
HAL Id: hal-00593210
https://hal.science/hal-00593210

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KP-LAB Knowledge Practices Laboratory –
Specification of the shared space for knowledge practices

software -release 1
Hannu Markkanen, Lili Aunimo, Merja Bauters, Vassiliy Tchoumatchenko,

Ivan Furnadjiev, Tania Vasileva, A. M. Scapolla, Arianna Poggi, Jan Paralic,
Frantisek Babic, et al.

To cite this version:
Hannu Markkanen, Lili Aunimo, Merja Bauters, Vassiliy Tchoumatchenko, Ivan Furnadjiev, et al..
KP-LAB Knowledge Practices Laboratory – Specification of the shared space for knowledge practices
software -release 1. 2006. �hal-00593210�

https://hal.science/hal-00593210
https://hal.archives-ouvertes.fr

27490

KP-LAB

Knowledge Practices Laboratory

Integrated Project

Information Society Technologies

D6.1. Specification of the shared space for knowledge practices software
release 1

Due date of deliverable: 31/07/2006
Actual submission date: 10/09/2006

Start date of project: 1.2.2006 Duration: 60 Months

Organisation name of lead contractor for this deliverable: EVTEK

Revision [1.0]

Project co-funded by the European Commission within the Sixth Framework Programme
(2002-2006)

Dissemination Level
PU Public PU
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

2

Participants
Partner Parther’s short name Participant Email

EVTEK Hannu Markkanen
Lili Aunimo
Merja Bauters

hannu.markkanen@evtek.fi
lili.aunimo@evtek.fi
merja.bauters@evtek.fi

TUS Vassily Tchoumatchenko
Tania Vasileva
Ivan Furnadjiev

vasko@smi.tu-sofia.bg
tkv@smi.tu-sofia.bg

DIBE Anna Marina Scapolla
Arianna Poggi

scapolla@dibe.unige.it

TUK Jan Paralic
Jozef Wagner
Frantisek Babic

Jan.Paralic@tuke.sk
jozef.wagner@gmail.com
Frantisek.Babic@tuke.sk

INPT Pascal Dayre
Hadj Batatia

pascal.dayre@enseeiht.fr
Batatia@ipst.fr

TESSERA Thanasis Fotis tfotis@tessera.gr

Version history
Version Date Author(s) Description
0.0 29.7.2006 Lili Aunimo First draft
0.1 31.7.2006 Jozef Wagner Added Knowledge process tools
0.1.1 1.8.2006 Jan Paralic Some text corrections/additions, Figure captions added
0.1.2 12.08.2006 Merja Bauters Motivation Scenario
0.1.3. 16.8.2006 Hannu Markkanen 1. draft on requirements section.
0.1.4 21.8.2006 Hannu Markkanen 2. draft on requirements section.
0.1.5 21.8.2006 Lili Aunimo draft on functionalities and architecture, especially portal

and shared space management tools
0.1.6 29.8.1006 Hannu Markkanen Added section 2.3.4 Linking. Elaborated requirements

descriptions
0.1.7 29.8.2006 Lili Aunimo Elaborated section 4 Architectural design, especially the

parts Overall architecture and common services and Shared
Space tool.. Added some comments and questions to KA
and KP tools part in section 4.

0.2 30.8.2006 Jozef Wagner,
Frantisek Babic

Extending KP tools sections. Added few comments.

0.2.1 31.8.2006 Jan Paralic Corrections in TUK’s input, commenting.
0.2.2 1.9.2006 Marina Scapolla,

Arianna Poggi
Changes in 2.3.4 Annotations, 3.2 Knowledge Artefact
Tool, 3.3 Annotation tool, 3.4 Other KA tools /editors, 4.2
Knowledge Artefact and Annotation Tools.

0.2.3 1.9.2006 Pascal Dayre,
Hadj Batatia

Comments on integration with the domain model.

0.5 7.9.2006 Hannu Markkanen Revised the section. Split the section “Annotating” to
“Commenting” and “Adding semantic metadata”. Amended
section on non-functional requirements.

0.5.1 8.9.2006 Jan Paralic, Thanasis
Fotis

Revision of sections on Knowledge processes.

0.5.2 8.9.2006 Marina Scapolla,
Arianna Poggi

Revision of section on Knowledge artefact tool.

0.5.3. 8.9.2006 Hadj Batatia Section Knowledge browser.
0.9 9.9.2006 Lili Aunimo Final integration of partner contributions.
0.9.1 9.9.2006 Hannu Markkanen Added Executive summary, Intoduction and Conclusions.
0.9.2 11.9.2006 Liisa Benmergui

Patrick Ausderau
Proof-reading and layout

HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
mailto:hannu.markkanen@evtek.fi
mailto:lili.aunimo@evtek.fi
mailto:merja.bauters@evtek.fi
mailto:vasko@smi.tu-sofia.bg
mailto:tkv@smi.tu-sofia.bg
mailto:scapolla@dibe.unige.it
mailto:Jan.Paralic@tuke.sk
mailto:jozef.wagner@gmail.com
mailto:Frantisek.Babic@tuke.sk
mailto:pascal.dayre@enseeiht.fr
mailto:Batatia@ipst.fr
mailto:tfotis@tessera.gr

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

3

Table of Contents:

Executive Summary ..5
1 Introduction...5
2 Requirements ..5

2.1 Overview of the requirements process and artefacts ...6
2.2 Motivating pedagogical scenario..9

2.2.1 Scenario description...9
2.2.2 Trialogical features of the pedagogical scenario ...10

2.3 High-level functional requirements ..12
2.3.1 Shared Space ...12
2.3.2 Views ..13
2.3.3 Knowledge artefact ..15
2.3.4 Knowledge process ..17
2.3.5 Linking ..20
2.3.6 Commenting ..21
2.3.7 Adding semantic metadata ...21
2.3.8 Content tools for knowledge artefacts ..22
2.3.9 Community..22
2.3.10 Non-functional requirements..23

3 Functionality ...24
3.1 The KP-Lab Portal... 24
3.2 The Knowledge Artefact Tool ...27
3.3 Annotation Tool ..28
3.4 Other KA tools / editors...29
3.5 Knowledge Process Tools..29
3.6 Shared Space Management Tools ..31

3.6.1 The Shared Space Creator..31
 The Shared Space Annotator..31
3.6.2..31
3.6.3 Information Manager ...33
3.6.4 User Manager ..34
3.6.5 Tool Manager ..34

4 Architectural design ..35
4.1 Overall architecture ...35
4.2 The Portal Level Tools ..37

4.2.1 API Specifications for some of the Portal Functionalities38
 Authentication/Login Service ..39
4.2.1.1 ...39
 User Registration Service... 39
4.2.1.2 ...39
 Shared Space Browsing Service...39
4.2.1.3 ...39

4.3 The Core Services..40
4.3.1 Knowledge Browser...40
 Knowledge Annotator..43
4.3.2..43

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

4

 Knowledge Repository Services ..44
4.3.3..44
 Content Repository Services ..44
4.3.4..44
 User DB Services ..44
4.3.5..44

4.4 The Data Tier ..45
 Knowledge Artefact Tools...46
4.5 ...46

4.5.1 Technologies..46
4.5.2 Content Repository ..46
4.5.3 Knowledge Artefact Manager ..47
4.5.4 KA Mapper..48

4.6 Knowledge Process Tools..49
4.7 Shared Space Management Tools ..53

 Shared Space Constructor(Creator)/Deletor ...53
4.7.1..53
4.7.2 Shared Space Annotator...54
4.7.3 Information Management ...54
4.7.4 User Management ..55
4.7.5 Tool Management ..55

5 Conclusions...55
5.1 Problems Encountered ...55
5.2 Next steps..56

6 Bibliography ...56

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

5

Executive Summary
This deliverable presents the high-level specification for the first release (M12) of the shared
space for knowledge practices software, including the requirements, the functionality, as well
as the service-oriented software architecture of the system. The requirements section describes
the requirements process and the resulting high-level functional requirements. The
functionality of the software is presented from the end-user perspective and divided into parts
that form the major components of the architecture. The proposed architectural design
introduces a number of components: the KP-Lab Portal and the portal level tools, the
Knowledge artefact tools, the Knowledge process tools, the Shared space management tools,
the core services and APIs, as well as the data layer.

1 Introduction
The objective of WP6, during the first twelve months of the project, is to design and
implement the first release of the shared space for knowledge practices software, as well as
and the common tools for KP-Lab knowledge practices. The specific research and
development objectives have been elaborated based on the requirements that have evolved
through WP6’s participation in the design team work coordinated by WP2.

The functionality of the first software release is designed to support a limited set of
educational scenarios that will experiment practices based on the trialogical learning approach.
The trialogical learning happens within the frame of collaborative processes for advancing
shared objects, which can be concrete or conceptual artefacts, or processes of advancing
conceptual artefacts [Paavola et al 2004]. The learning process is characterised by the
sustained work for developing shared knowledge artefacts across the learning process.

The WP6 software will provide the first KP-Lab experiments on trialogical learning in spring
2007 with a set of end-user applications that support the user activities of the scenarios in
question. The software applications will allow participants to construct knowledge by
modelling and visualizing actual objects and processes of work, as well as their relationships.
The software is composed of a virtual collaboration space and a set of common tools that the
user needs in carrying out the trialogical learning activities. This deliverable presents the high-
level specification for this first software release (M12), including the requirements, the
functionality, as well as the service-oriented software architecture of the system released in
M12.

2 Requirements
The requirements process in the KP-Lab project has been organised according to the co-
evolutionary design approach developed in WP2. In this section, an overview of the process is
given, the detailed description of the co-evolution process can be found in [D2.1].

HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

6

2.1 Overview of the requirements process and artefacts

At the core of KP-Lab’s design approach is the idea of cyclic co-evolution of tools, practices
and agents. Accordingly, the evolution of software tools will be carried out in several cycles
providing progressively extended and refined functionality. Each cycle includes the elicitation
and analysis of prevailing practices, the specification of pedagogical as well as technical
requirements, the design and implementation of novel functionality, the testing and
exploration of tools in practice, as well as the evaluation of the tools in the field trials. The
document at hand covers the results of the first two steps of the first cycle of the co-evolution
process.

In order to cope with the complexity posed by the diverse areas of application addressed in
KP-Lab and the co-evolution of tools and practices, the project uses a flexible requirements
engineering approach. Instead of striving for a complete a priori specification of the
envisioned solution, the focus is on easy-to-create descriptions of the envisaged tools and
practices that are continuously updated [D2.1].

The requirements process of the WP6 software release 1 began with the development of the
educational and professional scenarios. This work was carried out within the Design Teams
co-ordinated by WP2. In parallel, mock-ups were produced based on requirements elicited in
the face-to-face and virtual workshops between some pedagogical and technical partners. User
Stories based on the pedagogical scenarios and mock-ups were then written collaboratively by
technical and pedagogical partners. Finally, Use Cases based on all of the above were
produced by the technical partners.

The work has resulted in the artefacts listed below. These artefacts document the requirements
and specify the functionality of the software system. The scope of the documents narrows
towards the functionality of release 1 as the level of technical detail increases.

HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

7

Design Principles

The idea of KP-Lab Shared Space is to support knowledge practices based on Trialogical
Learning, which is being theoretically founded in the WP3. In the Kick-off meeting Kai
Hakkarainen [Hakkarainen 2006a] presented twelve principles that have already been further
elaborated in WP3. The design principles describe general characteristics and requirements of
trialogical learning. They also aimed to give guidance for the technical development as general
guidelines for design and criteria for evaluation (rather than as normative rules of design).
The design principles are the following [Hakkarainen 2006b]:

1. Organise trialogical activity around shared objects
2. Interaction between personal and social levels of activity
3. Flexible tool mediation for trialogical activity
4. Fostering long-term processes of knowledge advancement
5. Development through transformation and reflection
6. Eliciting (individual and collective) agency
7. Cross fertilization of knowledge practices

This list has also been used to support the pedagogical scenarios made for the courses that will
be executed in the next academic year 2006-2007. Therefore, these principles have also
indirectly affected the technical requirements and the process of writing User Stories and Use
Cases. For more information on design principles, see [D3.1] and the description of design
principles that is currently maintained on the KP-Lab project Wiki [WIKI-1].

Pedagogical and professional scenarios

Pedagogical and professional scenarios describe a concrete pedagogical or professional
intervention and related activities in a particular context [D2.1]. While the KP-Lab design
principles are grounded in theory, the pedagogical scenarios are closely bound to educational
or professional practices and are situated in an organisational context. For the software
development process, the scenarios provide the description of the activities that shall be
supported by KP-Lab software.

In order to coordinate the work of the technical, pedagogical and theoretical work packages in
KP-Lab, multi-professional design teams, co-ordinated by WP2, were established in the
beginning of the project. The design teams were responsible for the development of the
pedagogical and professional scenarios. For example, in the context of higher education
context (WP8), 23 pedagogical scenarios have been developed in multiple domains, ranging
from psychology, speech therapy, and medical education to education, as well as
communication to media engineering, media technology and digital engineering. The
pedagogical scenarios present a great diversity of learning activities and practices that the
students, teachers, and experts are engaged in, and thus impose a tough challenge for the
requirements analysis. In order to meet the tight schedule for producing the first WP6 software
prototype, only a small subset of the scenarios were analysed for producing the current
specification. The coverage will be extended for later releases of the software.

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

8

The current iteration of the scenarios explicates the first iteration of high-level technical
requirements, both non-functional and functional, pedagogical requirements, and
organizational requirements. The current set of pedagogical and professional scenarios is
detailed in [DT-1].

User stories

User stories supplement the pedagogical and professional scenario by detailing the envisioned
interaction of the user with the software system. The functionality required by the activities
described in the pedagogical and professional scenarios is broken down into actions, each of
which is covered by a separate story. User stories are kept short and simple in order to
facilitate their easy maintenance and noticing any overlap between scenarios. They are written
in plain English and are the product of the collaborative effort of the pedagogical and technical
partners and provide a mediating artefact between them. See user stories for WP6 software
release 1, currently maintained in a Wiki system [WIKI-2].

Mock-ups

A number of requirements mock-ups were produced to test design ideas and to elicit new
requirements. The mock-ups were necessary to help in discussing the novel functionality in
areas that the pedagogical partners found hard to envisage based on their prior experience.
Mock-ups illustrate the screens and possibilities of user interaction and make the interactivity
described by user stories more comprehensible. Similar to the user stories, mock-ups are used
as mediating artefacts among technical and pedagogical partners.
Mock-ups are primarily produced by technical partners and reviewed and refined in close
collaboration with pedagogical partners, mainly with WPs 3, 5, 6, 8, 9, as well as the Design
Teams and Task Forces (for further information on the design process see [D2.1]). The
process of developing a mock-up was iterative. Numerous half to one day workshops were
organised during the first period of the project. Examples of mock-ups developed by EVTEK
for the WP6 software release 1 can be found at [WP6-1]

Use cases

In contrast to user stories, use cases are meant to describe the envisioned interaction of the
user with a specific tool in a more formal way than the user stories. Use cases are pertinent
mostly to the technical partners and the main artefact to specify the functionality of the
software and are therefore developed by the technical partners. Use cases for the release 1 of
the KP-Lab shared space software are maintained in [WIKI-3].

Domain model

The shared domain model provides a preliminary design artefact, aimed to delimit domain
related concepts and their relationships. It is directly linked to the technical development. An
initial version of the shared domain model is available in [TechWP-1].

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

9

2.2 Motivating pedagogical scenario

This section provides a brief example of one pedagogical scenario and points out the
trialogical aspects found in it in relation to the trialogical principles. The scenario presented
here describes a course that will be executed in spring 2007. Most of the scenarios that will be
executed during the next academic year (2006-2007) have trialogical features in them, but
most of them do not have all the aforementioned features. Since the process is iterative, as was
already stated, all the aspects/approaches/perspectives be they theoretical, pedagogical or
technological, are evolving. Therefore, the prototype will also change, as will the requirements
for the KP-Lab Shared Space during the project.

2.2.1 Scenario description

This particular course was categorised as “Product-Oriented Learning”. The full description of
the scenario can be found in the Appendix II of [D8.1]. The course was chosen to be an
example because it has worked as a mediating artefact between many partners in the
development of the mock-up and prototype as also for the writing of the User Stories and Use
Cases.

The goals of the course are to produce a multimedia product for a real customer, to learn how
the project process that is related to a multimedia product’s lifecycle is executed; and, to learn
how to organise and manage the process in a team/group taking into account the customer’s
needs and the targeted users of the product. Work in the course is organized according to a
project model, including team creation, planning, reporting, shared tasks and virtual
collaboration, as face-to-face work. The deliverables the students are supposed to do are: the
project documents, learning diary and the actual product that should be taken into use by the
customer (company). All teams have a different project, including an outside customer. The
following describes the main phases of the project process.

Phase 1: Initiation/“Organising the start”
The Initiation phase includes an introduction to project work and management, as well as an
introduction to a “formal ontology of project work”. The students are supposed to construct
their own “ontology/semantic map” of the project work they do during the course. After each
phase, the students compare their own “ontology/semantic map” to the “formal one” and
discuss their findings.
The students form groups (done face-to-face in the lab). They try to find their customers
independently. After the customer is found, a meeting with the customer is arranged to acquire
information related to what the customer wants.
The students should decide the group roles they take responsibility for (e.g. manager, designer,
coder, etc) and produce the synopsis of the product to be developed, including meeting memos
of their meetings. Synopsis work includes producing a GANTT chart for the project, namely
trying to envision what tasks are needed, how long would the tasks take, who is responsible
for what, etc.

Phase 2: Planning
This phase includes: the “investigation” of what is already available and similar to what the
customer wants (benchmarking); brainstorming of what the product is about; describing the

HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

10

product and its needs; making scenarios; creating mock-ups including the graphs for the
architecture; and, user-interface design iterations.

Phase 3: execution
The group must obtain the content from the customer and organise it. Often the group needs
more intense contact with the customer during this phase. The group must implement parts of
the content to the mock-up, ask for customer approval, test/evaluate within the team and with
users. Finally, the group should report problem areas and possible manners to correct the
mock-up or demos and continue the iterative cycles. In the last stage of the execuation phase,
the group should implementing their code fully; i.e. adding actual functionality, or more
refined and complex coding parts, polishing graphics.

Phase 4: Final evaluation/delivery
During this phase, the group must perform final tests with the product. The results are reported
and the last corrections are made. The group must acquire the final approval from their
customer and deliver the product to the customer. In conclusion, they must writing the final
report of the project.

2.2.2 Trialogical features of the pedagogical scenario

1. Organise trialogical activity around shared objects
A central idea of trialogical learning is that work and learning are organized around
developing shared objects of activity. These shared objects can be conceptual artefacts, or
collective activity systems or social practices, or products and product plans developed in
companies [D 3.1].

The knowledge creation is intertwined with the product process. Collaborative knowledge
creation (should) occurs when the team is working with the (shared) artefacts (i.e., mock-ups;
test/evaluation plans, reports; deliverables, working on the product materials, (products and
product plans [D 3.1]); and, continuously developing their “ontology/semantic map”
(conceptual artefacts [D 3.1])).

Customer meeting memos are reused to organise the customer meetings and production of the
meeting memos according to the team’s way of acting (team’s collective activity system [D
3.1]) and to develop and organise the activities between the team and the customer (social
practices [D 3.1]). The social network can be developed further to meet the changing of the
team’s needs during the process (both product and knowledge process). For example, if the
contact manner and intensity changes with the customer, it brings along different (new) social
practices.
Parts of code are all the time reused across projects and developed further.

2. Interaction between personal and social levels of activity
The knowledge creation approach to learning is aimed at transcending the dichotomy between
the acquisition approach on learning and the participation approach on learning. So
trialogical approach concentrates on those processes where people are developing something
new and combining individual initiatives and social processes for developing novel objects of
activity [D 3.1].

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

11

For example, the mock-up, testing/evaluation and project process development are combining
individual initiatives and the group’s/team’s, customer’s initiatives, but also users’ practices
and needs have to be taken into account. The mock-up development starts in parallel design
manner, namely every team member creates one mock-up of the product. These are discussed
in the team and combined to a few (2-3) agreed mock-ups. These are shown to the customer
for comments, which means another cycle of combining different perspectives. After this
stage, the first tests and evaluations are done; thus, integrating the users’ point of views and
comments into the process. The project process development and execution includes: the
practices that the customer has, the educational institution’s practices, as well as the
team’s/group’s practices. Obviously the former also affect the evolution of the GANTT as the
mediating artefact of the project process.

3. Development through transformation and reflection
The emphasises is on developing through various forms of knowledge and between practices
and conceptualizations, etc., meaning that transformations between tacit knowledge,
knowledge practices, and conceptualizations are a driving force in processes of knowledge
creation [D 3.1].
For example, the mock-up creation process is quite a lengthy one and definitely an iterative
one. The team should be able to explain and reflect their choices in the mock-up design and
the reasons for the changes they do. The team should share these explanations to enable
collaborative understanding and knowledge on how the process of arriving to the "final
graphical user-interface" has been accomplished. The management process needs explicit
reflection. The team should reflect every now and then on how they work and how they have
organised the management of the product process. For example, sticking to dead lines,
changing them, creating or arranging the task, changing the roles of the team/group members
etc. In addition, the ongoing construction of the team’s/group’s “ontology/semantic map” and
the comparison to the “formal one” is a reflective long-lasting process.

4. Cross fertilization of knowledge practices
The KP-Lab system is meant for assisting people to solve complex, “authentic” problems and
producing objects also for purposes outside educational institutions [D 3.1].
The search for a customer and contacting them, the design process with mock-ups, and team
management issues are all “authentic” problems that involve outside educational institution
contacts. Furthermore, the problems tend to be ill-defined and complex as the customers rarely
do know what they want.

5. Flexible tool mediation for trialogical activity
The trialogical approach is based on the idea of mediation, that is, activities of human beings
are mediated by tools, signs, artefacts and social practices, by which people can develop
collaboratively and with cultural means. The trialogical approach has its basis on flexible
tools that facilitate those aspects that are highlighted in other design principles, such as long-
term, cross fertilized work around shared objects of activity which help an interaction between
personal and social levels, and which help to make transformations between various forms of
knowledge [D 3.1].

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

12

The mediating features of the artefacts (and signs) were already discussed above and the next
sections describe the tools and functions derived from the requirements.

2.3 High-level functional requirements

This section summarises the high-level technical requirements elicited from the pedagogical
scenarios for higher education [D8.1] developed within WP8 and from the requirements
workshops organised between technical and pedagogical partners [WP6-2]. The high-level
requirements are organised around the key concepts for the WP6 software. The key concepts
were initially conceived during the proposal production time and have been elaborated during
the requirements process.

It is important to keep in mind that the requirements have limitations as they were elicited in
the context of knowledge creation practices in higher education. Other contexts such as
teacher training or professional networks, also addressed in KP-Lab, might impose different
requirements. The same limitation also holds for other settings in higher education. [D8.1].

2.3.1 Shared Space

Shared space is a virtual collaboration space offering facilities for interacting with knowledge
artefacts, knowledge process models, users and the shared space itself during a trialogical
learning or working process. A shared space can either be personal space or a collective space.
A collective space is created for the knowledge community involved in a trialogical process.
The knowledge community can be formed around a group of people belonging to e.g. a project
team, students attending a class, students of a university department, or any other type of
collective.

A shared space provides the user with a configurable set of tools for
working with the knowledge artefacts (e.g. creating, editing, storing, sharing,
commenting, annotating semantically, disseminating, discussing)
managing the knowledge processes (e.g. creating, changing and executing process
models)
managing the shared space itself (e.g. configuring the tools available)

HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

13

Functional requirement Description
Support both personal and
collective spaces

In the personal space, the user who owns the space
can work (e.g. create, modify, annotate, organize)
with knowledge artefacts privately, and share them
with their peers e.g. for feed-back, evaluation and
discussion.
The collective space contains knowledge artefacts
that are subject to collaborative activities and that
all space members have equal rights to. All group
members can create or upload a new artefact into
the space. The space can be configured to provide
functionality to indicate the status of sharing (this
functionality to be defined in later releases).

Moving artefacts between
personal and collective space.

A knowledge artefact in a personal space can only
be copied to a collective space, thus forcing it to be
a shared artefact. On the other hand, in a personal
space the owner of an artefact can create a link to a
knowledge artefact in a collective space or copy it
for his/her personal use.

Getting an overview of who is
active at the moment in any
shared space.

The system will provide an indication of what the
current status of relevant users is (e.g. other
members of a shared space). The status can be e.g.
off-line, or connected and available for
synchronous communication (with indication of the
kind of connection), connected yet busy.

Exposing shared spaces as objects
of collaborative activities

Shared space members should be able to work on a
space as an entity, e.g. to annotate and discuss it.
Shared spaces can also be associated with each
other by using arbitrary types of relations.

Change notification service A shared space provides an automatic,
subscription-based notification service that informs
users about changes (e.g. in knowledge artefacts) of
the shared space.

Querying and searching the
shared spaces.

Free text and semantic queries in the content of the
shared spaces are supported.

2.3.2 Views

User can browse and access the content of a shared space through views. A view is a graphical
way of looking at the structure of information contained in a shared space, e.g. to visualize the
relations of knowledge artefacts from different perspectives. A view portrays the knowledge
artefacts and their associations in different arrangements, allowing people to view them in
different manners. Views are basically directed and labelled graphs. The purpose of view is to
aid the user to locate relevant knowledge within a context.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

14

Functional requirement Description
Visualizing the hyperlink
structure in the form of a
conceptual map.

The conceptual (map) view allows the user to browse
across thematic or temporary relations between artefacts
based on semantic metadata. The conceptual view is
generated dynamically on the basis of metadata
descriptions of the items within the view. Any item of the
view can be selected as an anchor point to refocus the
view. Hierarchical structures are possible.

Possibility to reorganize
information in your own
way providing various
views to same knowledge.

User can create and save custom views, which are based
on filtering mechanisms for choosing what is being
shown.
Artefacts can also be mapped on an image background as
to provide visual support for indicating their content and
relationships.

Displaying the selected
metadata of artefacts.

Users can easily define what metadata is displayed in
views.

Concurrent work by shared
space members at different
locations.

The system supports the temporal synchronisation of
views open in different user agents. This means that
changes in an artefact done by one user will be updated
in other user agents’ views that include the artefact in
question.

Synchronised collaboration
sessions within a group of
users (e.g. members of a
shared space).

The application and desktop sharing feature of the real-
time communication platform implemented in WP4.

Note: Also other views will be built into the system. E.g. in T7.5 Knowledge practices
analyzing tools will provide views that illustrate where and who has used which knowledge
artefacts, which knowledge artefacts have been popular etc.

Figure 1. provides an example of an interactive mock-up created for visualizing the
functionality of the shared space. The artefact view is in focus.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

15

Figure 1: A mock-up for visualizing the shared space functionality.

2.3.3 Knowledge artefact

A knowledge artefact (KA) is a semantically annotated information resource stored in a shared
space. It is composed of the content element representing some explicit knowledge encoded
and stored in certain media type, which is uniquely identified (e.g. by a URI), and of the
semantic description (using a vocabulary defined in an ontology) of this content. A knowledge
artefact is always located within one or more shared spaces.

Knowledge artefacts are produced and edited by the members of the shared space. For editing
the content, see section 2.3.10 Content tools.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

16

Functional requirement Description
Collaborative production
and editing of artefacts

In order to foster the collaboration on shared artefacts,
the system shall support the creation and editing of
artefacts such as: texts, presentations, visual images,
tables, diagrams, and formulas.
In case the system does not offer possibilities to work in
some specific programs, it should then offer the facility
to upload documents created in those programs.

Assigning artefacts to a
group or individual.

In order to coordinate teamwork and to delegate rights, it
is important to be able to assign artefacts both to groups
and to individuals. This assignment is based on the user’s
membership in shared spaces.
Assignment of artefacts to individuals or groups does not
mean that the access should be restricted from others;
assignment is for organizing the work in manageable
views

Defining the access to and
visibility of an artefact

There will be a possibility to restrict access to artefacts,
but that should not be the first priority - trialogical
processes are open by default

The status of all artefacts
should be visible. (e.g.
private, public, draft,
waiting for review,
reviewed, ready for
publication)

The visibility of the status supports the coordination of
activities. It is useful if users themselves can decide
whether and when the produced artefacts is ready for
publication; it gives a feeling of ownership.
The vocabulary for status information can be user
defined.

The development process of
artefacts has to be
comprehensible.

Creating artefacts is an iterative process and the necessity
of building on previous versions is emergent. Also, the
intermediate versions of the artefacts will be used as
research data.
The history of artefact evolution is visually represented
in a way that allows the participants to navigate across
the versions. A new version of a knowledge artefact is
produced when the edited content is saved. Previous
versions should be visible on demand.

Support of templates for
creating documents.

Document-templates (e.g. for project reports) provide a
means to pre-structure the document to be produced by
the students and therefore provide a means for
scaffolding.

Users shall be able to create,
modify and reuse document
templates. Templates should
be supplemented with
semantic information.

The collaborative creation and use of templates provides
a means to foster the reflection on and generation of
practices.
Templates can be annotated (see annotation below).

Possibility to display several
documents at a time.

The simultaneous display of documents eases the
comparison of different documents.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

17

Functional requirement Description
Possibility to store/save
synchronous communication
sessions as artefacts (incl.
deep links).

The recording of synchronous communication sessions
helps participants trace back decisions and remedy
misunderstandings.

Possibility to store/save
asynchronous discussions as
artefacts.

The recording of asynchronous discussions helps
participants trace back decisions and to remedy
misunderstandings.

Discussing knowledge
artefacts or links between
artefacts.

Discussion tool

The system shall allow up-
load and storing external
documents such as:
PowerPoint slides, texts,
data-records, videos and
audio records.

In some cases, students might create artefacts outside the
system; it should be possible to upload these artefacts.
In order to foster sustained use of the materials produced,
there should be a possibility for long term storage of
documents.

2.3.4 Knowledge process

Knowledge Process (KP) is defined as a set of activities conducted during trialogical learning
or work, e.g. a set of activities conducted for a specific purpose, or a set of ordered steps
across time intended to reach a goal or to produce a specific outcome.

Knowledge creation is one of the core aspects of trialogical learning and of the knowledge
development in general (this includes also knowledge adoption, distribution, review and
revision) within an organization [Bhatt 2000]. From the methodological point of view the
knowledge creation processes have been studied in different contexts [Paavola 2006]. E.g.
Carl Breiter’s knowledge building approach has emerged from cognitive studies in the
educational context. Yrjö Engeström’s theory of expansive learning is based on Activity
Theory, and Nonaka and Takeuchi’s model of organizational knowledge creation originates
from the analysis of work in Japanese companies.

The general challenge for describing knowledge processes are such that: all the participants
should get an up-to-date understanding of the process; they should be able to make their
individual and interconnected contributions to the process; and they should have the
possibility to reflect on the course of process and practices of working together.

In the KP-lab software, process models represent knowledge processes. They are the basis for
tools that provide support for joint reflection and development of work practices. These
process models are represented as dynamic workflow (DW) models, which can be understood
as a trialogical tool to visualize, negotiate on, construct knowledge and change the knowledge
practices. DW emerged from traditional workflow systems.

Traditional workflow aims at automation of business processes, in which structure of the tasks
and responsibilities for them are strictly predefined. The workflow system takes care of

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

18

execution and synchronization of tasks, and the information flows, to support individual tasks
and how they are set-up. At present time, there exist some workflow systems standards, but
many of them are still in development. One of main problems is complexity of workflow
systems that causes the limited adoption of existing standards. No standards have been
adopted on a broad scale.

Discussion that has been taking place in DT1 and later on in DT15 suggested that typical
business workflows do not fully cover idea of trialogical learning. Several ideas about DW
models were presented:

Business workflow models (BWM) are not dynamic, they constrain activity and
undermine creative intensions
A contrasting opinion is that the time-scale is just another factor in the context
We should keep process-structuring parts of BWM (i.e. showing time scale,
interdependencies between deliverables etc., responsibilities, creation of documents,
etc.).

DW should offer robustness to visualize the coordinated process and flexibly reframe the
process. In such a way DW enables knowledge practices to be more flexible by combining the
process, objects and people.

Based on the trialogical learning principles, six functionality criteria for DW models have
been identified [Adams 2003]:

1. Flexibility and reuse means that at any point in time, there may be several possible
sequences that can be followed, utilizing a subset of available actions to achieve the
objective of the activity. Choices are dependent on the actual circumstances of the
activity at that time (context). Thus, the model would need to manage a catalog of
actions that, at runtime, could be chosen based on contextual information.

2. Adaptation via reflection means that a model should support evolutionary adaptation
of processes based on the experience gained during each execution of the process. Plan
adaptations for future instantiations can be achieved e.g. by recording the occurrence
of deviations. Thus a plan is an artifact that contains history of its development.

3. Dynamic evolution of work practices requires, from the model, support of evolution of
processes towards individual specializations without risking the loss of motivation for
the overall activity.

4. Locality of change means that modifications should be able to be fully applied by
changing a minimal number of components, and should impact minimally on
associated components. One approach would be to support the definition of a
workflow process as a set of sub-processes, each of which is a distinct entity
representing a single action. Changes made within one sub-process (activity) will not
impact the other sub-processes.

5. Comprehensibility of process models to all stakeholders, supporting representation at
different levels of granularity. One possible approach is a hierarchical set of linked
encapsulated sub-processes, i.e. each sub-process would be a (simpler) workflow
model on its own.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

19

6. The evaluation of exceptions to “first-class citizens” regards exceptions as events
that provide an opportunity for a learning experience. Exceptions handling will be
needed in both, design as well as execution phases. Selection of suitable actions from a
repository of available actions could be made contextually dependent. If not precise
action can be found, some approximate one can be selected and adopted into required
context.

The “Multiprofessional teamwork and use of Dynamic workflow tool” pedagogical scenario
[DT-2] identifies several requirements for DW tools:

1. The user should be able to define desired processes and how they should or could be
performed. The description includes elements such as tasks (that can be decomposed to
subtasks), schedule, milestones, resources used, allocation of work/responsibilities
(division of labour).

2. The user should be able to trace and review what actually happens during a process,
and view the status of the process. Possibility to create links between knowledge
process model and the knowledge artefacts is very important.

3. The user should be able individually select the items he wants from Process, Artefact
and People view into so called “Hybrid view”. This offers flexibility to select, arrange
and modify different elements of process. Hybrid view can be saved into user personal
space.

4. New mixed artifact, for different users, can be created in the Hybrid view and made
public. This will be an object of collaboration and links to resources that the artefact is
based on are important.

5. The user should be able to join a discussion about each element in the process model.
6. History of all decisions or discussions about elements are saved, e.g. in Wiki pages.
7. User should be permanently informed about changes in the process model, e.g. internal

messages or emails.
8. User should view his relevant tasks, personal list of tasks.
9. User should view relationships between particular elements of KP. The connections

between KA and elements of KP are important.
10. The user should be able to change the model of the process online based on his custom

rights.

Functional requirement Description
Planning of the trialogical
activities

User can define the process model in terms of work
breakdown structure (tasks – subtasks), schedule,
milestones, resources used, responsibilities. Labels
should be user modifiable.
It should be possible to provide structuring, but
simultaneously facilitate emergency of novel lines of
activity.

Reviewing activities View the knowledge produced (different artefacts).
Connection between KA and KP, see section 3.6.
View the state of the process, e.g. what is the current
working phase and indication of the phases that have to
be done.

HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

20

Functional requirement Description
Modifying the planned
activities on the basis of
new demands and courses of
action.

Users can make changes in the process model/
description on fly.

Definition of user rights Different user rights may be defined on the level of the
whole process as well as on particular tasks. In such a
way the necessary flexibility in modification of processes
on-the-fly may be achieved.

Assigning users to
(sub)tasks

Each task can have several users assigned to it. This
connection defines who is responsible for the task and
should produce e.g. deliverables assigned to this task.

Linking of process model
and knowledge artefacts.

User can create an arbitrary association (link) between a
process model element and a knowledge artefact (e.g.
meeting minutes). The linking is done in the similar way
as linking of knowledge artefacts (see above). KA can be
linked to specific task e.g. as a deliverable or just as a
resource.

Commenting, annotating
and discussing the process
model.

User can attach comments (informal annotations) into
any element of process model.
Annotations (both formal as well as informal) of
particular tasks or of the whole process are possible in
the same way as by the KA annotation.
User can start a discussion thread on any element of
process model using e.g. Wiki or discussion tool.

Visualization of the process
model.

Venn-diagram type of presentation should be used for
presenting process model.

Visual modelling of
progress (advancement)

System offers the possibility to check and track the
history of a task.

Process (project)
management views and
tools.

Gantt-chart view.
Visualization of progress linked to artefacts (e.g. “late of
plan”, “need help”)
The workflow system is in the background helping to
manage time, coordinate efforts, and meet the milestones
agreed.

A library of process model
templates.

A process model can be created on the basis of a
template describing the type of process to be
implemented in a shared space. User should be able to
store a template drawn from a process description created
in a shared space.

2.3.5 Linking

Linking is used for associating items of a shared based in some way. Linking structures helps
participants organize and structure the knowledge in the way they want. The associations can
be defined by using formal semantics defined e.g. by an ontology, or by informal text.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

21

Functional requirement Description
Interlinking of artefacts and
discussions.

The direct interlinking of artefacts and discussions shall
support to focus and ground collaboration. Thereby it is
important that discussions can be bound to an artefact
and that artefacts can be referenced in discussion

Organization of multiple
artefacts in the form of a
hyperlink structure (e.g.
Wiki, concept map,
argument map) or other
general tools for working
with the content of
knowledge artefacts.

The creation of links between artefacts shall be as easy as
possible. Hyperlink structure across various types of
documents is supported.

It should be possible to
classify nodes and arcs in
the hyperlink structure
based on a given or freely
selectable ontology or
metadata schema including
a classification based
visualization.

The classification of nodes and arcs based on an ontology
allows to create scaffolds, but also to develop personal
languages and grammars when needed.

2.3.6 Commenting

A comment is some additional textual information associated with any (content) item of
a shared space, such as knowledge artefact, a link (representing some kind of association)
between items, and an element of a process description. Commenting a specific part of the
content of an knowledge artefact should also be possible and will be a functionality of the
content tool associated with the type of content in question.

Functional requirement Description
Commenting items in the
shared space.

Adding a comment as an informal annotation.

Commenting some part of
the knowledge artefact’s
content.

The main content tool for the M12 release will be a Wiki
that provides a commenting functionality.

2.3.7 Adding semantic metadata

“Semantic metadata” is metadata that refers to a controlled vocabulary defined by a formal
ontology. Adding semantic metadata will be referred to as (formal) semantic annotation later
in describing the functionality of the annotation tool. Semantic metadata is important in
creating a shared understanding regarding the meaning/purpose of certain knowledge artefacts
and their relations and can be used to support many kinds of collaborative activities for

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

22

advancing knowledge; such as: giving feedback or discussing the contents of the knowledge
artefact.

Functional requirement Description
Adding semantic metadata
to items in the shared space
in a formal way.

The annotation tool allows users to select terms in a
vocabulary defined by one of the available ontologies.
For this purpose, services available in M12 SWKM
prototype will be used, e.g. query and update services, or
object exchange services (for details see [D5.1])

2.3.8 Content tools for knowledge artefacts

A range of general tools for working with the content of knowledge artefacts need to be
available in release 1 of WP6 software. The tools will be implemented mainly using existing
open source software with required customization.

Functional requirement Description
Creating and editing of
documents that mainly
contain text, drawings and
images.

An existing Wiki with a good range of plug-in tools will
be used.

Creating simple drawings. Implemented using a plug-in of a Wiki system.
Discussion forum Implemented using a plug-in of a Wiki system.
Blogging. Implemented using a plug-in of a Wiki system.
Use of a concept-mapping
tool for brainstorming,
planning and knowledge
modelling activities.

A loosely integrated, specialized concept mapping tool
will be made available.
If concept maps are required to be formalised as
ontologies, the latter will be produced with an existing
ontology editor and then exported manually to the
semantic knowledge middleware (WP5).

Graphical visualization of
concepts or argumentation.

A concept mapping tool will be used for visualizing the
concepts and Map-It tool (WP7) is for argumentation.

For specific tools for working with multimedia, communication and e-meetings, see WP4 and
WP7 specifications.

2.3.9 Community

In trialogical terminology, community of practice is a group of persons with particular skills or
expertise who interact formally within an organization, or informally in a network for shared
pragmatic or knowledge-related goals.

For the KP-Lab software, a community can be defined as a group of people belonging to a
particular shared space. The group of people can belong to e.g. a project team, students
attending a class, students of a university department, or any other type of collective. The term
“group” is often used as a synonym to community.

HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

23

Social network refers to the social structure made of individuals or groups/communities in the
shared spaces of the KP-Lab system.

User is an individual who uses the KP-Lab software applications.

Functional requirement Description
Maintenance of users Defining, modifying and deleting user information, roles,

and access rights.
Defining groups (i.e.
communities)

Done by defining who are the members of a shared
space.

The system supports real
time status of users.

The awareness of who is online helps to coordinate work
and social navigation.

Visualization of the social
network

Visualization composed of individuals and
groups/communities and the relationships between them.
Note: A rudimentary visualization is provided within
WP6. Advanced network analysis tools are produced
within T7.5.

2.3.10 Non-functional requirements

Non-functional requirements denote characteristics (properties and qualities) a technical
system (tool) should have in order to be valuable and useful for those using it. Non-functional
requirements include, but are not limited to, usability criteria or technical features such as
interoperability, security requirements or other specific operating conditions.

This section summarises the high-level non-functional requirements elicited from the
pedagogical scenarios for higher education, as presented in [D8.1], as well as the range of
operational requirements to be considered. Most of the non-functional requirements are still on
a generic level and will be elaborated to precise and measurable requirements as the user
environments for the M12 release tests have been decided. The usability requirements will be
based on the guidelines available from the Task Force Usability and the basic operation
requirements will be gathered from the partner organizations that will participate in the field
trials in spring 2007.

Requirement Description
Integrativeness of
tools

The different tools used within a given setting are integrated in the
sense that they allow for smooth transitions between activities
performed inside different tools. Data can be copied and moved
easily between tools.

Easy to use tools New users do not need to learn complex manoeuvres to be able to
navigate, open, edit or manipulate objects. Tools have to be able to
be use in extremely simple and obvious ways.

Deep
customization

The user can decide which tools to use within a certain context. In
some cases, deep customization might be restricted to the teacher or
organizer of the course. It has to be possible to integrate discipline-
specific tools if needed.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

24

Requirement Description
Secure Access Access to the system and data transfer shall be secure. Security

issues shall be transparent to the user.
Interoperability The system must be runable by different browsers and operating

systems. The system shall also support different input and output
devices, such as mobile phone or PDAs.

User support What kind of documentation, training, online help, and help-desk
services are required?

Performance and
quality of services

Specificy the speed at which part of a system performs under a
particular workload. What are the maximum response times and
capacity requirements. Requirements for system availability, such as
what is the maximum acceptable time for restarting the system after
a failure, what is the acceptable downtime per day?

System
maintenance

How often will the system be backed up? Who will be responsible
for the back up and for restoring the system after a system crash?
Who is responsible for system installation? Who will be responsible
for system maintenance?

3 Functionality
This section describes the functionality of the KP-Lab Portal and of the three sets of tools that
it contains from the end-user perspective. The first section describes the functionalities
available at the portal level, and the subsequent sections describe the functionalities of the
three sets of tools, namely the Knowledge Artefact (KA) tools, Knowledge Process (KP) tools
and the Shared Space (SS) management tools. The KP-Lab Portal prototype that will be
implemented by M12 will be evaluated in field trials. These field trials are described in WP8
and WP10, among others.

3.1 The KP-Lab Portal

The shared space for knowledge practices that provides access to the three groups of tools and
to the portal level tools is called the KP-Lab portal. Here the word portal is used as a general
term, and it does not refer to a portal server such as Jetspeed. An example of the set of
functionalities that the KP-Lab portal could provide is shown in Figure 1. The functionalities
(or tools) that the portal provides to the user are:

a. Login/logout. The login tool is used to perform user authentication. The user
credentials are checked against the user database or the directory service at the
user’s home organization once and after that the user can access all tools
without having to provide his user credentials again. The Single SignOn (SSO),
attribute exchange across organizational boundaries, and the management of
identity and access permissions will be done using the Shibboleth software
[AHM06, SHI06] or the Liberty Alliance software. If a user belongs to several
organizations, he has to choose one from the list provided in conjunction with

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

25

the login tool. He may naturally log into several separate instances of the KP-
Lab Portal simultaneously if he wishes to use all of his usernames at the same
time. The use case for the login tool can be found at [WIKI-4].

b. Management of user preferences. User preferences contain information such as
the visual settings of the portal and portlets, user nickname, default tools
available as portlets and possibly a default shared space to be opened when the
user logs in. The user naturally has to be logged in in order to be able to modify
his preferences.

c. Shared space browser. This might mean a list-based and/or graph-based
browser, see the boxes pointed to by arrows in Figure 2. Figure 3 illustrates an
example of a graph-based shared space browser. Figure 4 illustrates an example
of a shared space browser that can be used to browse also KAs and KPs related
to a shared space. The browser also allows the user to specify the radius of the
shared space network to be viewed.

d. User statistics viewer. When the user is not logged in, the user status tool could
show for example only how many users are online in the portal and when the
user is logged in, it could show more specific information.

e. There might also be other functionalities (or tools or portlets) such as a
notifications tool for portal wide news and other issues, a global chat tool, a
user specific history viewer that shows information such as the most recently
visited Shared Spaces of the user, etc. The user preferences management portlet
could be used to specify which of these tools are shown to the user.

Figure 2: An example of the functionalities available in the KP-Lab Portal.

HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

26

Figure 3: An example of the graph-based shared space browser.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

27

Figure 4: An example of the shared space browser with support for showing also KAs and KPs and with
support for defining the radius of the shared space graph.

3.2 The Knowledge Artefact Tool

The principal role of the Knowledge Artefact tool (KA Manager) is to create, modify, save
and delete knowledge artefacts. To accomplish its tasks the KA Manager collaborates with:

the shared space management tools/services

the content repository for storing, retrieving, deleting the KA content;

the knowledge repository for storing, retrieving, deleting the KA metadata/annotations.

the knowledge repository browser for retrieving KAs.
The KA Manager should perform the following functions:

Create new KA in the shared space.

Retrieve and update existing artefacts

Delete KA

Query the knowledge repository

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

28

Retrieve KA from the persistent storage and transfer them to the shared space (making
use of services available in M12 SWKM prototype, e.g. query or object exchange
services, see [D5.1])

Save the KA into the persistent storage

Invoke the content editor specific to the artefafact media type that must be created or
visualized.

Notify changes to the synchronization service.

Other functions (not to be developed for the M12 prototype)
Versioning support for the content repository

Collaboration between the logging and profiling tools

3.3 Annotation Tool

We define a very simple annotation taxonomy to determine what kind of annotations will be
handled by the annotation tool and where these annotations will be stored.

Formal vs. informal annotations

Formal annotations are annotations where subject and predicate are Uniform Resource
Locators (URIs), and the object is an URI or a formal literal. Formal annotations are referred
to as semantic if based on ontological terms and definitions. They are stored in the knowledge
repository.
Simple comments on any item of the shared space can be considered formal annotations on
condition that the subject of the comment can be defined by an URI. (The subject is the item
URI, the predicate is “dc:comment”, the object is a formal literal).
The annotation of links, which have been established by the knowledge process tool, would
from the technical point of view mean annotating Resource Description Framework (RDF)
statements. We would use reification to produce an URI for the statement. If we annotated
links i.e. RDF value names, then the annotation would refer to that particular RDF value name
in all statements that use it.

Informal annotations are related to items inside the artefact (e.g. particular paragraph in text
document, or particular image area) and are stored inside the digital object (content item) in
the application-specific format. An example of such a case is the notes inserted in the
documents by the word processors like OpenOffice.org Write or MS Word.

From the end user point of view, informal annotations are available only opening the content
item in the proper editor, while formal annotations require different user interfaces. For
example, the “Add comment” menu choice, which is present in the mock-up of the shared
space for item annotation, can be followed by typing a comment in the string format. If the
annotation requires to upload an ontology, then the process becomes more complex and so far,
the user interfaces are not available.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

29

Summarizing the Annotation tool should perform the following functions:

Visualize annotations

Create, update, delete annotations
To accomplish its tasks the Annotation tool collaborates with:

the knowledge repository browser for retrieving KA annotations

.the knowledge repository for storing, retrieving, deleting the KA annotations.

3.4 Other KA tools / editors

Specific tools for creating manipulating and editing content with different file formats and
MIME types, wikis, text documents, chats, forums, etc
The M12 prototype will implement a wiki-based editor for content editing

KA mapper - mapping artefacts to background images. Approaches for storing the mapping:

the background image URI and the artefact coordinates (#x,y,z,t) are represented as
properties in the content repository.

the background image and artefact(s) coordinates are part of the shared space profile of
the team

3.5 Knowledge Process Tools

Knowledge Process (KP) tools will provide a set of functions and interfaces necessary for
creation, management, and annotation of knowledge processes composed from elements.
KP tools functions:

Create, view, update and reuse a task: User can use existing templates or can create a
new model of a task. This task can be used more than once and in different processes.
Set-up description of the task, see Figure 5. Characteristics of the process (subtasks,
division of labor, resources etc.) are defined by this description and can be visualized
using the Gantt chart.
Set-up relationships between tasks: Relationships between tasks are defined in Gantt
chart by vertical lines and by slots called prerequisites in task description.
“Prerequisites” refers to tasks that need to be completed before the actual task can
begin.
Execution of a process: User can follow current state of a process by timeline, making
use of attributes of particular tasks (these attributes are set either manually by
responsible users of particular tasks, or automatically via some actions).
Change task settings on the fly: User can flexibly make changes in description of the
relevant task based on their user rights. E.g. author of the full process (e.g. teacher) can
make interventions that change the overall process, its duration or goals. Other users
can make changes on the local level, e.g. within the task which they are responsible
for.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

30

Figure 5: Example of process view

KP tools functionality will be accessible to the users via different portlets and or via API, see
architecture of the Knowledge Process Tools in Figure 13.

1. Knowledge process view portlet will display a knowledge process and its content and
allow users to browse within the given knowledge process. This portlet will provide
the following functionalities: view and update the knowledge process; create structure
of the knowledge process.

2. Knowledge process description/annotation portlet will allow user to describe/annotate
a knowledge process in a way similar to describing/annotating a knowledge artefact in
KA tools.

Knowledge Process Tools will provide an API for working with knowledge processes. This
API can be used by other parts of shared space or by other KP-Lab tools. E.g. for Share space
tools that will provide deleting or browsing capabilities of existing knowledge processes can
use the KP tools.

Some tasks will have several knowledge artefacts connected to it (e.g. as deliverables or
learning materials). This connection is displayed in process view. On the other side,
a Knowledge Artefact can be associated with several tasks. This is for example shown
in artefact view of the shared space. If this bi-directional connection is represented on both
sides, i.e. with the knowledge artefact, as well as with the task, care should be taken to ensure
integrity of these connections. There is also a possibility to store this connection only in the
process description and query process tools for tasks related to given artefact.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

31

3.6 Shared Space Management Tools

The Shared Space Management Tools offer to the user the following functionalities:
creation and deletion of a Shared Space,
annotating a Shared Space or a link,
managing the information related to a Shared Space,
managing the users, their roles and their access rights in the context of a Shared Space,
managing the tools available in a shared space.

These functionalities will be described in more detail in the following subsections.

3.6.1 The Shared Space Creator

The Shared space creator checks if the specific user has sufficient rights to create a shared
space and if he has provided all the mandatory information for the new space. If these
prerequisites are fulfilled, it creates a new shared space and stores it into the Knowledge
Repository. The required fields for a new shared space are the following:

shared space name and
the manager member(s). The default value is the creator of the space.

The shared space creator is a very simple tool, and the idea is that the shared space manager
will be used to further configure the shared space. The shared space creator is context sensitive
in the sense that if it is used while the user is in a specific shared space, the new shared space
will be a child space of that space. This means that it will inherit all the information
concerning that space. On the other hand, if the shared space is created while the user is not in
any specific shared space, the shared space will have no parent shared space from the point of
view of the user. The user may afterwards use the shared space manager to add parent(s) to the
shared space. From the technical point of view, all the parentless shared spaces are allocated a
common parent node. It may be called, for example, the root node. This root node is required
in order to form one single graph from the shared spaces.

The use case diagram for the Shared space creator tool is available at [WIKI-3]

3.6.2 The Shared Space Annotator

The Shared Space Annotator is used to annotate a given Shared Space with KAs, KPs, other
Shared Spaces, arbitrary literals and terms listed in a predetermined vocabulary. Also
annotations themselves may also be annotated.

The annotation is performed using an arbitrary literal if the annotation is small, i.e. if the
annotation is a couple of words only and it does not belong to any predefined vocabulary. If
the annotation is large, it is performed creating a new KA. The small annotations consisting of
arbitrary literals are entirely stored in the Knowledge Repository and the large annotations are
stored both in the Content Repository and in the Knowledge Repository. The actual content,
i.e. an Open Office document, is stored in the Content Repository and the URI that points to
the document is stored in the Knowledge Repository. The user may see the action of creating

HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

32

small and large annotations as commenting. A Shared Space may also be annotated using
terms listed on a predefined vocabulary. This vocabulary is stored in Resource Description
Framework Schema (RDF-S) format in the Knowledge Repository. Finally, a Shared Space
may as well be annotated with an existing KA, KP or another Shared Space or with a copy of
an existing KA, KP or Shared Space. An annotation is always a directed edge between two
nodes. The edge begins from the Shared Space node and points to the arbitrary literal, term
listed in a vocabulary, KA, KP or other Shared Space.

From the point of view of the user, annotating shared space with a Knowledge Artefact or a
Knowledge Process may mean bringing the Knowledge Artefact or Knowledge Process into
the Shared Space or linking the Shared Space with the KA or KP. This may mean first creating
a totally new KA or KP from scratch or creating a new KA or KP by making a copy of an
existing KA or KP. The tasks of creating new KAs and KPs are handled by the KA Tools and
KP Tools, respectively. Annotating a KA or a KP to a Shared Space may also mean sharing a
KA or a KP with one or several Shared Spaces. In this case, no creation of new KAs and KPs
takes place.

Annotating a Shared Space with another Shared Space may or may not imply modifications in
the child shared space. If it does not imply changes in the child Shared Space, the semantics of
the annotation is that the user wishes to make a loose relation between two shared spaces. The
relation itself could be annotated with phrases such as “see also” or “the same project manager
participates here also”. If annotating a Shared Space does imply changes in the child Shared
Space, the annotation means that the target (i.e. the child Shared Space) of the edge inherits
the parent Shared Space. More concretely this could mean that the child Shared Space inherits
by default everything from the parent Shared Space and that the user could then specify items
to be excluded from the inherited ones. As the Shared Spaces form a directed graph, a child
space may have arbitrarily many parent nodes and they may contain conflicting information.
For example, a username may have a different permission profile in different parent spaces.
Which permission profile should the child space inherit? One solution would be to write rules
to resolve the conflicts. In this case an example rule could be to give the username in the child
shared space the minimum of the conflicting permission profiles and notify the end user about
this. Another solution would be to just detect the conflict, leave the conflicting information
blank and inform the end user about this. Figure 6 illustrates an example of the Shared Space
Annotator Tool.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

33

Figure 6: An example of the Shared Space Annotator functionalities. Using the Annotator, the user has
the possibility to annotate a directed link with a literal or a KA, i.e. comment it.

The Shared Space Annotator may be used to annotate either Shared Space or a link with a
literal or a Knowledge Artefact. A literal is used if the annotation is small, i.e. a couple of
words, and a KA is used if the annotation is large, for example a whole word document. The
small annotations are entirely stored in the Knowledge Repository and the large annotations
are stored both in the Content Repository and in the Knowledge Repository. The actual
content, i.e. the Word document, is stored in the knowledge repository and the URI that points
to the Word document is stored in the Knowledge repository.

3.6.3 Information Manager

The Information manager is used to create, change and delete any information related to a
specific shared space.
This information consists of the obligatory information that was listed above in conjunction
with the description of the shared space creator (the shared space name and the manager
member(s)). In addition, at least the following information may be created, deleted and
modified:

Free text description of the space
The tools available in the shared space.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

34

Level of the shared space. Some typical examples include: individual, group, team,
class, course, project, department, institute, school, university, company, and
community.
Time to live e.g. the start and/or end date of the space.
Default access rights for different user groups or user organizations and/or for different
roles. For example, only users who belong to the organization Evtek, who alos belong
to group Media Technology Project and who have the role student may link and
annotate KAs, KPs and SSs within that shared space.

3.6.4 User Manager

The User Manager is used to manage user information that is specific to the shared space in
question. The user specific information is thus different than the one maintained at the KP-Lab
Portal level. For example, a user may have the role student at the KP-Lab Portal level, but the
role assistant in a specific shared space. The information manager is used to set general default
access rights for a space, and it may, for example, be done by a secretary. The user manager
tool is typically used by the teacher or project manager as the information managed is very
specific.
The user manger is used to:

Add or delete usernames of the KP-Lab Portal into a space based on their organization
(e.g. INPT, Evtek), group (e.g. course on media technology) or role (e.g. teacher).
Change username information in this space, i.e. change the role, group, or organization
of a username and tailor access rights.

3.6.5 Tool Manager

The Tool manager is used either to enable, disable, add or delete tools in a shared space. The
only tools that are by default available in every shared space are the KA tools and the shared
space management tools. Other tools of the KP-Lab Portal may be disabled or enabled.
Examples of such tools are: the process tools, video conference tools that enable sharing of
screens and C-map. Some tools, such as the process tools, are tightly integrated into the
system. Some tools might be available as services and they could be displayed in a portlet. The
Sakai plug-in architecture illustrates this approach. Some tools are not integrated at all – they
have only been installed on a server. C-map is an example of this kind of tool. A C-map
server will be installed at Evtek and it will be offered as a separate tool to the end users.
Adding and deleting tools from the shared space means managing arbitrary tools that are not
part of the KP-Lab Portal. An example of such functionality is the possibility to add a link to
any tool that each user has to download and install himself.

The use case diagrams for the Shared Space Management Tools are available at [WIKI-3] and
[WIKI-5].

HYPERLINK \l
HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

35

4 Architectural design
This section describes the architectural design of the KP-Lab Portal. The first subsection
presents the global view and shortly introduces the components that will be described in more
detail in the subsequent sections. First to be described are those components that are by
default available in the KP-Lab Portal (Section 4.2, The Portal Level Tools), that constitute the
Core Services and APIs (Section 4.3) as well as the database management systems (Section
4.4, The Data Layer). After that, the different sets of tools are described. These sets of tools
consist of the KA tools (Section 4.5), the KP tools (Section 4.6) and the SS management tools
(Section 4.7).

4.1 Overall architecture

The shared space for knowledge practices that provides access to the KA tools, the KP tools,
the SS administration tools and the portal level tools is called the KP-Lab Portal. Each of the
tools included in the KP-Lab Portal is a stand-alone tool meaning that it does not require any
other tool in order to function. However, there may still exist interaction between the tools that
are in the portal. For example, if a user has a Shared Space Browser and a KA artefact
annotation tool simultaneously in use in the KP-Lab Portal, the Shared Space browser may
highlight the SS into which the KA belongs to. The KP-Lab Portal tools may be either JSR-
168 compliant portlets [Abdelnur and Hepper, 2003] (local or remote) or external applications
that are not integrated into the system and that do not run on a portal server. The external
application tools may appear as a simple link that takes the user to a web page on a server
where the tool is installed or to a web page from which the user may download the tool to his
own computer. Local portlets are portlets that run on the KP-Lab Portal server and remote
portlets are portlets that run on another portal server, yet are displayed on the KP-Lab Portal
server. Remote portlets are deployed on the KP-Lab Portal server using the Web Services for
Remote Portlets (WSRP) standard [Kropp et al., 2003].

The KP-Lab Portal will be implemented either by using a portal server (such as the Apache
Jetspeed-2) and as links to external resources or by using, customizing and expanding an
existing Collaborating and Learning Environment (CLE) such as the Sakai Portal (see e.g.
http://www.sakaiproject.org/). The external resources which were referred to in conjunction
with the usage of a portal server may be, for example, servers where stand-alone software such
as Cmap (http://cmap.ihmc.us/) has been installed and where it may be used and web pages
from which any arbitrary software may be downloaded.

The overall architecture of the KP-Lab Portal is depicted in Figure 7.

The rest of this section will describe the Portal Level Tools, the Data Integrity Services, the
database management systems, i.e. the Knowledge Repository, the Content Repository (or
Repositories) and the User Database (DB). All of these are continuously available in the KP-
Lab Portal. The rest of the tools and services are only available if needed or requested. They
will be described in the subsequent sections.

HYPERLINK
http://cmap.ihmc.us/

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

36

Figure 7 Overall architecture of the KP-Lab Portal. The arrows that leave from the rectangles
representing the KA and KP tools are different from the other arrows only to increase the readability of
the picture.

The data integrity service ensures that the data stored in the databases is consistent. This can
be achieved if a piece of data is stored only once and if all references to it are deleted, if that
piece of data is deleted. Also some additional checks might be necessary as illustrated later by
the example of the User DB and the SS data stored in the Knowledge Repository. The need
for such checks may be expressed by certain constraints that the data must fulfill. We suggest
that each database management system i.e. the Knowledge Repository, Content Repository
and the User DB is associated with a component that provides functionality that will
effectively support integrity of all data in the system. For example, this utility would upon
deletion of some KA (or upon request) search the Knowledge Repository, delete all references
to this KA and send some notification to the SS that is displaying the KA or references to the
KA. The utility would also delete the contents of the KA from the Content Repository. In this
manner we do not have to search the Knowledge Repository and delete references manually;
resulting in a lower number of RQL queries and RUL updates into the knowledge middleware.

This functionality could be implemented, for example, by providing event sources with
methods that allow the developer to register event listeners with them. When an event happens
to the source (e.g. a KA is deleted), the source sends a notification of that event to all the
listener objects that have registered for that event. A listener object that has registered for the
KA deleted event could, for example, be a client displaying a specific shared space to a user.
The Knowledge Repository provides a Registration – Listening Mechanism (see Section 5.1.2
of the Specification of the SWKM Architecture (V1.0) and Core Services [Christophides et al.
2006]). This mechanism will be used to provide data integrity of data stored in the Knowledge

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

37

Repository and to propagate information about changes in data to the Content Repository and
to the User DB.

Another example of the data integrity functionality is the change of username and organization
of a user. Because the username is the ID of the database record, this operation is broken
down into an insert and a delete command. When the delete command is given, a notification
is sent to all listeners registered for that event. If the user is the only remaining member of a
shared space, then the end user performing the deletion operation should be warned about the
fact that there is going to be a trailing shared space with no members left. Two possible
actions should be suggested to the end user: 1) Either add another member to the shared space
or 2) Delete the shared space. The necessity for providing the user with the warning could be
expressed with a database constraint that declares that a shared space must always have at
least one member. Otherwise data integrity is violated.

4.2 The Portal Level Tools

The portal level tools are always available to the end users. They provide the following
functionalities:

user authentication (An end user tool. Also called login tool.)
single-sign-on (SSO) (Not an end user tool.)
user registration (Not an end user tool.)
portal statistics (A viewer is provided for the end user.)
user preferences management (An end user tool.)
shared space browser (An end user tool.).

These functionalities are described further in the following paragraphs. The user
authentication function is provided by a federated identity solution such as Shibboleth or
Liberty Alliance.

Single-sign-on is provided by the federated identity solution. If needed, the SSO functionality
provided by the Portal server (e.g. Jetspeed-2) is coupled into it.

User registration functionality is provided the first time a user authenticates himself into the
KP-Lab Portal. This functionality is performed in the background and the end user does not
notice it. At registration time, only the information provided by the identity provider is
inserted into the User database. The user is invited to add more information about himself into
the User database using the User preferences management tool.

 Portal statistics are provided, for example, by the portal server (e.g. Jetsepped-2) or by the
servlet/JSP page container (e.g. Tomcat). Portal statistics may include information such as
portlet specific usage logs or number of users online. The end users will be provided with
some statistics information.

The user preferences management may be provided by the portal server. The preferences are
stored in the User DB using the User DB API. The user preferences may contain any attributes
and they are managed using an attribute administration portlet, such as the one provided by the

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

38

Jetspeed-2 portal. Even though the attributes may be chosen at will, the Portlet Specification
defines a set of attribute names which are recommended to be used. Using these attributes may
be handy in the longer run when using WSRP to deploy portlets that are hosted on a remote
server, since the use of arbitrary user attributes might cause a mismatch between the attribute
names needed by the portlet application and the concrete attribute names that are stored in the
Jetspeed-2 User Preferences.

The shared space browser functionality is provided at the portal level. The shared space
browser may, for example, allow the user to browse all shared spaces or to browse only those
shared spaces in which they are involved.

4.2.1 API Specifications for some of the Portal Functionalities

This section provides the API specifications to the Portal Functionalities (or services), except
for the single-sign-on, the portal statistics and the user preferences management. These three
APIs are excluded because they are most probably provided (and thus also defined) by the
Portal server and the federated identity management software. Figure 8 illustrates the APIs of
the portal level tools. The APIs are marked with an arrow.

Figure 8:The APIs of the Portal Level Tools.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

39

The notation used in describing the API methods is such that the question mark (?) signifies
optionality, i.e. the parameter followed by a question mark is optional. In practice, the
methods containing a question mark are overloaded. For those methods that return a Boolean
value, true means that the method has succeeded and false that it has failed.

4.2.1.1 Authentication/Login Service
The login service API consists of the following two methods:

Boolean login(String userName, String password, Organization organization)
Boolean logout(String username, Organization organization)

An Object belonging to the class Organization must be one of the Strings in the list HY, TKK,
EVTEK, HUJI, UTRECHT, etc. The login service is provided by the user’s home
organization. After the user is logged in, the portal server (e.g. Jetsepeed-2) takes care of
session management and of loading the user preferences. When the user logs out, they become
an anonymous user of the KP-Lab portal as they were before they logged in.

4.2.1.2 User Registration Service
The API of the user registration service consists of the following two methods:

Boolean register(String userName, Organization organization, Role role?, String
email?, String givenName?, String lastName? etc.)
Boolean unregister(String username, Organization organization)

An Object belonging to the class Organization must be one of the Strings in the list HY, TKK,
EVTEK, HUJI, UTRECHT etc. An Object belonging to the class Role must be one of the
Strings in the list student, teacher, customer, secretary, etc. The parameters of the method
register() depend on the identity provider and only the first two are mandatory. This is because
different identity providers are likely to provide different user attributes. We will provide
several overloaded methods, which will allow us to exploit most of the information provided
by the identity provider. The user using the user preferences management tool may provide
lacking and optional user information.

The user authorization service is implemented at the home organization of each user. The KP-
Lab portal is acting as the service provider and it will contact the identity provider (i.e. the
home organization of a user) when the user requests login. The first time the user logs into the
KP-Lab Portal will serve as the registration of the user as well. After registration, a database
record for the user and his preferences is created into the User DB (see Figure 7). In order to
provide the User DB a unique key, a concatenation of the userName and of the organization
(e.g. liliaEVTEK) is used.

4.2.1.3 Shared Space Browsing Service
The shared space browsing service API consists of the following methods:

SharedSpaceGraph BrowseSharedSpace(String sharedSpaceUniqueName, Boolean
KA, Boolean KP, int radius)
SharedSpaceGraph BrowseUserSharedSpace(String userName, Organization
organization, Boolean KA, Boolean KP)

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

40

The first method enables the browsing of arbitrary shared spaces. The center of the graph to
be shown is given by the argument sharedSpaceUniqueName and the maximum size of the
graph is given by the parameter radius. The Boolean parameters specify whether the KAs
and/or KPs related to the shared space are shown or not. The second method enables browsing
the shared spaces into which the user belongs to.
An Object of the type SharedSpaceGraph is a serialized Java Object containing the RDF
triplets to be visualized. The visualizations envisaged thus far are a graph and a list. An Object
belonging to the class Organization must be one of the Strings in the list HY, TKK, EVTEK,
HUJI, UTRECHT etc.

4.3 The Core Services

The core services and APIs consist of functionalities that are common to several sets of tools
or that are used by the Data integrity services. By observing Figure 7, one may see that the
knowledge repository browser, annotator/linker, knowledge repository services/APIs and
content repository services/API are accessed by several sets of tools, i.e. the KA, KP and SS
tools. At the moment, the user DB services/API is accessed only by the Portal level tools, but
placing it under Core services and APIs is required because the User DB has to be accessed
also by the Data integrity services. The functionality of each Core Service and API will be
explained in the following paragraphs.

4.3.1 Knowledge Browser

This core service is meant to provide two complementary functions: search and visualisation.
Both functions concern ontologies and knowledge artefacts. Although, most functionalities are
common to these two types of information. However, the following description makes some
assumptions:

access is read only
knowledge repository is a set of hyper-graphs
no distinction is made between types of artefacts (e.g. annotations, tasks, processes…)
an ontology is a namespace that can be transformed into a hyper-graph
an knowledge artefact is a hyper-graph
a hyper-graph is a set of nodes and edges

The service interacts with the kernel of the shared space to manage exchange of information
with any other internal or external tool. However, it interacts directly with the knowledge
repository by submitting RQL queries and retrieving RDF representations. As such, any
information concerning individual, groups, tasks, processes etc. will be provided by the shared
space. The knowledge will be provided by the knowledge middleware.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

41

User interactions
The user can undertake interactions such as the following:

look for existing ontologies
classify ontologies by subject or keyword
find out relationships between ontologies
track the evolution of an ontology
compare two ontologies or versions of ontologies
discover artefacts related to a given set of ontologies
find the ontologies describing a given artefact
find artefacts of an actor (individual, group)
find artefacts related to a subject or keywords
track the evolution of an artefact
view part of a knowledge artefact
change the point of view into an artefact
modify the visual appearance
cluster parts of an artefact
filter an artefact according to a subset of an ontology
search for patterns into artefacts
search artefacts by examples

Functionalities
The user browses the knowledge repository through traditional menu and by clicking directly
on diagrams. The retrieval function provides an entry point into the Knowledge Space (i.e. the
whole content of the knowledge repository). The tool has at any time a current artefact. Such
an artefact defines a point of view within the knowledge space. The radius property of the
graph represents the depth of the sub-graph to visualise (the number of relations to view
starting from the current node). From this point of view, the user can navigate the hyper-graph.
This requires an interactive hyper-graph leading to synchronous communication with the
knowledge space to avoid uploading large volumes of data (cache mechanisms could be
useful).
Basic functions include visualization functions such as:

display a hyper-graph
change the point of view,
change the topology of the graph (collapse/expand nodes, refine the graph, move
nodes, reshape edge…),
change graph perspective,
modify graph representation.

Other basic functions include:
presentation of the list of classes and properties making an ontology or an RDF artefact
transform an RDFS or RDF into a hyper-graph
associate default visual representation for nodes and relations
compare 2 RDFS and give a visual representation of the differences
compare 2 RDF and give a visual representation of the differences
request RDF (artefacts) with RDFS concept

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

42

request RDFS with a subset of RDFS
filter RDF hyper-graph on the basis of RDFS elements or on the basis of RDF
elements.

The tool will provide two views: an ontology view and an artefact view. The ontology view
provides functions (RDFS management) such as

ontology retrieval from the Knowledge Repository
ontology relationship view:

o list of versions of an ontology
o historic of the construction of an ontology

ontology view
o textual view of the ontology
o graphical view

compare two ontologies

The artefact view includes the following functions (RDF management):
artefact retrieval from the Knowledge Repository
artefact relationship view:

o list the versions of an artefact
o historic of the construction of an artefact
o list of ontologies describing an artefact
o list of sub-artefacts of an aretfacts
o list of super-artefact of an artefacts

artefact view
o textual view of an artefact
o graphical view

The tool works in figure 9 depicticting the KPLAB domain model.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

43

Figure 9: View of the domain model pertinent for diagramming

4.3.2 Knowledge Annotator

The Annotator core services provide methods to annotate every item in the shared space(KAs,
KPs and SS)
Methods of the Annotator API:

boolean addStatement(KnowledgeArtefact idKA, int idSS, RDFStatement
statement);

RDFStatement[] loadStatements(KnowledgeArtefact idKA, int idSS);

boolean editStatement(KnowledgeArtefact idKA, int idSS, RDFStatement
statement);

boolean deleteStatement(KnowledgeArtefact idKA, int idSS, RDFStatement
statement);

RDFSchema[] loadOntologies();
The RDFStatement is an object that allows to create RDF statements, ready to be saved into
the Knowledge Repository.

RDFSchema is an object that contains information about the ontologies.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

44

4.3.3 Knowledge Repository Services

The Knowledge Repository Services provide the functionalities of forming RQL queries and
RUL statements that can be passed on to the Knowledge Repository or the Knowledge
Repository Proxy and of communicating with the Data Integrity Services. These services are
used by the Shared Space Management Tools in order to update Shared Space specific
information using the Information, User and Tool Management functionalities and by the
Knowledge Annotator and Knowledge Browser. The knowledge repository services also
manages the Knowledge Repository Proxy.

The Knowledge Repository Proxy is used to make the use of the Knowledge Repository faster.
For example, a user may first use the Knowledge Browser to upload a graph from the
Knowledge Repository. This graph is stored into the Knowledge Proxy and it is displayed to
the user. After that the user queries the graph. The scope of the query is only the small portion
of the whole graph that is stored in the Knowledge Repository Proxy and the query is naturally
passed only to the Proxy and not to the Knowledge Repository. The knowledge repository
services take care that the query is always first passed to the proxy, and only if needed to the
Knowledge Repository. The Knowledge Repository Services also take care of removing old
graphs from the proxy when it becomes full.

Another example of the usage of the proxy is simultaneous collaborative editing of a graph.
The temporary changes are stored in the proxy and only the final version is stored into
RDFSuite. The Knowledge Browser shows on the screens of the users the proxy’s version of
the graph.

4.3.4 Content Repository Services

The Content Repository Services consist in services and APIs between the Knowledge
Artefact Tool and the JSR-170 compliant Content Repository as well as of communicating
with the data integrity services. All content stored in the Content Repository also contains
metadata, and is thus part of a Knowledge Artefact. The Content Repository Services provide
each piece of content with a URI that will be used when a reference to the content is stored in
the Knowledge Repository.

4.3.5 User DB Services

The User DB Services consist in forming an abstraction between the User DB and the tools
that use it, i.e. the Shared Space and Portal Level Tools as well as of taking care of the
communication with the Data Integrity Services (see Figure 9).

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

45

Figure 10:The APIs of the User DB Services. The APIs are illustrated by the arrows.

4.4 The Data Tier

The data tier consists of three different database management systems: the Knowledge
Repository, the Content Repository and the User DB. The Knowledge Repository is provided
by the Semantic Web Knowledge Middleware (SWKM) and it is developed in WP5. It will
contain data about KAs, KPs, SSs and users. The Knowledge Repository is used to store only
formal knowledge, i.e. knowledge that is expressed by RDF (Resource Description
Framework) triplets that uses a vocabulary (or ontology) expressed by RDF Schema (RDF-S).
At a later stage, ontologies expressed by OWL (Web Ontology Language) may be considered
to be used instead of RDF-S. An RDF triplet consists of three elements: the resource, the
property and the property value. The resource has to be identified by an URI. The database
management system for storing informal content is a JSR-168 (i.e. the Java Portlet
specification) compliant Java Content Repository (JCR). In this document, it is called the
Content Repository. The third type of database to be used is the User DB. The database
management system for storing this data is a relational database that is used only by the Portal
Tools. For the purpose of user authentication, the user’s home institution’s DBs will be used.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

46

They may be LDAP DBs. The implementation of these DBs is up to each institution, and it
will not be discussed further in this document.

4.5 Knowledge Artefact Tools

4.5.1 Technologies

The KA tools will be implemented as JSR-168 portlets and deployed on the same portal /
portlet container together with the rest of Shared Space tools.
JSF and JSP (or facelets) will be used to implement the portlets.

4.5.2 Content Repository

The Content Repository can be implemented in many ways: relational database, object-
oriented database, files in a directory structure, custom-made content storage facility or JSR-
168 compliant Java Content Repository (JCR).

As it was already mentioned (see [WP6-5]) it seems that using JSR-168 compliant repository
will be a good match to the requirements of the Shared Space Content Repository:

hierarchical n-ary tree model

metadata is supported via properties

versioning

locking

the nodes can be made referenceable via UUIDs

notification on changes

searching witch XPath

open source implementations are available (Jackrabbit, eXo JCR, Jeiceira)
Figure 11 shows a rough idea of the topology of JCR based Shared Space content repository.
A special namespace – kpl – is used to distinguish the KP-Lab shared space specific items.
The nodes which represent parts of knowledge artefacts are denoted as kpl:ka[i]. The KA
nodes are of base type nt:unstructured (in some cases nt:folder will be useful as well) with the
addition of the following mixins:

mix:versionabe – to provide for versioning support

mix:referenceable – to instruct the JCR to auto-generate UUIDs

mix:lockable – if locking is required while the content is checked out for
modifications.

Figure 11 also shows the possibility to manage annotations using JCR. They correspond to a
comment on the content and are represented as properties associated to the KA nodes.

HYPERLINK \l

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

47

Figure 11: Conceptual diagram of the Content Repository

4.5.3 Knowledge Artefact Manager

Methods of the API:

KnowledgeArtefact createKA(String name, int idSS);

boolean deleteKA (KnowledgeArtefact ka);

KnowledgeArtefact searchKA(KnowledgeArtefact ka, String static Metadata);

boolean saveKA (KnowledgeArtefact ka, String content, String staticMetadata);

boolean editContent(KnowledgeArtefact ka, String content);

boolean notifySS(KnowledgeArtefact ka);

void annotate ();
The methods createKA, deleteKA, searchKA, editContent and annotate correspond to
functionalities that are accessible from the Shared Space (with right click on a KA). The
method annotate is common to any item of the Shared Space and it opens the Annotation
Tool.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

48

The method notifySS calls the Shared Space Management Tool updateContent method to
refresh information about a KA.

4.5.4 KA Mapper

The role of the KA mapper is to associate a KA with a specific region of a 2D image.

As a future extension the 2D image can be replaced with a more generic coordinate space –
x,y,z,t (3D + time).

Here we will adopt the approach of storing the image and the mapping in the JSR-168 content
repository. The background image is a node in repository with the following specifications
(Figure 12):
node name: bgimage1.png
primary type: nt:file
mixins: mix:versionable, mix:referenceable
properties: jcr:UUID - referenced by the mapped KAs
child node definitions
name: jcr:content
properties: jcr:data - the binary image is stored here

Figure 12: Background image node.

The mapping between the KA and the background image will be represented as a property of
the KA node. The value of this property will include the UUID of the image node and the
coordinates of the KA on the image (x, y) or (x, y, z, t) at later stage.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

49

The proposed mapping mechanism allow for multiple KAs to be mapped on the same
background image, if deemed necessary.

A natural evolution of the idea of mapping to images would be to integrate Google Map
services into the mapper tool for cases when the artefacts need to be geographically correlated.

4.6 Knowledge Process Tools

In this section we describe Knowledge process tools architecture and its connection to other
parts of the Shared space. The overall architecture of the Knowledge Process Tools is depicted
in Figure 13.

API

Know ledge Process Tools
TUK, TESSERA, EVTEK

Synchronization services, WP?, ???, ???

Know ledge Artefact Tools
TUS, DIBE, EVTEK, TESSERA

Shared space portlet container
EVTEK, TUS, INPT

JSF Components for process visualization
TESSERA, TUK

Process View
TESSERA

Process Creation
TESSERA, TUK

Process Description
EVTEK

JSF Components for annotation
?

Artefact Annotation

...

Core layer
TUK

Execution engine

Figure 13: Overall architecture of the Knowledge Process Tools

Core layer:
Core layer will be developed mainly by TUK. Role of the core layer is to:

1. Provide high level representation of processes and operations with them;
2. Ensure that knowledge process is valid, tasks are consistent and dependencies are also

valid;
3. Manage execution state;
4. Manage storing of knowledge processes into Knowledge repository (see also process

ontology at the end).
Core layer will use Object Model provided by SWKM (WP5) in order to have fast access to
the knowledge model. SWKM shall provide a client-side object model.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

50

Knowledge processes performed within the KP-Lab tools using Shared space mainly, will also
be defined by means of process ontology, presented on the following Figure 14. This image is
visualization of suggested ontology made in ontology editor, called Protégé 2000. This is not
an UML diagram.

Figure 14: Process ontology

Process ontology legend:
Prerequisites – tasks, which must be completed before execution of actual task can be
started.
Consists_of – link to subtasks, which belong to actual task
Has_parent – link to task, which contains actual (sub)task (ancestor). This slot is
inverse to consists_of, to allow bidirectional traversal.
Resource – this is a term borrowed from project management and means everything
what is needed in order to complete successfully the task (e.g. relevant knowledge
artefacts or actors).

This is preliminary representation of a generic process in form of ontology. Each process will
be stored in this form into the knowledge repository.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

51

Figure 15: KP-Lab Domain model

The process ontology corresponds also with the KP-Lab domain model (see Figure 15), but we
are not using the concept “Content” here, because there will not be a clean content in the KP-
Lab. Each piece of data (e.g. from external repository) will be immediately described with at
least some basic metadata and as such becomes a knowledge artefact.

Execution engine manages state of executed processes represented as a set of instances of the
KP-Lab process ontology. It also manages validity, dependency and consistency of knowledge
processes.

API layer provides high-level interface for working with knowledge processes. It will provide
JavaBeans representation of tasks and processes and will also provide factory class for
creating and editing knowledge process and methods for saving/loading of a process from
database. API layer is of course fairly open thing and we can provide other representation of
knowledge process or modify API depending on our partners’ needs.
API layer will also maintain internal cache of processes in order to postpone updates to
SWKM until user finishes updating process or its components. This is of course optional and
will lower amount of communication with the knowledge database.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

52

Artefact view maintained by Knowledge artefact tool sometimes also displays tasks and
subtasks of a knowledge process. Because of this, it will probably also have to use API layer
to query for tasks and its parameters.

Presentation layer:
Presentation layer is mainly developed by TESSERA. This layer will tightly cooperate with
shared space component that will serve as container for knowledge process tools. JSF
Components will be implemented for visualizing the KP tools (Create, Delete, View/Update,
and Annotate) and call/invoke the necessary API methods/functions needed from the core
layer.

These components will be used in all three front-end portlets (process view, creation and
annotation). This way we ensure consistent look and usability across every knowledge process
tool. These components will be generic enough to allow them to be used both for viewing,
creation and modification of process or tasks.

JSF Components for annotation/description will be developed together with partners from
Knowledge artefact part. This will ensure that annotation of Knowledge artefact and
annotation/description of Knowledge process will have a consistent look.

In Process View portlet, user will be able to create or modify structure of process, create and
modify tasks and subtasks, modify their description and assign knowledge artefacts related to
specific task.

Process description portlet should look and behave similarly to description/annotation portlet
in Knowledge artefact tool and is of course used for describing tasks of a knowledge process.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

53

4.7 Shared Space Management Tools

Figure 16 presents the APIs of the KP-Lab shared space management tools.

Figure 16: The APIs of the Shared Space Management Tools are illustrated by the arrows.

In the following subsections, the API for the Shared space tools will be specified.
In order to view a shared space, the KP-Lab Portal Tool Shared Space browser is used. This
tool and its API was described in Section 4.1. The notation used in describing the API
methods is the same as in Section 4.1, i.e. such that the question mark (?) signifies optionality.
For those methods that return a Boolean value, true means that the method has succeeded and
false that it has failed. All of the methods belong to the class SharedSpace and must be applied
to an instance of an Object of the type SharedSpace. This avoids us from having to specify the
ID of the Shared space as a parameter to all of the methods.

4.7.1 Shared Space Constructor(Creator)/Deletor

Methods of the API:
SharedSpace(List<String> managerMember, String parentSharedSpaceUniqueName?)
Boolean delete()

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

54

The first method is the constructor method and the second method is a destructor method for
the Shared space. The constructor takes care of the uniqueness of the Shared Space ID. A
Factory class might also be provided instead of this simple constructor.

4.7.2 Shared Space Annotator

The Shared Space Annotator calls the Knowledge Annotator through an API that could
approximately look as follows:

Boolean annotateSS(String SharedSpaceUniqueName, String toAddName, Type type)

An Object of the type Type may be C (Content), KA (Knowledge Artefact), KP (Knowledge
Process) or SS (Shared Space). If an Object of the type Content is added to the shared space,
the Knowledge Annotator calls the Content Repository Services and a file import or creation
functionality is called and the content is stored into the Content Repository. The new content
is a Knowledge Artefact because it is composed of the content (the imported file) and of
metadata (the id of the shared space into which it was added, among others). If a KA, KP or
SS is added to the shared space, the functionality may result in either creating a copy or in
creating a reference. KAs in personal spaces are always copies and KAs in a collective space
may be either copies or references. However, a collective space may not contain a reference to
a KA in a personal space. In this case, a copy has to be made [D5.1].

 Dependencies to Core Services and APIs:
There is a dependency upon the Knowledge repository browser, such that: in order to
produce the GUI in which the user may define into which Shared space he wishes to
add something. If the user is copying or linking something from another shared space,
then the Knowledge repository browser service is needed in this phase also.

4.7.3 Information Management

Boolean updateInformation(List<String> managerMember?, List<String>
parentSharedSpaceUniqueName?, String spaceDescription?, String level?, DateFormat
startDate?, DateFormat endDate?, AccessDefaults access?)

An Object of the type AccessDefaults may be for example private (only members of the
space can read, add, modify, move, organize, delete... the content), protected (only
members can add, modify, delete the content, but a visitor can read it) or public
(everybody can do everything with the content). The managerMember List may not be
NULL because a shared space must have at least one managerMember. If the
parentSharedSpaceUniqueName List is empty, the default parent shared space – called the
root shared space - will be set as the parent of the shared space. This tool only sets default
access rights to different user groups or roles (in the case of the example, the groups were:
member, not member and anonymous). In order to set user specific access rights, the User
Management tool (see Section 4.7.4) is used.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

55

This method overwrites the information that is specified by the parameters and leaves
untouched those that are not specified.

4.7.4 User Management

Boolean AddUser(String username, Organization organization)
Boolean updateUserRights(String userName, Organization organization, UserRights
rights, ContentType type?, ID id?)
Boolean removeUser(String username, Organization organization)

An Object of the type UserRights is a combination of different rights: e.g. read, add, delete,
execute, comment. The Objects of the type Organization and ContentType are defined as
above in the other methods. ID is a unique identifier referring to a KA or KP. The user rights
may thus be set separately for a specific content type, e.g. all KAs or for a specific
KA.

4.7.5 Tool Management

Boolean allowTool(String toolUniqueName, ToolType type)
Boolean forbidTool(String toolUniqueName, ToolType type)

An Object of the type ToolType may be either portlet or link. If it is a portlet, then the tool
will be added as a portlet to the shared space. If it is a link, it will be added as a link to a
web page containing the tool or providing a download facility for the tool. From the
implementation point of view, the portlet containing the tool will be added to the portal
server.

5 Conclusions

5.1 Problems Encountered

The requirements process has turned out to be even more challenging than expected. The
requirements gathering through the co-evolution process and the work in design teams have
been challenging and somewhat delayed from the initial project plan. The problems
encountered have been documented in [D2.1].

The pedagogical scenarios focus on high level learning activities and do not lend themselves
to specific technical requirements required in the software design. Another problem with the
pedagogical and professional scenarios is their heterogeneity, which makes it difficult to
establish a shared understanding of functionality and features needed. In order to avoid
unacceptable delays, focused design groups with limited number of partners were established.
This allowed us to define more specific requirements on the expense that fewer scenarios were
covered.

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

56

5.2 Next steps

The decision on field trials for spring 2006 will be made by September 15, 2006. The user
stories describing these scenarios will be reviewed and finalised in collaboration between the
pedagogical partners of WP8 and the technical partners of WP6. This will allow us to freeze
the functional requirements for the release 1.
WP6 partners have already started the detailed planning of the design and implementation of
the software release 1. This will be finalised by September 15, 2006 with a detailed division of
labour and milestones for the development and implementation. Two intermediate integration
releases have been planned for mid-November and mid-December.
The release for first field trials will be available at the end of January 2007. WP6 partners will
provide necessary training and support for the users during the field trials.

6 Bibliography

[Abdelnur and Hepper 2003] Alejandro Abdelnur and Stefan Hepper: Java Portlet
Specification, Version 1.0. October 7, 2003.

[Adams 2003] Adams, M., Edmond, D., Hofstede, A.H.M.: The application of Activity
Theory to Dynamic Workflow Adaptation Issues. Proc. of the 7th Pacific Asia
Conference on Information Systems, July 2003, Adelaide, South Australia [AHM06] H.
Ahola and H. Markkanen. T4.3.1 Identity, Authorisation Management, and Security
Modeling: Survey on Shibboleth approach. KP-Lab internal deliverable for T4.3, April
2006.

[Barik 2005] Titus Barik, Introducing the Java Content Repository API http://www-
128.ibm.com/developerworks/java/library/j-jcr/index.html

[D2.1] KP-Lab project deliverable 2.1; http://www.kp-lab.org/intranet/work-
packages/wp2/deliverable-2.1/)

[D3.1]. Kp-Lab project Deliverable 3.1; http://www.kp-lab.org/intranet/work-
packages/wp3/deliverables/d3-1/).

[D5.1] Christophides, V., Kotzinos, D., Smrz, P., Furdik, K., et al.: Specification of the
SWKM Architecture (V1.0) and Core Services. KP-Lab Deliverable D5.1, July 2006.

[D8.1] KP-Lab project deliverable D8.1: “Scenarios and User Requirements for KP-Labs in
Education“, August 2006, http://www.kp-lab.org/intranet/work-
packages/wp8/deliverable-8.1/deliverable8-1.doc/view

[DT-1] Pedagogical and Professional Scenarios. http://www.kp-lab.org/intranet/design-
teams/pedagogical-and-professional-scenarios/

[DT-2] Multiprofessional teamwork and use of dynamic workflow tools. http://www.kp-
lab.org/intranet/design-teams/dt15-processes-and-artefacts/pedagogical-and-
professional-scenarios-of-dt-15/multiprofessional-teamwork-and-use-of-dynamic-
workflow-tool/ [WIKI-1] Design Principles.
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=Design Principles

HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
http://www-128.ibm.com/developerworks/java/library/j-jcr/index.html
http://www-128.ibm.com/developerworks/java/library/j-jcr/index.html
http://www.kp-lab.org/intranet/work-packages/wp3/deliverables/d3-1/
http://www.kp-lab.org/intranet/work-packages/wp3/deliverables/d3-1/
http://www.kp-lab.org/intranet/design-teams/pedagogical-and-professional-scenarios/
http://www.kp-lab.org/intranet/design-teams/pedagogical-and-professional-scenarios/
http://www.kp-lab.org/intranet/design-teams/dt15-processes-and-artefacts/pedagogical-and-professional-scenarios-of-dt-15/multiprofessional-teamwork-and-use-of-dynamic-workflow-tool/
http://www.kp-lab.org/intranet/design-teams/dt15-processes-and-artefacts/pedagogical-and-professional-scenarios-of-dt-15/multiprofessional-teamwork-and-use-of-dynamic-workflow-tool/
http://www.kp-lab.org/intranet/design-teams/dt15-processes-and-artefacts/pedagogical-and-professional-scenarios-of-dt-15/multiprofessional-teamwork-and-use-of-dynamic-workflow-tool/
http://www.kp-lab.org/intranet/design-teams/dt15-processes-and-artefacts/pedagogical-and-professional-scenarios-of-dt-15/multiprofessional-teamwork-and-use-of-dynamic-workflow-tool/
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=Design%20Principles

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

57

[Hakkarainen 2006a] Hakkarainen, K.: Scientific challenges of KP-Lab. Working papers of
the KP-Lab project. Available at the KP-Lab intra: http://www.kp-lab.org/intranet/work-
packages/wp3/background-materials/hakkarainen-scientific-challenges-of-kp-
lab.doc/view

[Hakkarainen 2006b] Hakkarainen, K.: Design challenges of KP-Lab. Working papers of the
KP-Lab project. Availabe at the KP-Lab intra: http://www.kp-lab.org/intranet/design-
teams/hakkarainen-design-challenges-of-kp-lab.doc/view

[Kropp et al., 2003] Alan Kropp, Carsten Leue, Rich Thompson (editors): Web Services for
Remote Portlets Specification. Approved as an OASIS Standard. August 2003.

Lawrence Erlbaum. Retrieved November 19, 2004, retrieved from
http://www.helsinki.fi/ktl/opiskelu/tt_mo_2006/PaavolaLipponenHakkarainen2004.pdf

[Marshall 1998] Catherine C Marshall, Toward an ecology of hypertext annotation,
Proceedings of the 9th ACM conference on Hypertext and Hypermedia 1998,
http://www.csdl.tamu.edu/~marshall/ht98-final.pdf

[Orenl 2006] Eyal Oren1 et al., Annotation and Navigation in Semantic Wikis,
http://eyaloren.org/pubs/semwiki2006.pdf

[Paavola 2006] Paavola S., Hakkarainen, K.: “Trialogical” Processes of Mediation through
Conceptual Artefacts. Technical Report for the KP-Lab consortium, University of
Helsinky, Finland, 2006

[Paavola et al 2004] Paavola, S., Lipponen, L., & Hakkarainen, K. (2002). Epistemological
foundations for CSCL: A comparison of three models of innovative knowledge
communities. In G. Stahl (Ed.), Computer supported collaborative learning:
Foundations for a CSCL community: Proceedings of the Computer Supported
Collaborative Learning 2002 Conference (pp. 24–32). Hillsdale, NJ:

Resource Description Framework (RDF). Concepts and Abstract Syntax. W3C
Recommendation, 10 February 2004.

[SHI06] About Shibboleth. http://shibboleth.internet2.edu/about.html
[TechWP-1] Technological WP. UML modelization of KP-Lab Concepts. http://www.kp-

lab.org/intranet/work-packages/technical-work-packages/meetings/toulouse-21-
6.2006/wp4-uml-modelization-of-kp-lab-concepts/

 [WIKI-2] User Stories. http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=CategoryUserStories
[WIKI-3] Use case: create a shared space.

http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=UseCaseCreateSharedSpace
[WIKI-4] Use case: Login http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=UseCaseLogin
[WIKI-5] Use Case: Manage Existing Shared Space.

http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=UseCaseManageExistingSharedSpace
[WP6-1] Shared space demo links. http://www.kp-lab.org/intranet/work-packages/wp6/shared-

space-demo/shared-space-demo-links/
[WP6-2] Mock-up requirements and design – Case: Project course at EVTEK v0.3

http://www.kp-lab.org/intranet/work-packages/wp6/shared-space-demo/mock-up-

HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
http://www.kp-lab.org/intranet/work-packages/wp6/shared-space-demo/shared-space-demo-links/
http://www.kp-lab.org/intranet/work-packages/wp6/shared-space-demo/shared-space-demo-links/
HYPERLINK
http://www.kp-lab.org/intranet/design-teams/hakkarainen-design-challenges-of-kp-lab.doc/view
http://www.kp-lab.org/intranet/design-teams/hakkarainen-design-challenges-of-kp-lab.doc/view
http://www.csdl.tamu.edu/~marshall/ht98-final.pdf
http://eyaloren.org/pubs/semwiki2006.pdf
http://shibboleth.internet2.edu/about.html
http://www.kp-lab.org/intranet/work-packages/technical-work-packages/meetings/toulouse-21-6.2006/wp4-uml-modelization-of-kp-lab-concepts/
http://www.kp-lab.org/intranet/work-packages/technical-work-packages/meetings/toulouse-21-6.2006/wp4-uml-modelization-of-kp-lab-concepts/
http://www.kp-lab.org/intranet/work-packages/technical-work-packages/meetings/toulouse-21-6.2006/wp4-uml-modelization-of-kp-lab-concepts/
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=CategoryUserStories
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=UseCaseCreateSharedSpace
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=UseCaseLogin
http://kplab.evtek.fi:8080/wiki/Wiki.jsp?page=UseCaseManageExistingSharedSpace
http://www.kp-lab.org/intranet/work-packages/wp6/shared-space-demo/shared-space-demo-links/
http://www.kp-lab.org/intranet/work-packages/wp6/shared-space-demo/shared-space-demo-links/
http://www.kp-lab.org/intranet/work-packages/wp6/shared-space-demo/mock-up-requirements-and-design/

IST-27490 (IP): KP-Lab – Knowledge Practice Laboratory D 6.1

58

requirements-and-design/
[WP6-2] Knowledge Process Tool Architecture http://www.kp-lab.org/intranet/work-

packages/wp6/architecture-of-the-m12-prototype/t65_arch_02.zip/view
[WP6-3] Knowledge artefact management - Technology survey http://www.kp-

lab.org/intranet/work-packages/wp6/t6-4-shared-space/knowledge-artefact-management-
tecnology-survey/

[WP6-5] Notes from WP6 meeting in Toulouse, http://www.kp-lab.org/intranet/work-
packages/wp6/coordination/meetings/wp6meetingtoulouse-3.ppt/view

HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
HYPERLINK
http://www.kp-lab.org/intranet/work-packages/wp6/shared-space-demo/mock-up-requirements-and-design/
http://www.kp-lab.org/intranet/work-packages/wp6/architecture-of-the-m12-prototype/t65_arch_02.zip/view
http://www.kp-lab.org/intranet/work-packages/wp6/architecture-of-the-m12-prototype/t65_arch_02.zip/view
http://www.kp-lab.org/intranet/work-packages/wp6/t6-4-shared-space/knowledge-artefact-management-tecnology-survey/
http://www.kp-lab.org/intranet/work-packages/wp6/t6-4-shared-space/knowledge-artefact-management-tecnology-survey/
http://www.kp-lab.org/intranet/work-packages/wp6/t6-4-shared-space/knowledge-artefact-management-tecnology-survey/
http://www.kp-lab.org/intranet/work-packages/wp6/coordination/meetings/wp6meetingtoulouse-3.ppt/view
http://www.kp-lab.org/intranet/work-packages/wp6/coordination/meetings/wp6meetingtoulouse-3.ppt/view

	Executive Summary
	1 Introduction
	2 Requirements
	2.1 Overview of the requirements process and artefacts
	2.2 Motivating pedagogical scenario
	2.2.1 Scenario description
	2.2.2 Trialogical features of the pedagogical scenario

	2.3 High-level functional requirements
	2.3.1 Shared Space
	2.3.2 Views
	2.3.3 Knowledge artefact
	2.3.4 Knowledge process
	2.3.5 Linking
	2.3.6 Commenting
	2.3.7 Adding semantic metadata
	2.3.8 Content tools for knowledge artefacts
	2.3.9 Community
	2.3.10 Non-functional requirements

	3 Functionality
	3.1 The KP-Lab Portal
	3.2 The Knowledge Artefact Tool
	3.3 Annotation Tool
	3.4 Other KA tools / editors
	3.5 Knowledge Process Tools
	3.6 Shared Space Management Tools
	3.6.1 The Shared Space Creator
	3.6.2 The Shared Space Annotator
	3.6.3 Information Manager
	3.6.4 User Manager
	3.6.5 Tool Manager

	4 Architectural design
	4.1 Overall architecture
	4.2 The Portal Level Tools
	4.2.1 API Specifications for some of the Portal Functionalities
	4.2.1.1 Authentication/Login Service
	4.2.1.2 User Registration Service
	4.2.1.3 Shared Space Browsing Service

	4.3 The Core Services
	4.3.1 Knowledge Browser
	4.3.2 Knowledge Annotator
	4.3.3 Knowledge Repository Services
	4.3.4 Content Repository Services
	4.3.5 User DB Services

	4.4 The Data Tier
	4.5 Knowledge Artefact Tools
	4.5.2 Content Repository
	4.5.3 Knowledge Artefact Manager
	4.5.4 KA Mapper

	4.6 Knowledge Process Tools
	4.7 Shared Space Management Tools
	4.7.1 Shared Space Constructor(Creator)/Deletor
	4.7.2 Shared Space Annotator
	4.7.3 Information Management
	4.7.4 User Management
	4.7.5 Tool Management

	5 Conclusions
	5.1 Problems Encountered

	6 Bibliography

