethis collection. However, the
side-effects of the request could potentially &ffeégples in other, depended or
depending name or graph spaces; as a result, er éod the change request to be
processed in a correct way, all the depended apdndéng name and graph spaces
should be taken into account. Therefore, the RDFifkKBiis case is the union of all
the triples that appear in all the name or grapcep that are directly or indirectly
depending on (or are dependants of) the given ones.

Having said that, the caller of the service is gitlee option to restrict the considered
KB, as well as the changes and their side-effectsappen in the given collection of

name or graph spaces, plus, of course, those nagr@gh spaces that the members
of this collection depend on; it should be cleat tthis option may not give the best
possible results, as certain side-effects may eadmputed.

A simple update can be either a removal or an mddf a specific RDF triple in the
RDF KB. Such simple updates can be arbitrarily comdb in the same update
request, to form a more complicated request; timugrinciple, an update request can
be an arbitrarily large set of primitive additioassd removals. For example, a simple
update request would be “Remove Class B”, whereasrgplex update request would
be “Remove Class B; Remove A IsA C; Add propertyith range A and domain C”.

The output of the service is of the same form, ise.set of change operations
(additions and removals), capturing all the effemtsl side-effects of the original
change request upon the target KB (actual chanfrethe example of Figure 1, the
output would contain the deletion of B (direct efje the deletion of the two ISAs
(side-effect) and the explicit addition of the pgomsly implicit ISA (side-effect).
These effects and side-effects are returned tedher, in order to be visualized and
either accepted or rejected.

The set of effects and side-effects that is produsdhe output has been designed to
satisfy certain properties. Firstly, the output afedrequest should have no side-
effects of its own, i.e., the straightforward apgtion of the service’s output upon the
original KB should always result to a valid KB. $his necessary in order for the
output update request to be easily implementaltleowt further post-processing.

17

Secondly, the original change request should begfahe output, i.e., no operation
belonging to the input should be ignored. Thisnkiitively necessary, as the user
wants his update request to be part of the achages executed. However, there are
two exceptions to this rule. The first is techniaad related to the operations of the
input change that encode void requests (e.g., @estdo add a triple that is already
present in the KB); as far as the output changmigerned, it makes no difference
whether such void requests will be included or rsat, for efficiency reasons, the
resulting set of effects and side-effects is fdteiout. Secondly, it could be the case
that a change requestindeasible i.e., that the operation is such that it is neggble

to implement it without rendering the KB invaligggardless of what side-effects we
choose to use; in such cases, the update requegtased in its entirety (an exception
is returned by the service). An example of an isitda operation would be “Remove
Class B; Add an IsA between A and B”; such an dpamnas infeasible, because the
addition of the ISA presupposes the existenceasscB, so the operation of removing
class B cannot be executed together with the adddf the ISA.

Notice that, in many cases, there may be more dnanpossible actual changes (i.e.,
side-effects) that satisfy the above propertiesuich cases, the service will select the
action that has the minimal possible impact upom éhiginal RDF KB, without
negating its validity. In other words, the resulttiee change should be “as close as
possible” to the original KB, according to the ‘fuiple of Minimal Change”
[Gar92], i.e., the actual change should have thiéd&st” possible effects and side-
effects upon the original KB. One possible manggsh of this principle can be
found in Figure 1, in which case it caused the iekphddition of the subsumption
relation between A and C, to avoid unnecessarydbsgormation.

The impact of a change upon an RDF KB is measusethbans of a preference
ordering, which allows the service to determinerttast plausible out of the different
options for side-effects that restore the KB’s di#yi (i.e., the one with the minimal
impact) by comparing the impact of different safsipdate operations (side-effects)
upon the RDF KB. Therefore, this preference ordgiigy a critical parameter that
affects the determination of the actual changes tmplicitly allowing us to fine-tune
the behaviour of the service (i.e., the returnedke-gffects). One such preference
ordering is currently built-in into the current ilementation of the service, but its
modular design allows for alternative preferenageang can be used in the place of
default one..

As already mentioned, an update request can coatgimumber of simple operations
(additions or removals of triples). It should bepdrasized that there is no particular
order of execution of these simple updates, he.entire update request is treated as a
whole, in a transactional and deterministic manrmerl, while searching for the
minimal impact of such an update request, we censide impact of the entire
request, rather than the impact of each changeabperseparately. Notice that the
selected (minimal) set of side-effects computethia manner may be different from
the one we would get if we processed each updaebpn separately.

In order for the system to guarantee the descrlimthviour in a consistent and

deterministic manner, the service implementatiotnasked up by a formal theory
which is described in detail in [KFACO7]. Based this theory we have developed a

18

general-purpose algorithm that has been provedhibi the described behaviour for
any kind of update request (simple or complex).

This general-purpose algorithm is backed up bytaokspecial-purpose algorithms
which calculate the proper effects and side-efféotssimple operations only; this
way, we are able to provide faster, special-purpoggementations of our general-
purpose algorithm, which are applicable only fongie update requests (thus trading
generality for performance). The special-purposgorhms exhibit the same
behaviour as the general-purpose one, but arebstite for it; recall that there is an
infinite number of possible update requests, se #fiort is inherently incomplete,
and we will necessarily have to resort to the gaRaurpose algorithm for certain
update requests. The process of selecting the prdgerithm (special-purpose or
general-purpose) to use for a particular updateesigis transparent to the user: the
service determines whether the given update redgsiespported by a special-purpose
algorithm and adapts the execution sequence aogpydi

added

del et ed i
ode Change Service .
nanme@ aphSpaceURI _
Trig files of Output:
|ns|er_t|ons & nameG aphSpaceURI node Two TRIG files
deletions (effects+side-
(added, del 4t ed) effects)
Construct
update Export Service
operations)
7 Trig Transform to
| Trig files of
nput set . i i
of update XML/RDF | Trig Parser g‘;igfnnss &
requests
M.M. RDF APIs

Internal Change Impact Implementation

Set of update
requests

Figure 2: The high-level view of the Change Service

Figure 2 shows the general architecture of the seebice. As shown in the figure, the
change service exposes a single service whiches tosapply an update request upon
an RDF KB. The signature of the method is as fadlow

String[] changelnpact(String added, String deleted,
String[] nameG aphSpaceURlI, String node)

The output of the above method is a pair of stritlys first string represents the RDF
triples that should be added to the KB, whereas#wend represents the RDF triples
that should be removed from the RDF KB. Both sgisgould encode the triples in
TRIG format. As already mentioned, these tripledude both the effects that were
directly dictated by the original update requesid ahe ones dictated by validity

19

considerations, i.e., the side-effects used to cawotroducing invalidities in the
original RDF KB due to the update request. Voidiaolds and removals have been
filtered from the output.

The input of the method is the update request a@dRDF KB upon which the update
should be applied, as well as a flagpde) indicating the mode of the change. The
nameG aphSpaceURI [] parameter is an array of strings, each stringessnting
the URI of a name or graph space. Depending onmtitee parameter, the update
request will be applied either upon the union @& thples in those URIs and those
that these URIs depend on, or upon the union ofriples in all name or graph spaces
that are directly or indirectly depended or depegdupon the URIS in the
naneG aphSpaceURI [] parameter (i.e., their full dependency closure)ese
parameters are passed to the Export Service i twdget the exact triples that the
implementation of the Change Impact Service wiketanto account in order to
calculate the result of the change operation aedparsed to produce the necessary
data structures to be used in the rest of the imghtation.

The update request is specified using the strirgrpatersadded anddel et ed,
representing the set of triples that should be addwl deleted respectively from the
RDF KB (i.e., the original update request). Thplas should be encoded using TRIG
syntax. The added and deleted triples are combividd the parsed output of the
Export Service in order to determine the types pdaie operations that need to be
executed upon the RDF KB and are ultimately fednglwith the RDF KB that was
produced by the parsed output of the Export Sentwehe Internal Change Impact
Implementation to produce the output. A relatedriggon is that all the schema
resources (classes, properties) that are usedeintid added and del et ed
parameters (i.e., all the schema resources thaaapp the update request) should
have the same URI (including version ID — see thissioning service below) as (one
of) the URI(s) of the input describing the RDF KBe(, one of the URIs in the
naneG aphSpaceURI [] parameter); in a different case, an error is riegbpy the
service.

3.1.2 Comparison Service

The Comparison Servicés responsible for comparing two collections ofmeaor
graph spaces (KBs) already stored in the reposiémy compute their delta in an
appropriate form. The result of the comparison fdeta” (or “diff”) describing the
differences between the two collections of hamgraph spaces, i.e., the change(s)
that should be applied upon the first in orderebtg the second (see Figure 3 for an
example). The intended use of the service is tingpavison of two different versions
of the same name or graph space to identify théerdnces; comparing unrelated
name or graph spaces (i.e., name or graph spadeb aie not different versions of
the same name or graph space) would give resulthviave no intuitive meaning.

20

Compare

=

Delta (explicit):

Del Class B
Del CIsAB e
Del B IsA A
Add CIsA A

Figure 3: Comparing two name spaces

This problem is related to the problem of evolutibat is handled by the Change
Service; in the case of the Change Service, we ki@aoriginal conceptualization
and the changes that occurred, and want to detertiie most adequate new
conceptualization of the domain; in the case ofGbenparison Service, we know the
old and the new conceptualization of the domain,léck the knowledge (control or
access) of what caused the transition (i.e., weldvitke to determine what forced us
to change our conceptualization).

Notice that the problem of comparing two name apbrspaces is very different from
the problem of comparing the source files (e.g.J@HRles) which describe them.
This is true because (a) a name (or graph) spadesaemantics, as well as implicit
knowledge which is not part of the source file; (bgre are alternative ways to
describe syntactically the same construct (triphep name or graph space, which
could result to erroneous differences if resortim@ source file comparison method;
and (c) source files may contain irrelevant infotiorg e.g., comments, which should
be ignored during the comparison.

It is clear by the above analysis that the comparishould be based on semantic,
rather than syntactic considerations, so our commmarservice will be based on the
comparison of the triples contained in the nam@raph spaces. Our research has
shown that there are alternative methods for comgua semantic delta between
name or graph spaces [ZTCO7]. In particular, thglicit knowledge (i.e., the inferred
triples) contained in the two name or graph spamag or may not be taken into
account, leading to the following four cases:

» DetaExplicit (Ag): Takes into account only explicit triples
— A(K—K') = {Add(t) | tOK'=K} O {Del(t) | tOK-K"}
« DetaClosure(Ac): Takes also into account inferred triples
— A(K—K") = {Add(t) | tJC(K")-C(K)} O {Del(t) | tOC(K)-C(K')}
» Delta Dense (Aq): Returns the explicit triples of one KB that do madst at
the closure of the other KB
— Ay(K—K") ={Add(t) | OK'-C(K)} O {Del(t) | tOK-C(K")}
* Delta Dense & Closure (Aqc): resemblesAy regarding additions and.
regarding deletions
- AgdK—K") ={Add(t) | tOK'-C(K)} O {Del(t) | tOC(K)-C(K")}

21

In the above bullets the operator C(.) standsHerdonsequence operator, which is a
function producing all the consequences (implicgat)oof a hame or graph space K,
l.e., all the inferred triples of K. In the example Figure 3, only the explicit
knowledge is taken into account in the comparisorthe shown result corresponds to
Ae. If the implicit knowledge was also taken into aant, the result would be
different (e.g.Ac, Ag andAg., would not report the addition of the [C ISA Aipte).

One of the main properties that we intuitively est@ hold in a comparison function

is that its output, when applied upon the first Baon graph space, should give the
second; this property is callewrrectnessin order to study which of the four delta
functions guarantees correctness, we should festrohine what it means for the

output of the diff service to be “applied” upon tirst name or graph space. The latter
iIssue is related to the semantics of the updateabpes considered, i.e., a formal

description of how the output of the diff should‘fagplied” upon the name or graph

space.

There are three options in this respect, name)yth@ the operations (additions and
deletions of triples) that are included in the @elte viewed as plain set additions and
deletions (plain semantics Up); (b) that they are coupled with redundancy
elimination and computation of logical implicationgnference and reduction
semantics- Uy); or (c) that they are handled using the changeaséics introduced
by the Change Service (change service semantits).

Using this definition of update semantics, in [ZTL@ was shown that only certain
pairs of delta functions with update semanticsaneect, namely:Ae,Up), (Adc,Uir)
and A, Uir). Most existing comparison tools rely on the,Uy) pair. If we consider
the update semanticscdJthen theA. function guarantees correctness, AgUcs) is
also correct. Based on this result, we can guagaht® the output of the Comparison
Service is compatible with the Change Service, that the output of the Comparison
Service (under thé\. function) is a set of primitive update operatiomkich, if
applied (using the Change or Update Service) tditiename or graph space, would
result to the second one.

Another critical consideration is related to theesof the delta; in this respect, delta
dense Ay) is best, compared to any other delta functionrgrnelisAyc gives smaller in
size delta tham\;, on the other hand\. and A, are incomparable. Notice however
that, as we saw abov&y (the smallest possible delta) does not guarameeatness.

For the purposes of the KP-Lab project, we don’dbpadany particular policy
regarding the “correct” or “best” delta functiom; particular, the delta function to be
used is just a parameter of the service, and ther ga assumed to understand the
implications of using any particular delta function

22

nameGr aphSpaceURI 1
del taFunction E‘ Comparison Service

nameG aphSpaceURI 2 outrkt:
name@ aphSpaceURI 1 nane& aphSpaceURl 2 Rt
Two |TRIG
Name/Graph spaces Name/Graph spaces files [delta)
Export Service
TRIG TRIG Transform
del to Trig files
e on | | XML/IRDF | Trig Parser | | XML/RDF | Trig Parser| | of insertions
& deletions
M.M. 1 RDF APIs M.M. 2 RDF APIs

Internal Diff Implementation

Set of performed
updates

Figure 4: The Comparison Service

Figure 4 shows the general architecture of the sezlice of diff. As shown in the

figure, the Comparison Service exposes a singlecgewhich is used to compare two
collections of name or graph spaces and returrr theta (diff) according to the

selected delta function. The signature of the neeth@s follows:

String[] diff(String[] naneG aphSpaceURI 1, String[]
naneG aphSpaceURI 2, String del taFuncti on)

The output of the above method is a pair of strigsesenting the delta of the two
models. In particular, the first string of the pagpresents the RDF triples that exist in
the second model but don'’t exist in the first, védas the second represents the triples
that exist in the first but not in the second. Thigy, the delta can be viewed as an
update request (see also the Change Service alvavie)y, when applied to the first
model, will (should) result to the second; undes thewpoint, the first string of the
output can be viewed as the added triples, whiéesticond can be viewed as the
deleted triples. Both strings encode those tripieERIG format.

The input of the method is the two collections loé hame or graph spaces to be
compared, as well as a parameter indicating theemufdthe comparison (delta
function). These two collections are passed usmegnanmeG aphSpaceURI 1]]

and naneG aphSpaceURI 2[] parameters. Each such parameter is an array of
strings, each string containing the URI of a namegmph space (so each of
nameG aphSpaceURI 1[] and naneG aphSpaceURI 2[] represents a
collection of name or graph spaces). It should behasized that the comparison is
not performed upon the name and graph spaces implé¢ only, but also upon the
name and graph spaces that they depend on. In otbeds, the compared
conceptualizations occur by taking the union of tify@les in the URIs indicated by
nanmeG aphSpaceURI 1[] (andnaneG aphSpaceURI 2[]) plus the triples in
the name or graph spaces that the input name phg@paces depend on. This is
implemented through two independent calls to thpdexService (one for each of the

23

compared collections), followed by the parsing lté tesults to produce the related
data structures used by the Internal Diff Impleragan.

Thedel t aFunct i on parameter indicates the type of the delta functiobe used
in the comparison. In the current implementatiomgsgible values for the
del t aFunct i on parameter are: “D1”, indicating that Delta Den4g) (should be
used; “D2”, indicating that Delta Closura should be used; “D3”, indicating that
Delta Explicit A¢) should be used; and “D4”, indicating that DeltanBe & Closure
(A4c) should be used. The information on the deltationdo be used, along with the
parsed output of the Export Service are then fealtime Internal Diff Implementation
to produce the output (diff) of the service.

3.1.3 Versioning Service

The Versioning Servicés responsible for constructing a new persistansion of a
name or graph space already stored in the repgsitoeffect allowing the creation of
several versions of an ontology or their instanicean RDF KB, while keeping the
logical relationships between each of its versiams, which version was created as
an evolution of which pre-existing one etc.

The initial functionality of the Versioning serviedll offer versioning at the level of

single RDF name or graph spaces. To this end késtas input the information

regarding the version’s URI, the parent version®llnd the contents of the new
version and creates a persistent version of theer@ngraph space in the given URI,
with a new version ID.

More specifically, the URI of a version is assunede “split” in two appropriately
delimited parts; the first part contains the URefpt, which is shared between all
different versions of the same name or graph spelciée the second part contains the
version ID that allows us to discriminate betwelea various versions. For example,
the URI of version v1 or namespace nsl would b&-~nsv1”.

The version IDs are generated automatically bystrgice each time a new version is
requested. The service guarantees that no twoomsrsif the same name or graph
space will get the same version ID. The user oftheice relies on the use of the full
URI to refer to the name or graph version, whettbasRegistry Service offers the

necessary functionality for accessing the differeetsions and querying their

interrelationships, in a transparent way.

Figure 5 summarizes the functionality of the sezviaitially, a new version identifier
Is created; this identifier will be associated witie new version. Moreover, the
contents of the new version are validated befoliegoéed to the Import Service
(along with the new version ID), which will makeetlversion persistent. During the
import, the URIs of the various elements of a ngraes need to be changed as they
no longer correspond to the same elements as dhenels. As an example, consider a
resource A that exists in version v1 of the namespesl; then its full name (fylly-
qualified) will be “ns1l~ ~v1#A”. Following the crgan of the new version, say v2,
the name of A will change to “nsl~ ~v2#A”. This aamng process is necessary
because, if any particular triple appeared unchdmgdooth versions, we would end
up having the same triple appearing in more thasm mamespaces, which is invalid.

24

As the unigueness requirement is true only fornthmespaces, the renaming process
is performed only for namespace versions. Followherenaming, appropriate calls
to the Registry Service guarantee that the newioreris properly recorded in the
registry; to this end, the information on the nesvsion’s parent(s) is necessary.

It should be emphasized that the creation of tive vexrsion does not remove the old
version(s) from the repository. Since the old wver® URI does not change,
references to old versions, are still valid. Changé references to old versions is
under the responsibility of the programmers.

One of the requirements of the method is that #he wersion and its parents should
have the same URI prefix, as they are assumed tiiftegent versions of the same
name or graph space. Therefore, the validity ofitipit URIS should be verified

before making the new version persistent, and sscod the validation (and the
import) is a prerequisite for the new version to feeorded in the registry. If

validation succeeds, the Registry Service is usetetord the new version of the
name or graph space. The final output of the serica URI that includes the URI

prefix and the version ID of the new version.

nameG aphSpaceURI
newVer si onFi | e . -
f or mat Versioning Service
st or edPar ent NaneG aphSpacpUR nanmeG pphSpaceURI newVer si onFi | e

URI prefix|for the new URI Trig or RDF/XML

nameG aphSpaceURl Crea_te new M.M. Output:
st or edPar ent NameGr aphSpadeUR! | Version ID Validation new URI +
_ new
URI prefix + Version ID

new Version ID

Import Service

Parent
information

Validate URI
prefixes

Registry Service

If ok

Figure 5: The Versioning Service

Programmatically, the versioning service exposesingle service for making a
particular name or graph space persistent. Theatign of the method is as follows:

String inportVersion(String naneG aphSpaceURI, String[]
st or edPar ent NaneGr aphSpaceURI, String newersionFil e,
String formt)

The output of the above method is a string contairthe full URI, which includes

both the URI prefix (i.e., the common URI prefixaths shared among all the versions
of this name or graph space) and the version lDb@hew version. This URI could be

25

later used by the caller in order to get the casten the new version, through a call
to the Export Service.

The input consists of theanmeG aphSpaceURI parameter, which is used to
determine the URI prefix to be used in the new ieers URI. The

st or edPar ent NaneGr aphSpaceURI [] parameter is an array of strings, each
containing the URI of one of the parent(s) of therent version. If there is no
previous version of the given name or graph spaee (f the currently created
version is the first one), then there are no paresa the array is empty. Notice that
the URI prefix could also be determined using taeepts’ prefixes, but this approach
would fail for versions with no parents (i.e., ftew name or graph spaces).

ThenewVer si onFi | e parameter contains a string describing all thadsi of the
new version of the name or graph space. Thesedrghould be stored as the content
of the new version. The format of the stringnewVer si onFi | e could be either
TRIG or RDF/XML; the exact format is determinedngsthef or mat parameter.

3.1.4 Registry Service

The role of theRegistry Servicés to record and manage metadata information about
ontologies, schemas or namespaces stored in theldohge repository. Furthermore,
the registry offers the possibility to keep tracktle development lifecycle of a
schema through the support of storing versionsr thetadata and the relationships
among them. Both schema and version informatiofoviolthe Ontology Registry
Schema that is stored in the knowledge repositodyis appropriately instantiated for
each schema and version stored. Applications ukimgegistry have the possibility to
update and retrieve information about the alreadpnded schemas and their versions
by using the available service methods. Noticetti@Registry Service offers support
for namespaces only; extending the service to algmport graphspaces is rather
straightforward and can be implemented if thisasrded necessary.

A comparison of some of the existing registriepligssented in [DF01]. All of the
mentioned systems provide certain searching feslibut only some of them support
editing functions that modify stored informationoab ontologies and add new ones
(such as WebOnto [Dom98], Ontolingua [FFR96] andolagy Server [ONTSRV]).
Moreover, only a few provide reasoning mechanidmas tnake it possible to derive a
guery-answering mechanism such as WebOnto and iGgual Furthermore, only
one of the systems, SHOE [HHS99], supports a veirsjpmechanism in order to
maintain the changes of ontologies in the regishyr ontology registry provides all
of the aforementioned functionalities, since itusng a query/update service based
mechanism. Furthermore, it supports versioningsmmore general sense as it will be
described later.

The Registry Service is implemented as a web seuil the different functionalities
offered by it are implemented as web methods. Hewethis web service is not a
self-contained module but rather depends on and te services provided by the
knowledge repository, such as the Import, Updaté Qoery Services. In particular,
the Import Service is used to persistently storlogical descriptions, the Update
Service is used to update the metadata informatiothe ontologies (which is stored
in the Ontology Registry Schema, which is an orggldself and described below)

26

and the Query Service is used to query the metaddbamation stored in the
Ontology Registry Schema (for retrieval purpos@$)e dependencies between the
Registry Service and the aforementioned services@rematically depicted in Figure
6.

descriptions

OR Registry Service
queri es]
RDF/Trig
Ontology
Descriptions
Registry Update Statement| | Query Statement Output:
MM-schema Predefined | RUL | | Predefined | RQL .'?r[i);/XML
File
Import Update Query
Service Service Service

Figure 6: High-level view of the Registry Service

As already mentioned, the Registry Service is usisgpwn ontology, encoded in
RDF and following the RDF/S, in order to explicitthescribe every other ontology
stored in the Knowledge Repository. This ontologycalled theOntology Registry
Schemaand is described in detail later in this sectisee(Figure 8). For every
ontology stored in the Knowledge Repository, antanse of the proper type is
created and stored under the Ontology Registry r8aheThe Registry is also
supporting the recording of the versioning of scherny allowing for each ontology
the creation of multiple instances of the corresjoy classVer si on and relating
these instances to the proper instance of the Sasema. Thus, the metadata stored
for each namespace are divided into two main categoegarding to whether their
values are changing with each version (e.g., thbau of classes or the related
namespaces) or they are permanent characteristiadheonamespace (e.g., the
encoding or the URI prefix). This, in turn, impogee rule that at least one version
should exist in the Knowledge Repository for aryrestl namespace and its instance
should be correctly related to the instance repitesethe namespace in the registry.

Since keeping track of versions has a significatg in the lifecycle of a schema, the
registry supports a sophisticated versioning meshan accounting for and
supporting the fact that different versions of Aesna can be developed in parallel.
Thus, during the lifecycle of a schema its versicas create a Direct Acyclic Graph
(DAG). This means that a version might depend omentban one versions (like
Version5 in Figure 7), which might be consideredresging two or more versions.
Similarly, two or more versions might depend onirgle one (like Versionl and
Version2 in Figure 7), which might be consideredaking or parallel development.
This way the maximum possible flexibility is proed and all known versioning
schemes can be easily supported. The related iafam is provided by the
Versioning Service. Apart from the versioning methke, the registry additionally
offers the possibility to document the changes dwaur on a schema when moving

27

from one version to the next one(s). These chahges the format of the results of
the Comparison Service that compares two RDF mddetssection 3.1.2).

Finally, as mentioned above, the Registry Serviifer® the possibility to retrieve
ontology metadata information from the repositong also update the information
that is already stored. In order to retrieve dedanfthe registry, one can either type an
RQL query, or use a query from a set of predefioegs. The latter type (the
predefined queries) are exposed through a set bfsgesice methods and are highly
configurable by the developer of the service altgyor the necessary flexibility and
taking advantage of the knowledge of the OntologgiRry Schema. Similarly, in
order to update the information stored in the tegis set of implemented web
methods is exposed accounting for most actionsntigit be needed by the user and
assuring the necessary consistency of the infoamat the registry, imposing for
example the rule of necessitating at least oneiorenger schema; nevertheless, the
user can always post updates in RUL, in which ¢s)¢ee bares also the responsibility
for keeping the consistency rules.

VersionQ
Versionl Version2
VersionType: VersionType:
Temporal Temporal
Version3 Version5 Version4
VersionType: VersionType: VersionType:
Permanent Revision Permanent

Figure 7: A possible DAG created by the versiona s€hema. In this example, the
first version is version0 and from it are emanating versions, versionl and
version2 that are developed in parallel. These vexsions are merged by Version5.
Version3 and Version4 are labelled as permanerdgigas, meaning that the authors
do not plan to work anymore on them.

The schema of Ontology Registry consists of fiveibalassesSchema, Ver si on,
Change, f oaf #Per son andf oaf #Or gani zat i on.
 TheSchena class represents a stored namespace (or ontofagghema)

and includes, besides the URI of the schema, irdoan about the creator,
the title, the purpose, the keywords etc. Regartliregorganization of the
concepts described by a namespace, the kind dfititerrelations and the
level of conceptualization, further classificatios offered through the
subclasses of clasSchema. These subclasses are the following:
Ont ol ogy, Thesaur us, Taxonony, Semant i cNet wor K,
Domai nOnt ol ogy, Upper Ont ol ogy, TaskOnt ol ogy,
Cor eOnt ol ogy, Appl i cati onOnt ol ogy,
Feder at edThesaur us, Facet edThesaur us and
Net wor kedThesaur us.

28

e The Version class is correlated to classchena by the property
hasVer si on and describes attributes of a schema that mighhgd
between versions such as statistical characteyiefi@a schema (number of
classes, number of properties, maximum length bieaarchy). As one
might see, this class also contains properties dbaktlate one schema to
another with the relationshipsnport, extend and i nst anceC .
Moreover, class/er si on has a property with predefined values that is
used to indicate the intended uses of a versioardagy its evolution
during the version lifecycle. The predefined valum® instances of
Ver si onType class. The evolution can be seen in two waysimesshat
are going to be developed in parallel and versitieg are developed
sequentially and depend on one another. ThusVéesi onType class
can take the form of one of the following subclas&er manent (not to
be merged in the futureJenpor al (might be merged in the future) and
Revi si on (replacing its previous versions). An example loé use of
these values can be seen in Figure 7.

» TheChange class is correlated with clas®er si on through the property
changeRequest and describes the insertions/deletions of RDF
statements that have led to the creation of thrsime (in the form of
add/delete statements like the ones produced bgdhgparison Service).

* The (FOAF#) Per son and(FOAF#) Or gani zat i on classes from the
schemaFOAF are correlated to both class&henma and Ver si on
through the propertiexr eat or, publisher and contri butor
respectively.

Moreover, some additional classes have been spécithat are related to the

language, encoding, and physical language usdwiddcument describing a specific
namespace. The main classes and properties of dggtdRegistry Schema are

illustrated in Figure 8. The recording of a schamaespace by the Registry Service
might also include the storing into the registryt naly of the instances of classes
Schema andVer si on but also instances of the clas§#sange, f oaf #Per son,

f oaf #Or gani zat i on, Language, Encodi ng andPhysi cal Language.

29

foaf: Person
Language foaf: Organization

langCreatot
! VersionType
‘PhysicalLanguage

w9,
Wersion
- J import
T @ AA A

creator

publisher

instanceOf

<o
._\O
£ s ;
: . b baseline
3 S .,_\O" <]
Encoding k4 4 '

&y
\:\'??
changeRequest “ @change
| - D

Figure 8: The Ontology Registry Schema

The Registry Service offers functionalities for:
e Storing information into the Ontology Registry Sotee
* Updating information in the Ontology Registry Scleem

* Retrieving information related to any object stonetder the Ontology
Registry Schema

As already mentioned, the methods exposed by tlygpstRe Service are using the
underlying methods offered by the Knowledge Repogit more specifically the

Import, Update and Query Services. The RegistrywiSerbuilds on top of these
services in order to provide a more intuitive ifdee between the Knowledge
Repository and the applications using the regisiityese methods try to hide the
possible complexity of producing the right (andimited) RQL queries or RUL

updates by predefining the correct ones, accourthéconsistency and imposing the
necessary rules (which otherwise would have tarijosed manually) and exploit on
the knowledge of the Ontology Registry Schema wkhehapplication need not know
in detalil.

So the available methods (web services) of the I0gyoRegistry API for inserting
information into the Registry are:

void insertSchema(String schemaURI, String[] versionlD,
String file, Format format)

voi d i nsert SchemaURI (String cl assNane, String
I nstanceURI, String[] versionlD)

void insertPerson(String classURI, String[] personURI,
String[] property, String file, Format format)

30

voi d i nsertPersonURI (String cl assURI, String[]
personURI, String[] property)

voi d i nsert Organi zation(String cl assURI, String[]
or gani zati onURI , String[] property, String file,
Format format)

void insertOrganizationURI(String classURI, String[]
organi zati onURI, String[] property)

void insertlnstance(String classNane, String strl,
String[] str2, String file, Format format)

void insertlnstanceURI (String classNane, String strl,
String[] str2)

bool ean existlnstanceURl (Cl assNanme classNanme, String
I nstanceURl)

The corresponding ones for updating informatioready stored in the Registry
(including deletion of instances from the regisupdate of the range properties with
the constraint that the properties have literala eenge, etc.) are:

voi d removel nstance(String cl assNane, String
I nstanceURl)

void editlnstanceURI (String classNane, String ol dURI,
String newURl)

voi d i nsertProperty(C assNane cl assNane, String
I nstanceURl , String propertyNane, String[]
propertyVal ue, PropertyRangeType rangeType)

voi d edi t Property(C assNanme cl assNane, String

I nstanceURI, String propertyNane, String ol dVvalue,
String newal ue, PropertyRangeType rangeType)

Finally, the Registry Service uses the Query Serincorder to retrieve data from the
registry by evaluating RQL queries. The user caactly pose RQL queries through
thequer y() method of the Query Service or use the methodishatplemented by
the Registry Service API, called:

String eval uat ePredefi nedQuery(String guer yCat egory,
String queryl D, String param Format format)

that can be used when the application needs toonseof the predefined queries
which are in turn dynamically specified by the segvdeveloper in an XML file.

3.2 Knowledge MatchMaker

The Knowledge Matchmaker module supports advancedipulation of content
items, namelymining and notification [DoWB]. It enablesconcept map creation,
clustering and classification of the available information resources associatét
employed ontologies; and also notification of changes to content items
produced/consumed within a collaborating group nafiviidual users or application
programs, according to explicitgubscribedpreferences.

31

3.2.1 Notification service

The objective of this service is to support induatl (human) users as well as various
tools or software components accessing the knowledgository by keeping them
aware of changes. This objective will be achievgdlesigning and implementing a
notification servicdD5.1]. In describing this service below, we uke term “users”
to refer collectively both to individual users ata the various tools or software
components accessing the knowledge repository.

The notification service as we conceive it reliaglue following basic concepts:

* The objects of interest
In the KP-Lab project the objects of interest ayatent items of various kinds
as far as they have a description.

* The description of the objects of interest
The description of an object of interest is composlea set of RDF statements
according to an already given RDF schema. (seecBe2.2).

* The subscribers (or receivers) of notification
Subscribers are those users that have submittélgetootification service a
description of the content items that are of irgete them. Such a description
is called asubscription A user can be a “physical’ person or another nedu
of the project.

» The subscriptions of the objects of interest
A user subscription is of the same nature as @ra description (i.e. a set of
RDF statements.)

* The events that fire the notification service
In the KP-Lab project the knowledge repository change in several ways:
- insertion, deletion, or modification of a conté@eim;
- locking of a content item (for reading or writipgrposes).

We use the term “event” to refer to one such chaagether with one content
item involved in the change; and we consider asefiewdescription” the
description of the corresponding content item.

* The matching algorithm that supports the notifioatservice
This algorithm is invoked, or “triggered” by eackeat occurring at the
knowledge repository and determines the set ofcsildess to be notified of
the occurrence of that event. Its basic functios 1o compare user
subscriptions to the description of an event (Basean appropriately defined
partial ordering structure) and to determine theogsubscribers to be notified
of the event.

In simple terms, the basic principle of notificatioan be expressed as follows: for
each subscription, if the subscription matchesdibgcription of the triggering event
then notify all users having that subscription.

In fact, a user subscription can be seen as a rciiye query expressing long term

interests of a user for content items of a certigde — a query that the user would like
to submit to the repository from time to time. Tihetification service on the other

32

hand can be seen as the functionality that dossirthplace of the user (so that the
user does not have to submit the same query agdiragain), and informs the user
only if the answer to the query has changed. Gle&anlo or more users might have
the same interests, hence the same subscription.

The basic problem of notification is how to detarmgfficiently the set of all users to
be notified, under a high number of events andgelaumber of subscriptions. The
matching algorithm that we have designed durindfitisé year of the project will be
implemented to answer this need.

In implementing the notification service, care vk taken so that transposing the
algorithm in a different context will require minahchanges and effort. In other
words, the idea is to provide an implementatiogexseric as possible.

Our implementation will be conducted under a nundgfeassumptions, including the
following:

1/ The form in which a subscriber receives nottfmas may differ from one user to
another. For example, a human user might preféetaotified via email whereas an
application program will most likely be notifiedaviRSS. The choice of a form of
notification should therefore appear in the sulpsicnn. The first version of our
prototype will simply produce the set of users ¢éonotified, disregarding the form in
which notification will be sent to the users comest.

2/ User notification can be made in one of sewerls:

- immediately after an event has occurred,;

- after a fixed number of events have occurred @rmo be specified in the
subscription);

- periodically (periodicity to be specified in teabscription, e.g. weekly).

The user must indicate in the subscription in whi@y notification is to be done. In
the KP-Lab project we shall implement the first eggeh (“immediate” notification).
We note that the second and third approach retjugrstoring of events until the next
notification time.

3/ As all users do not have the same access rgh#dl content items, it is important
to take into account access rights during notiicat Indeed, it makes no sense to
notify a user about a content item which the usemot access. The first version of
our prototype will not be concerned with acces$tdggi.e., every user has access
rights to every content item).
The notification service is composed of 2 main wetvices (see figure 9):

(a) Subscription service: It is responsible for the following task:

Subscription update: It consists in registeringea isubscription and unregistering or
modifying an already registered subscription.

33

String Regi sterSubscription(UR userld, RdfDocunent
Subscription, String schemaURI, String Event Type,

String[] notificationForm

input

- userld: the identifier of the user invoking thiethod

- Subscription: An RDF document representing tHesetption of the user according
to the the RDF schema specified by schemaURI.

- schemaURI : the RDF schema of the subscription

- EventType : the type of the event the user isredted in (insertion, deletion or
modification of a document)

- notificationForm: the form by which the notificats will be delivered to the
subscriber.

output if the registration failed returns an error sage, else returns ok.

Preconditions:

A user who is already registered (who has an iflenti The subscription is submitted
as an RDF document according to a given RDF schemha. user has to specify the
type of the event to which he wants to subscritee,well as the form of the

notification (for the first version of our prototgponly “RSS feeds” will be used for
the notifications).

String Modi f ySubscri pti on(URI userld, URI SubsURI ,
Rdf Docunent NewSubscription, String schemaURI, String
Event Type, String[] notificationForm

input

- userld: the identifier of the user invoking thiethod

- SubsURI : the URI of the old subscription (todhanged)

- NewSubscription: An RDF document representing sh@scription of the user
according to the the RDF schema specified by schétha

- schemaURI : the RDF schema of the subscription

- EventType : the new type of the event the usenteested in (insertion, deletion or
modification of a document)

- notificationForm: the form by which the notificats will be delivered to the
subscriber.

output if the registration failed returns an error segge, else returns ok

Preconditions:

A user who is already registered (who has an iflenti The user has to specify only
the parameters to be changed. For example if hésvtarchange only the subscription
and keep the same event type and the same natifidarm, he only has to specify
the new subscription.

The subscription is submitted as an RDF documesdrding to a given RDF schema.
The user has to specify the type of the event tialwhe wants to subscribe, as well as
the form of the notification (for the first versiai our prototype, only “RSS feeds”
will be used for the notifications).

String UnregisterSubscription(URI userld, URI SubsURI)

34

input

- userld: the identifier of the user invoking thiethod

- SubsURI: the identifier of the subscription treeuwants to unregister.
output if the unregistration failed returns an errassage, else returns ok.

Preconditions :
A user who is already registered (who has an iflenti

(b) Notification propagation module:
This module delivers the notificationafter the matching process, this module sends the

notifications to the module responsible for theiwaal of notifications (an RSS aggregator
for example).

RSSf eed Propagate(URI Docunentld, Rdf Docunent Description,
String Event Type)

input

- Documentld: the identifier of the document beaugled, modified or deleted.

- Description: An RDF document representing thectipson of the document

- EventType : the type of the event (insertionetleh or modification of a document)
output the RSSstreams corresponding to the susbsorgpto be notified.

The notification service uses a repository callagvar eness Repository” to save the
data needed to perform the notifications (see @@)r it's main tasks are:

(a) Storage of the users subscriptions

(b) Storage of the events to be processed.

o Space
rag an rendde data for |
event l IP NI =
Cubsctiber | Awareness services (WPG)
snsdbscribe Send events
A sk fors | Saxwce
COREnC e 5§ elEht matches I wes
Subscription SUBSCHETONS Matching sdon M T T
Serice senice 5 4
Save an event mﬁ%‘;ﬁb nb;

ahdfor g
hatincation

Notification
Propagation
service

sgve g Hodate

logged events
sUbscaoons e)

Logd User Jds ahd
forms of
hoticalions

(c) mmmd M24) M2T

Figure 9. Notification service

35

3.2.2 Text Mining Services

Text mining and extraction services are designeadsist users in the process of
creating or updating the semantic descriptions Bfllab knowledge artefacts. The
semi-automatic generation of these descriptionsven of new KP-Lab ontologies

relies on the textual information attached to pattir artefacts as a textual content
itself, or as a set of text-based metadata.

Although the knowledge artefacts can be stored anious forms (e.g., textual
documents, conceptual maps, video sequences, imagey they often contain
textual information directly in its content, or inectly in metadata or textual
annotations given by users. The textual descripisoanalysed using different text
mining techniques. As a result of the text minimglgsis, relevant concepts from the
KP-Lab ontologies are suggested to the users duhegformal description (i.e.,
annotation) of knowledge artefacts. Moreover, uesuped text mining techniques —
concept map creation and clustering — can be wsédd some unseen concepts and
relations in the set of analyzed textual resousreb to group (cluster) the resources
according to their content. These may lead to, thg.suggestion to upgrade existing
KP-Lab ontologies, as the knowledge of a user gexgves.

The fundamental tasks for the envisioned text ngingervices areconcept map
creation, clusteringand classificationof knowledge artefact<lassification groups a
given set of artefacts into predefined or ad hoegaies. Concept map creation
automatically extracts significant terms from tetttesources and converts them to a
structure of concepts and their relations. In addjtthe derived text mining tasks,
such askeyword extraction / summarisati@ndinformation extractioncan also be
used by KP-Lab tools to create an initial dictignfor ontologies and to extract the
values of various metadata properties.

The functionality and the algorithms used for tipedfied text mining tasks were
already briefly outlined in [D5.1] and are descdhie more detail in the following
sections.

3.2.2.1 Pre-processing of texts

Basic text mining tasks, i.e., text classificatichystering and concept map creation,
need to manipulate textual documents in a spefwfin (e.g., the “bag of words”
representation, vector space model, etc.). Theomreessing phase is responsible for
transforming data into the appropriate form. It sists of several language-dependent
NLP (natural language processing) steps that peowaidnotations of the plain-text
resources.

For the purposes of concept map creation, clugfeamd classification of knowledge
artefacts in the KP-Lab, we decided to employ edifimodules fortokenization
(splitting input text to individual tokens)stemming (or more sophisticated
lemmatizationin morphologically rich languagesglimination of stop wordsand
POS (part-of-speech}agging Other advanced NLP techniques such as chunking,
WSD (word-sense disambiguation) or the full syntacnalysis are used by
individual modules (e.g., they are crucial for somethods of concept map creation
but not for the classification).

36

The pre-processing of texts is handled by GATE -neéBal Architecture for Text
Engineering [GATE]. GATE is an infrastructure foewkloping and deploying
software components that process human language.

GATE helps in three ways:

1. by specifying an architecture, or organisationalucture, for language
processing software;

2. by providing a framework, or class library, whighglements the architecture
and can be used to embed language processing li#gmbin diverse
applications;

3. by providing a development environment built on tdpthe framework made
up of convenient graphical tools for developing poments.

The pre-processing component, which provides comfooctionality for concept
map creation, clustering and classification tasgsimplemented as a pipeline of
processing resources on top of the GATE engine.itisthéhl language processing
resources, that are necessary for the concept reapan service, integrate language-
dependent tasks such as parsing, keyword extractimoccurrence statistics and
semantic-distance computation. Figure 10 showsxample of NLP methods applied
in the pre-processing step of the automatic coneeypt creation.

plain text documents

!

Tokeniser, Tagger, Sentence Splitter

P

WP Chunker
Term identification

/ \ l parse trees
index

Parser

Pattern-based Parse-based
\ Bag of Words methods))
relations relations
Evidenc\ L /
Sum

l Matrices (relation weights)

Figure 10. Pre-processing for the automatic conagepp creation

To access the knowledge artefacts and their tegesdriptions, we take advantage of
the Gateways to the Knowledge Repository and CorfRapository [D4.2.2]. The
results of pre-processing (e.g., vector modelseafs) as well as dictionaries and
settings for NLP analysis methods are stored invihneng Object Repositor{D5.1].
This repository contains all the data of text mgnservices that requires permanent

37

storage; in addition to the mentioned data, there also training sets and
classification models, as well as external settifaysclassification, clustering and
concept map creation services. Mining object URISNOURE are provided as the
identifiers of the stored data.

Let us summarize the general part of the functipnahplemented in the services for
concept map creation, clustering, and classificaf®ee the following sections for
detailed schemata):

1. Retrieve the textual content and metadata of kndgdeartefacts from the KP-Lab
Knowledge Repository and Content Repository.

2. Extract the plain text from the retrieved data (@hican be stored in various
formats, encodings, etc.).

3. Apply the NLP analysis methods to process the itgxis, e.g., parse the text into
elementary words (tokens), eliminate the wordses$ limpact on the text meaning
(so-called stop-words, i.e., very frequent wordgppsitions, etc.), eliminate the
declination alternatives (by means of stemming, R&fging, etc.), convert the
text to a set of weighted terms. Weights corresponithe relative frequency of a
particular word in the text and express its releeaor contribution to the overall
text content.

4. Produce the weighted term-document matrix, whichthis input for further

processing.

Save the term-document matrix into the Mining ObRepository.

Return a mining object URI (moURI) of the data.

o g

3.2.2.2 Clustering and Automatic Creation of Concept Maps

The clustering task enables finding clusters inngut set of artefacts (based on their
textual content and/or metainformation). As oppotedlassification, the clustering
task does not require a training phase. The regultiusters of artefacts are, in
general, unnamed but they can be labelled, e.ghdynost common words in textual
data. Unsupervised machine learning algorithms partitional clustering are
considered in the Knowledge MatchMaker, namely Khmeans algorithm and its
derivatives [MacQueen 1967].

The task of an automatic creation of concept mastifies the most significant
terms (representing concepts) and identifies matamong them. A set of artefacts
provided by the user is processed first. The servan then identify concept
candidates. The user can also specify a set ofsmemkpts and ask the service to find
relation candidates, as well as the type of thatioel. The full concept map can be
generated in the form of a named graph.

The clustering and concept map services providéolleving functionality:

- Pre-process documents (textual parts of the knaeledtefacts) by means of the
methods described in section 3.2.2.1, produce t@nmnial representation and store
it into the Mining Object Repository. A moURI (miig object URI) is provided
as an output, which can be subsequently used tesamg the data.

- Delete the pre-processed data from the Mining Qbfspository which will not
be needed any more.

38

- ldentify concept candidates and rank them accortbnthe estimated relevance,
extract defining contexts for the terms

- Given a set of concepts, find related concepts fiteendocuments provided by the
user. Return a ranked list of candidate relatioggther with their types.

- Build the concept map, generate the named graplsiand it to the Knowledge
Repository.

- Find clusters in the specified set of documents ¢t is given by artefactURIS)

To support the possible division of the user roleanely the setting in which one

user collects and pre-processes a set of relevatdri@s and others use the data to
build own conceptualization later on, the concepipnereation service defines two

phases — the initial data collection and pre-prsiogsand the actual extraction of

concept/relation candidates or the automatic @eaif concept maps.

According to the division, the concept map creatonsist in thePrepare4Mining
service (that should be invoked first) and the act@anceptMapCreatiorservice.
Both services are implemented as web services sadhe Mining Object Repository
to store and retrieve mining objects.

The PreparedMining service exposes the following methods for creation,
modification, and removal of mining objects:

String createMo(String[] settings,
String[] artefact URl s,
String nanedG aphURI)
input
settings: specification of mining parameters
artefactURIs: a training set, i.e. an array of URfssemantically annotated
artefacts (retrieved from the SWKM Knowledge Refmwg)
namedGraphURI: a seed conceptualization in the fafrthe named graph

output
moURI: URI of the prepared mining object

voi d nodi fyMo (String nmoURI,
String[] settings,
String[] artefact URls,
String nanmedG aphURI)
input
moURI: URI of the mining object to be modified
settings: specification of mining parameters
artefactURIs: a training set, i.e. an array of URfssemantically annotated
artefacts (retrieved from the SWKM Knowledge Refmwg)
namedGraphURI: a seed conceptualization storechenSWKM Knowledge
Repository

39

voi d del eteMo(String noURI)
input
moURI: URI of the mining object to be removed frtime repository

The Prepare4Mining service is implemented as a s@flvice and the different
functionalities offered by it are implemented asbwmethods. Figure 11 shows
internal procedures for creation of a mining objeithin the Prepare4Mining service.
Blue boxes represent references to existing KPdeabices, yellow boxes the newly
designed SWKM services.

settings
\

artefact URI s[]

Prepare4Mining Service

namede aphUR! artefact IRI's |nanmedGraphURI
y v
: Qutput:
S RIS IPIREEEE R settings moURI of the

golegfm items properties of mining object
s artefacts
Gatewaysto Content

g a current set
REDEEUENY of concepts

Content it and rel ations Store to th

, oment rem e Mining Object
- Repositor
Pre-processing €p y

1 m ni ng obj ect I
v

Internal Prepare4Mining Implementation e

Figure 11: The Prepare4Mining Service

ConceptMapCreation service provides the following methods for (semi-)autornati
building of concept maps:

String[] findConceptCandi dates(String nmoURI,
String[] settings)
input
moURI: URI of the mining object returned by the poais call of the
Prepare4Mining service
settings: restrictions on the resulting list of cept candidates

output
a ranked list of extracted concept candidates atdated defining contexts.
A score (0.0 — 1.0) is assigned to each candidaterding to the estimated
relevancy. A temporary moURI is generated for eamicept candidate.

String[] findRel ati onCandi dates(String noURI,
String[] settings,
String[] concepts)
input

40

moURI: URI of the mining object returned by the poais call of the

Prepare4Mining service

settings: restrictions on the resulting list obtedn candidates

concepts: a set of moURIs of concepts from whiehréhations should lead
output

a ranked list of most relevant relations; typeshef relations (such as “is-a”,

“part-of”, ...) are also provided

String buil dConcept Map(String nmoURI, String[] settings)
input
moURI: URI of the mining object returned by the poais call of the
Prepare4Mining service
settings: restrictions on the resulting concept map

output
URI of the named graph representing the createdepinmap stored in the
Knowledge Repository

The ConceptMapCreation Service is also implemeated web service that exposes
its functionality via the given web methods. Figd shows the internal procedures
of the ConceptMapCreation services, focusing orbthielConceptMap method.

noUR) X 1
> ConceptM apCr eation Service
set i ngs Qut .
put :
molR namedGraphUR
v
| Mining Object Repository
setings
Fopr esent at o Sioraio iz
of the m ning Knowlgdge
obj ect Repository
3
namedGraphUR
X
Internal ConceptM apCr eation | mplementation I

Figure 12: The ConceptMapCreation service

Clustering service provides the following method for clustering aaietf:

String[] findCusters(String nmoURI, String[] settings)
input

41

moURI: URI of the mining object returned by the poais call of the
Prepare4Mining service
settings: restrictions on the resulting clusters

output
a set of sets of cluster labels that identify thesters in the given set of
artefacts based on their textual content

The Clustering Service is also implemented as a welvice that exposes its
functionality via the given web method. Figure 1@8nsnarizes the internal procedure
of the Clustering service.

mMoUR . .
> Clustering Service
set i ngs Qut .
put :
Mo i denti fi ed
v clusters
| Mining Object Repository
setings

i nternal
representatio
of the mning
obj ect
Inter nal Clustering | mplementation I

Figure 13: The Clustering service

The ConceptMapCreation and Clustering services skérmas have no user interface
for their functions. It is assumed that the serwiaee invoked by other KP-Lab tools,
e.g., by the Shared Space, and that their fundtignaill be used in the context of
those tools.

3.2.2.3 Classification

The classification task is used in order to autically organize a set of knowledge
artefacts into predefined categories. The predédfoetegories are the concepts of an
existing ontology, which are selected to semarticahnotate the artefact. The
ontology (or RDF KB) is supposed to be collabomincreated by learners within the
Shared Space, possibly using the assistance ofChhstering and Concept Map
Building services. Ontologies, as well as the kremge artefacts (including their
properties and annotations) are stored in the SWWidwledge Repository and are
accessible by Knowledge Mediator services. Theutxtontent of the artefacts can
be retrieved from the Content Repository accordiintpe URI of proper content item,
stored as a property of the artefacts in the SWKiMfledge Repository.

42

Classification is a supervised machine-learninghametbased on a training set of
already semantically annotated artefacts. Thenatenining objectsare created from
the annotations and textual descriptions of thefats included in the training set.
The mining objects (sometimes also referencedassification modglcontain binary
representation of term-document matrixes, textxedeplain text extractions, and a
set of parameters (weights, rules, etc. — baseth@mused algorithm) created in the
process of training. The mining objects are useadttie classification of unknown
examples (artefacts).

The following algorithms are considered to be ufmdclassification: simple term
matching, kNN, SVM, Winnow, Perceptron, Naive Bayé@wnultinomial and
binomial), boosting, decision rules, and decisioee$ (various combinations of
growing and pruning methods) [Lewis 1998, Quinl&84, Yang 2001].

The classification service will be implemented aseatension of the JBowl library

[Bednar et al 2005] and will provide the followifighctionality:

- Create a training data set from documents (knowdeddefacts containing a
textual description) already categorised to a @fdd set of categories. The
textual descriptions of the documents are pre-mseEe (using the pre-processing
methods described above) and transformed into ra-decument matrix. The
classification service indexes the training dataasel stores it into the Mining
Object Repository.

- Create classification objects, based on the seleatgorithm and on a given
training data set.

- Enable modifications (tuning) of the existing clfisation objects, by changing
the texts and/or categories in the training dataasewell as by editing the settings
of the algorithm or switching to another algorithm.

- Provide statistics on the existing classificatidnjeacts, by means of standard
measures as precision and recall. Enable to creamtex, and store a separate
testing data set (composed also from categorisedndents) that can be used for
more exact examination of the quality of the clisaiion process.

- Provide verification and validation of the existid@ssification. The classification
objects are no longer valid if a portion of tramidata set (e.g., the term-document
matrix or the set of pre-defined categories) waslifred. In this case, re-indexing
of the objects is needed to make them valid again.

- Classify a set of unknown documents (knowledgdauats) to the same categories
that were used for training. The output of thisdimn is a set of weighted
categories for each of the classified documents.

Based on the outlined functionality, two phasethefclassification can be specified:

1) Creation and maintenance of classification objebissed on a given training set
of already classified documents (i.e. annotateefacts).

2) Actual classificationof unknown documents (artefacts).

According to this division, the classification sieesis composed of two main sub-
services: TrainClassifier service and Classify service Both sub-services are
implemented as web services and use the Mining dDlifepository to store and
retrieve classification objects and settings neadqukrform the classification.

43

TrainClassifier service exposes the following methods for creation, modifn,
and removal of classification objects:

String mURI createC assifier(String settings, String[]
artefact URI s)
input
settings: a specification of classification algomit and its settings. This
algorithm will be used for the creation of the sléisation object.
artefactURIs: a training set, i.e. an array of URfssemantically annotated
artefacts (retrieved from the SWKM Knowledge Refmwg)).
output moURI: URI of the created classification object.

voi d nodi fyModel (String noURI, String[] settings,

String[] artefact URIS)

input
moURI: URI of a classification model to be modified
settings: a specification of classification algamit and its settings, as well as a
mode of modification (i.e. replace training setdd to existing training set).
artefactURIs: a training set, i.e. an array of URfssemantically annotated
artefacts.

voi d del eteMbdel (String noURI)
input
moURI: URI of a classification object to be remosam the repository.

The TrainClassifier service is implemented as a \gebvice and the different
functionalities offered by it are implemented asbwmethods. Figure 14 depicts
internal procedure for creation of a classificatimodel within the TrainClassifier
service. Blue boxes are references to existing EP-Iservices, yellow boxes
reference to newly designed SWKM services.

settings
T TrainClassifier Service
art ef act URIs[]/ 1

artefact UR

\ 4

. Output:
SWKM Knowledge Repository settings S
URl of classification
| Content item object
Gatewaysto Content properties
Repository of artefact
Content it Store to the|
e ren v Mining Object
. Repositor
Pre-processing ep y
-
Pl ain text Cat egori es classification
obj ect

A 4 A 4

Internal TrainClassifier Implementation -

Figure 14: The LearningClassification Service

44

Classify service provides the following method for classificatiohastefacts:

String classify(String nmoURI, String[] artefact URl s,
String formt)

input
moURI: URI of selected classification object.
artefactURIs: array of the artefacts to be claadifiThe artefacts are retrieved
from the SWKM Knowledge Repository.
format: the format of output string. It can be TROGRDF/XML.

output The output string contains a) an URI of the afass$ artefact, b) a category to
which the artefact was classified, and c) a weiggtbre) of this particular
classification. The format of the output string kkbwe either TRIG or
RDF/XML,; the exact format is determined using tbematparameter.

The Classify Service is also implemented as a welvice that exposes its
functionality via the Classify web method. Figur® summarizes the internal
procedure of the Classify service.

nmoUR|
T Classify Service
artefact UR [] — 1
artefact URI
v
: Output:
SWKM Knowledge Repository TOURI Array [URI of
URl of classified artefact,
1 Content item category, weight]
Gatewaysto Content properties
Repository of artefact v
. Retrieve from the
Content item ! MiningObject
. Repositor
Pre-processing ® J
Plain text classification
nodel
y
Internal Classify Implementation -

Figure 15: The Classify Service

The classification services itself have no useerface for these methods. It is
assumed that the services are used in other KReoddy e.g. in the Shared Space (see
example in Appendix) and the classification funcéfity will be used in the context
of those tools. However, thdining Engine Consolés envisioned as a web-based
application that exposes classification (as welsase clustering) functionality for
KP-Lab users. It will enable to manage the Miningj€at Repository, maintain
classification models together with training anstitey sets, view statistical reports for
particular classification tasks, etc. The prototgbehe Mining Engine Console was
already developed and is availabléntip://kplab.fei.tuke.sk:8080/tmweb/admin/

45

4 Conclusions and Future Work

The deep-level specification for the second rel¢kt) of the Knowledge Mediator
and Knowledge Matchmaker components responsibladeanced manipulation with
the knowledge stored in the SWKM was presentedigideliverable. Particularly, the
change comparison versioning and registry services of the Knowledge Mediator
component as well as the notification and text mgnservices of the Knowledge
Matchmaker component were described along withpteposed functionality for

each service, based upon the motivating scenandstlae subsequent functional
requirements.

According to the [DoWB], the implementation of tbesomponents and services is
planned to be delivered in M24. This deliverablegether with the previous
deliverables [D5.1] and [D5.2], provide the spefion that is sufficient for the
implementation of the components and their integmatvith other KP-Lab tools.

46

Bibliography

[AMRO6] Allert, H., Markkanen, H., Richter, C. (260 Rethinking the Use of
Ontologies in LearningProceedings of the Joint International Workshop on
Professional Learning, Competence Development amowWwkedge Management -
LOKMOL and L3NCD, Crete, Greecg-18.

[Bednar et al 2005] Bednér, P., Butka P., Pardli Java Library for Support of Text
Mining and Retrieval. In Proc. from the Czech-Skvscientific conference
Znalosti (Knowledge) 2005, Stara Lesna, Slovaki®s? pp. 162-169.

[Belhaj Frej et al 2006] Belhaj Frej, H., Rigauw).PSpyratos, N.: User Notification
in Taxonomy Based Digital Libraries (Invited Pap&LM SIG-DOC Conference on
the Design of Communication, Myrtle Beach SC, U.S@ct 18-20, 2006.

[Belhaj Frej et al 2007] Belhaj Frej, H., Rigauxh.P Spyratos, N.: Fast User
Notification in Large-Scale Digital Librairies: Eggments and Results, ADBIS 2007:
Eleventh East-European Conference on Advances itab2ses and Information
Systems, Varna, Bulgaria, Sep 29 - Oct 03, 2007.

[BSDO5] Benn, N., Shum, B.S., Domingue, J. (200%)tegrating Scholarly
Argumentation, Texts and Community: Towards an (@gy and ServicesTech
Report kmi-05-5http://kmi.open.ac.uk/publications/pdf/kmi-05-8tp

[CSMWK] End User Requirements for Collaborative Satic Modelling. Internal
Report for the Working Knot on Collaborative Semamflodelling, version 0.6,
30.07.2007.

[D2.1] KP-Lab project deliverable 2.1; http://wwwHkab.org/intranet/work-
packages/wp2/deliverable-2.1/)

[D2.2] KP-Lab project deliverable 2.2; http://www-Hkab.org/intranet/work-
packages/wp2/deliverable-2.2/)

[D4.2.2] Kp-Lab project Deliverable 4.2.2. Techniceramework Architecture
Dossier - Release 2; http://www.kp-lab.org/intranwetk-packages/wp4/result/d4-
2-2/

[D5.1] Specification of the SWKM Architecture (V).@nd Core Services. KP-Lab
project Deliverable D5.1, July 2006.

[D5.2] Prototype (V1.0) of the Knowledge Mediat&®epository and Manager. KP-
Lab project Deliverable D5.2, December 2006.

[D8.1] Scenarios and User Requirements for KP-Liabsducation. KP-Lab project
Deliverable D8.1, July 2006.

[DLMO7] De Leenheer, P., Meersman, R. Towards Comigtbased Evolution of

Knowledge-intensive Systems. In Ontologies, Databasand Applications of
Semantics, 2007.

a7

[DFO1] Ding, Y., Fensel, D. Ontology Library SystemThe Key to Successful
Ontology Re-Use. In Proceedings of tiéldternational Semantic Web Working
Symposium (SWWS'01), 2001.

[Dom98] Domingue, J. Tadzebao and WebOnto: disngsdirowsing, and editing
ontologies on the Web. In Gaines, B., Musen, Ms)e&roceedings of the 11
Workshop on Knowledge Acquisition, Modelling and hdgement, 1998.

[DoWA] Description of Work 2.1 Months 13-30, Part RP-Lab Consortium.
[DoWB] Description of Work 2.1 Months 13-30, PartkP-Lab Consortium.

[FFR96] Farquhar, A., Fikes, R., Rice, J. The Gntpa server: Tools for
collaborative ontology construction. Technical Repo Stanford KSL 96-26,
September 1996.

[Gar92] Gardenfors, P. Belief Revision: An Introdan. In Gardenfors, P. (ed).
Belief Revision, pages 1-20, Cambridge Universitys3, 1992.

[GATE] GATE - General Architecture for Text Engimewy - http://www.gate.ac.uk

[GK97] Gordon, T.F., Karacapilidis, N. The Zeno amgntation framework. In
Proceedings of the"6International Conference on Artificial Intelligemand Law,
ACM Press, New York. 1997.

[Gru93] Gruber, T.R. A Translation Approach to Rbie Ontology Specifications.
1993. Available at: http://ksl-web.stanford.edu/K@bstracts/KSL-92-71.html

[HHS99] Heflin, J., Hendler, J., Luke, S. SHOE: AndWledge Representation
Language for Internet Applications. Technical Refie8-TR-4078 (UMIACS TR-
99-71), Department of Computer Science, Universitilaryland at College Park,
1999.

[KMACPSTO04] Karvounarakis, G., Magkanaraki, A., A#ki, S., Christophides, V.,
Plexousakis, D., Scholl, M., Tolle, K. RQL: A Fuimtal Query Language for
RDF. TheFunctional Approach to Data Managemeardges 435-465, 2004.

[KFACOQ7] Konstantinidis, G., Flouris, G., Antonio@., Christophides, V. Ontology
Evolution: A Framework and its Application to RDIR. Proceedings of the Joint
ODBIS & SWDB Workshop on Semantic Web, OntologiBstabases (SWDB-
ODBIS-07), 2007.

[Lewis 1998] Lewis, D. D.: Naive (Bayes) at fortyre independence assumption in
information retrieval. Machine learning: ECML-98)th European conference on
machine learning. 1998, pp. 4-15.

[MacQueen 1967] MacQueen, J. B.: Some Methodsl&ssidication and Analysis of
Multivariate Observations, Proceedings of 5th Bkrke Symposium on

48

Mathematical Statistics and Probability, Berkeleiversity of California Press,
1967 1:281-297

[ONTSRV] Ontology Server research:
http://www.starlab.vub.ac.be/research/dogma/Oni@egver.htm#index

[Quinlan 1996] Quinlan, J. R.: Learning first-ordifinitions of functions. Journal of
Artificial Intelligence Research, 1996, 5: 139-161.

[SEMSRCH] Bauters, M. et al: Semantic search drafjuirements. Draft of
requirements for semantic search in Shared Spack $p2cifications. Internal
Report for the Working Knot on Project and Contbfanagement, version 0.1,
23.07.2007.

[Smrz et al 2007] Smrz, P., Patall., Smatana, P., Furdik, K.: Text Mining Services
for Trialogical Learning. In Proc. from the Czeclm&k scientific conference
Znalosti (Knowledge) 2007, Ostrava, Czech RepulBlehruary 2007, pp. 97-108,
ISBN 978-80-248-1279-3.

[Sta03] Stahl, G.. Meaning and Interpretation inll&mwration. In: Wasson, B.,
Ludvigsen, S., Hoppe, U. (edsDesigning for Change (pp. 523-553)ordrecht:
Kluwer. 2003.

[STPBL] Bauters, M. et al: Semantic tagging accogdito PBL vocabulary
requirements. Draft of requirements for semantggitag in Shared Space M18
specifications. Internal Report for the Working Knon Project and Content
Management, version 0.5, 20.07.2007.

[Tou58] Toulmin, S. The Uses of Argument. Cambrid@ambridge University
Press. 1958.

[TCFKMPSO06] Tzitzikas, Y., Christophides, V., Flar G., Kotzinos, D.,
Markkanen, H., Plexousakis, D., Spyratos, N. (200Bnergent Knowledge
Artifacts for Supporting Trialogical E-LearninBroceedings of the TEL-CoPs'06:
1st International Workshop on Building Technologyh&nced Learning solutions
for Communities of Practice, Crete, Gregt62-176.

[Yang 2001] Yang, Y.: A Study on Thresholding Stgies for Text Categorization.
Proceedings of SIGIR-01, 24th ACM International €wence on Research and
Development in Information Retrieval, 2001, pp. 1135.

[ZTCO7] Zeginis, D., Tzitzikas, Y., Christophide%/,. On the Foundations of

Computing Deltas Between RDF Models. In Proceedwigthe &" International
Semantic Web Conference (ISWC-07), 2007.

49

APPENDIX

Al. Example: Classification in the Shared Space

A student wants to create a new content item ferfithal report using the form in the
Shared Space. He or she at first uploads a docufientto the Shared Space and
then specifies the metadata for the new item inféine for creation of the content
item. The student can specify metadata like titlel@scription, and add one or more
tags from the predefined vocabulary to semanticalipotate the new knowledge
artefact (Figure A1-1).

Create a content item
Title

Description

Choose content type
Wikipage

File

Link

Discussion

Responsibility of
This section allows to add

Natalia Sobenina semantic tags from the
predefined controlled
Add tags to content item vocabulary.

Select tag(z) When typing the tsrms in st would higlight all=) & |

This button opens drop

Write: an cwn tag >|'\ down menu with

suggestions provided by
Send the classification services.

Figure Al-1. Create new content dialog with sentat#gging

After the user has uploaded the document file Shared Space stores the file in the
content repository and sends the content URL to dlassification service. The
Classification Service will request new contentmtéom the repository, analyze its
text content and/or structure and apply varioussifecation models. The result of the
classification is a set of vocabulary terms suggesd the user. Each term included in
the result can have additionally assigned realedilscore, which denotes the
confidence that the content should be annotatdu twé given term.

One possibility on how to represent terms from \theabularies in the Share Space
dialog is to use a drop down menu (Figure Al-2)gdastions for semantic
annotations provided by the classification sendoe presented in a separate section
of this menu. The user can browse the results eddaccording to the confidence
score, as well as to browse other terms of the ludeay to supplement or correct
suggestions.

50

= suggested terms (ordered
Analysis report according to the confidence
Domain analysis report score)

Documentation,
Reports,
Analysis,
Flans, other terms (top of the

Models _ > dictionary hierarchy)
Background material

Scaffolds,
Product
etc...

J

Figure Al1-2. Drop-down menu for semantic tagginthweuggested terms for PBL
vocabulary

Various dictionaries can be specified for metadatgs including dictionaries for
document type as is specified in PBL vocabulary HBIL] or domain specific
dictionaries to describe document subject. The etubkthe tags and corresponding
dictionaries supported by the classification serugthe subject of ongoing research
and depends mainly on the accuracy of the impleedemiodels.

The previous case is an example of a single cleagdn when the only new item is
classified for semantic annotation. It is possitilat a client of the classification
service, i.e., the Shared Space application, sarsés of content items to be classified
by the Classification Service. For example, the gaa select content items in his/her
shared space and then use the classification setwiadditionally classify all these
items according to the selected controlled vocalgulith this “batch” classification,
the user can dynamically create temporal viewsigthlr shared space. The result of
the classification can then be permanently stoeed hst of semantic annotations of
the classified items and can be used later to Wruthe shared space.

51

