
HAL Id: hal-00593208
https://hal.science/hal-00593208v1

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KP-LAB Knowledge Practices Laboratory –
Specification of the SWKM Architecture (V1.0) and

Core Services
Vassilis Christophides, Dimitris Kotzinos, Yannis Tzitzikas, Nicolas Spyratos,

Hanen Belhajfrej, Mamadou Nguer, Jan Paralic, Karol Furdik, Peter
Smatana, Martin Sarnovsky, et al.

To cite this version:
Vassilis Christophides, Dimitris Kotzinos, Yannis Tzitzikas, Nicolas Spyratos, Hanen Belhajfrej, et al..
KP-LAB Knowledge Practices Laboratory – Specification of the SWKM Architecture (V1.0) and Core
Services. 2006. �hal-00593208�

https://hal.science/hal-00593208v1
https://hal.archives-ouvertes.fr

27490

KP-LAB

Knowledge Practices Laboratory

Integrated Project

Information Society Technologies

T5.1. Specification of the SWKM Architecture (V1.0) and Core Services

Due date of deliverable: 31/07/2006
Actual submission date: 31/07/2006

Start date of project: 1.2.2006 Duration: 60 Months

Organisation name of lead contractor for this deliverable: ICS-FORTH

Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Dissemination Level
PU Public PU

Participants
Partner Parther’s

short name
Participant Email

ICS-FORTH Vassilis Christophides christop@ics.forth.gr
ICS-FORTH Dimitris Kotzinos kotzino@ics.forth.gr
ICS-FORTH Yannis Tzitzikas tzitzik@ics.forth.gr
LRI-ORSAY Nicolas Spyratos spyratos@lri.fr
LRI-ORSAY Hanen BelhajFrej hanen@lri.fr
LRI-ORSAY Mamadou Nguer nguer@lri.fr
TUK Jan Paralic Jan.Paralic@tuke.sk
TUK Karol Furdik kfurdik@stonline.sk
TUK Peter Smatana Peter.Smatana@tuke.sk
TUK Martin Sarnovsky Martin.Sarnovsky@tuke.sk
TUK Peter Bednar Peter.Bednar@tuke.sk
UEP Pavel Smrz smrz@fit.vutbr.cz
UEP Vilem Sklenak sklenak@vse.cz
UEP Vojtech Svatek svatek@vse.cz
UEP Martin Kavalec kavalec@vse.cz
UEP Martin Svihla svihla@vse.cz

Version history
Version Date Author(s) Description
0.5 15/06/2006 Vassilis

Christophides
First draft

0.8 14/07/2006 Dimitris Kotzinos Second Draft
0.9 15/07/2006 Pavel Smrz Text Mining Services added
0.95 20/07/2006 Karol Furdik Text Mining Services

enriched
0.98 24/07/2006 Dimitris Kotzinos Integration
1.0 31/07/2006 FORTH Final

HYPERLINK
HYPERLINK
mailto:hanen@lri.fr
mailto:nguer@lri.fr

Table of Contents

 Table of Contents..3
 Executive Summary ...4
1 Introduction ...5
2 Motivating Scenario for ‘Trialogical’ Learning ...6

2.1 Knowledge Artefacts .. 9

2.2 ‘Trialogical’ Learning Activities and Interactions ... 10

2.3 Shared Knowledge Spaces .. 12

3 Knowledge Creation Processes and Trialogical Learning...........................13
4 Functionality of the Semantic Web Knowledge Middleware (SWKM)15

4.1 Overview.. 15

4.2 Knowledge Repository [ICS-FORTH] ... 16

4.2.1 RDF/S Namespaces and Graphspaces... 16

4.2.2 Knowledge Storage Tuning and APIs .. 17

4.2.3 Knowledge Query and Update Languages .. 17

4.3 Knowledge Mediator [ICS-FORTH] .. 18

4.3.1 Knowledge Discovery.. 18

4.3.2 Knowledge Evolution... 18

4.4 Knowledge Matchmaker... 19

4.4.1 Knowledge Recommendation [LRI-ORSAY].. 19

4.4.2 Knowledge Mining [TUK, UEP].. 20

5 Architectural Design of the SWKM Prototype..21
5.1 Overview.. 21

5.1.1 The Main Memory Model... 22

5.1.2 Listener ... 24

5.2 Knowledge Repository Services... 25

5.2.1 Query Service.. 25

5.2.2 Update Service.. 25

5.2.3 Export Service... 26

5.2.4 Import Service ... 27

5.3 Knowledge Manager Services.. 28

5.3.1 Object Exchange Service .. 28

5.4 Knowledge Mediator Services .. 29

5.4.1 Registry Service .. 29

5.4.2 Comparison Service .. 30

5.4.3 Versioning Service .. 30

5.4.4 Change Service... 31

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

5.5 Knowledge Matchmaker Services .. 32

5.5.1 Preference Services .. 32

5.5.2 Text Mining Services ... 34

 Bibliography ..40

Executive Summary
The objective of WP5 is to develop a generic middleware supporting knowledge
management services for ‘trialogical’ learning applications. More precisely, the KP-
Lab Semantic Web Knowledge Middleware (SWKM) aims to facilitate knowledge
creation processes by supporting advanced interactions of collaborating learners (or
workers) with knowledge artefacts (i.e. discovery, access, evolution, recommendation
and mining). In this deliverable we present the high-level functionality of SWKM
along with the Service-Oriented Software Architecture of the prototype system that
will be developed by M12 (V 1.0) and the subsequent phases of the project. The
proposed architecture broadly distinguishes three generic modules of the SWKM, i.e.
the Knowledge Repository – responsible for the provision of scalable persistence
services for large volumes of knowledge artefacts’ descriptions and ontologies; the
Knowledge Mediator – responsible for the provision of services handling the main
registry, discovery and evolution for KP-Lab knowledge artefacts; and the Knowledge
Matchmaker – responsible for the provision of services that support interactions of
KP-Lab users with knowledge artefacts employing their semantic descriptions. The
services corresponding to each one of these modules are described along with the
proposed functionality for each one, based upon the motivating scenarios and the
subsequent definition of the key concepts of Trialogical Learning.

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

1 Introduction

Classical learning theories are based either on the knowledge acquisition metaphor
(i.e. a learner individually internalizes a body of knowledge) or on the social
participation metaphor (i.e. a group of learners collaboratively appropriate a body of
knowledge). Although widely accepted, these theories do not sufficiently capture
innovative practices of both learning and working with knowledge (i.e. knowledge
practices). Only sharing of knowledge in action, i.e., sharing the process of learning
itself, is a reliable base for developing a shared cognition (seen both as a group and an
individual characteristic). In this context, the emerging theory of “Trialogical
Learning” (TL) focuses on the social processes by which learners collectively
enrich/transform their individual and shared cognition. According to TL, knowledge
creation activities rely heavily on the use, manipulation and evolution of shared
knowledge artefacts externalizing a body of (tacit or explicit) knowledge [Paavola et
al 2004]. By representing their cognitive structures or knowledge practices under the
form of artefacts, individual learners can interact among themselves as well as with
external tools (e.g. computers, information resources) to negotiate the meaning of
concepts and signs embodied in these artefacts and thus, finally reach a common
understanding of the problem at hand. In order to communicate and meaningfully
interpret their individual viewpoints, cooperating learners need to agree on a common
conceptual frame of reference.

A natural candidate for establishing such a shared conceptual framework (between
humans but also machines), and making meaning explicit (by definition and context),
is the notion of ontologies [Gruber 1997], [Uschold et al 1996]. An ontology provides
the means to define a basic vocabulary of terms, as well as, to specify (to a certain
degree) their meaning. This includes definitions of concepts and how they are inter-
related; these concepts collectively impose a structure on a domain of discourse and
constrain the possible interpretations of terms. Unlike traditional approaches that
conceive ontologies as thorough engineering artefacts objectifying a body of
knowledge (and thus separate them from their original social context of creation to
transfer them across the domain), in TL ontology use, creation and evolution can be
seen as an adequate socially determined activity where learners constantly interact in
order to grasp and negotiate meaning between their individual and group
conceptualizations. Shared ontologies would thus become an emergent effect of open-
ended interactions within or across groups of individuals as opposed to being a firm
commitment of a closed group of domain experts following strict design processes
and policies [Aberer et al 2004].

It should be stressed that knowledge artefacts are omnipresent in TL processes since
they mediate all activities and tasks conducted by the learners. Knowledge artefacts
essentially capture and preserve the socially shared knowledge within a community
and could take various forms. They range from physical resources and tools like
documents (e.g. a survey paper), software code or concept maps and ontologies shared
by a group to less tangible (i.e. conceptual) artefacts like plans to scientific theories
and languages. Hereafter, we shall use the term knowledge artefact to refer to
resources produced/consumed by a group of learners as long as they are appropriately

described (i.e. annotated) according to the semantics codified in one or several
ontologies. It is worth noticing that ontologies (taxonomies, concept maps, or domain
models) are also considered as artefacts themselves capturing more or less formal
forms of knowledge and thus can in turn be described and discovered using other
ones. The KP-Lab Semantic Web Knowledge Middleware (SWKM) under
development in WP5 aims to support advanced interactions of learners (or knowledge
workers) with knowledge artefacts.
In this deliverable we present the high-level functionality of the three SWKM
components, namely:

Knowledge Repository, offering scalable persistence services for large
volumes of KP-Lab knowledge artefacts,
Knowledge Mediator, providing the main registry, discovery and evolution
services for KP-Lab knowledge artefacts,
Knowledge MatchMaker, supporting advanced interactions of KP-Lab users
with knowledge artefacts through appropriate recommendation, and mining
services,

along with the Service-oriented Software Architecture of the prototype system that
will be developed by M12 (V 1.0) and the subsequent phases of the project.

2 Motivating Scenario for ‘Trialogical’ Learning

In this section, we briefly present one of the scenarios (Creating, Re-using and
Evolving Knowledge Artefacts) proposed by KP-Lab design teams (DT5) and outline
the main interaction modes and knowledge spaces, as well as the activities involved in
knowledge creation processes.

Let us assume that a project team (a group of students or professionals) is engaged in
solving a complex and often ill-structured problem that requires a lot of expertise in
disparate domains. The assignment was posed (by an instructor or client) during an
initial face-to-face meeting and both parties were engaged in negotiations (in
subsequent physical or virtual meeting) about what the project is meant to achieve and
how team work will be organized (in sub/groups with partitioned or overlapping
tasks).

Bootstrapping Step: The problem in the initial stage is still very vague, and, the
instructor (or client) provides team members with an amount of digital (or non-
digital) artefacts (e.g. papers, reports) as background knowledge on the project
assignment. Past knowledge practices (under the form of recorded audiovisual
sessions) can also be used in this respect. Whenever possible, the instructor (or
client) can additionally provide an initial concept map (visualized through a user
friendly interface) highlighting the core notions, processes or agents involved in
the problem to be addressed. In a first step, each group member is responsible for
evaluating the already provided background material with respect to its
applicability and usefulness in the project. Learners start working (personal space)
on the available knowledge artefacts to clarify project needs and requirements
until the next team meeting (group space). For instance, a preliminary useful task
could be the classification (i.e. annotation) of the proposed knowledge artefacts
according to the concept map provided by the instructor (assistance from tools can
be considered in this respect). When such preliminary conceptualizations are not
given, learners could alternatively search for ontologies or classification schemas

employed in a relevant domain or professional community in order to
progressively refine them. In both cases multiple ontologies could be used to shed
light on different angles of a common problem tackled by the group.
Team Cooperative Work: The subject of the teamwork is the join development of
knowledge artefacts (either from scratch or by relying on existing ones) related to
the problem at hand through a progressive inquiry process. During this process,
learners are interacting via multiple physical or virtual meetings (e.g.
synchronous, asynchronous) to grasp and negotiate meaning between their
individual and group problem understanding. Different interim versions of the
produced knowledge artefacts can coexist both under the personal or group
knowledge space allowing team members to work either on the same shared
artefacts or on their personal counterparts. At each project phase, these versions
capture the evolution of the individual or group knowledge within a team. In this
multi-step process, learning is not limited to an individual knowledge acquisition
neither to a simple group interaction, but involves shared efforts of advancing
team ideas and transforming the underlying social practices. For instance, the
competent use of a conceptualization quite often also requires understanding the
rationale on which it is build, its underlying theoretical foundation, as well as its
historical evolution. In order to grasp the provisional character of ontologies
learners might start developing a rather sophisticated set of epistemological beliefs
themselves. Furthermore, when multiple conceptualizations are employed (to
codify complementary viewpoints of the problem under investigation), learners
are engaged in a profoundly reflective activity tackling the theoretical foundation
of the employed conceptualizations (i.e. their meta-models). Last but not least,
when a shared conceptualization is collaboratively formed from individual ones
(to reach consensus on the concepts and relations that are relevant to the task at
hand), learners are constantly exposed to cognitive conflicts or helps to unravel
prevalent misunderstandings. Such efforts may even result in the revision (or
contraction) of the conceptualizations given or chosen at some project phase. In all
these cases, reconstruction of individual cognition requires a profound and mutual
understanding of collaborators' interpretations of the problem. Thus, learners
could take benefit from advanced tools support to access, compare or merge
shared knowledge artefacts (described resources, taxonomies, concept maps, or
domain models). Finally, a team may resort to the expertise of an external group
by subscribing its preferences (relative to a similar or complementary problem)
over the shared knowledge artefacts’ space; the team will be notified about
suitable recommendations when new knowledge artefacts pertaining to these
preferences have been made available by other experts or peer colleagues.
Team Work Outcome: At the end of each project meeting (seen as a milestone) the
team summarizes its intellectual achievements under the form of elaborated
concept maps (or ontologies) and document reports. Furthermore the team reviews
the collection of sketches, prototypes and notes in order to reflect on their own
work and to outline their lessons learned by this working/learning experience.
Some clearly central but yet unresolved questions, and linked information
resources, are also specifically pointed out for future work in later phases of the
project.

Figure 2.1: A motivating scenario for Trialogical Learning

2.1 Knowledge Artefacts
The type and form in which knowledge is shared influence strongly the process of
building a shared understanding of the problem at hand and hence the effectiveness of
learning. As already pointed out in the literature [Anderson 1975], knowledge may be
of several types, each of which may be made explicit. Knowledge about something is
called declarative knowledge. A shared, explicit understanding of concepts,
categories, and descriptors lays the foundation for effective communication and
knowledge sharing in organizations. Knowledge of how something occurs or is
performed is called procedural knowledge. Shared explicit procedural knowledge lays
a foundation for efficiently coordinated action in organizations. Knowledge why
something occurs is called causal knowledge. Shared explicit causal knowledge, often
in the form of organizational stories, enables organizations to coordinate strategy for
achieving goals or outcomes. More generally, there exist four analytically distinct but
in practice interrelated discourses on knowledge in various social sciences [Sørensen
et al 2002]:

knowledge as object: knowledge is seen as a representation of a pre-given world
(objectification) while human intelligence can be seen as information processing
and rule-based manipulation of symbols.

o the fundamental assumption is that the world is pre-given, and its aim is to
create the most accurate or ‘truthful’ representations of this objective
world (cf. acquisition metaphor of learning).

knowledge as interpretation: knowledge is associated with human intersubjective
interpretations and dependent very much on ‘the point of observation’ of the
interpreter and that the process of interpretation simultaneously shapes and is
shaped by social reality

o The fundamental assumption is that knowledge is brought forth through
the creative (and communicative) act of human cognition and
interpretation (cf. participation metaphor of learning; social discourse).

knowledge as relationship: knowledge does not exist in an isolated state in the
objective world, but rather resides within a variety of (socialcultural) contextual
factors that are inseparably connected with a body of knowledge.

o can be seen as an interconnected web of relationships in which human
interpretative acts ceaselessly shape and maintain, both intentionally and
unintentionally, the relational setting of the web and contextual disposition
of the social reality (cf. participation metaphor of learning; interaction with
environment).

knowledge as process: knowledge is not a static entity but the manifestation of a
dynamic process of ‘knowing’ by which human beings make sense of the world
and reality by using external artefacts which augment intelligent activity.

o there exists neither subject nor object that can be isolated from reality itself
and both subject and object are intrinsically bound to an ongoing processes
of transition of reality (cf. knowledge-creation metaphor of learning).

In this context, the two main forms of human knowledge are explicit and tacit
[Polanyi 1966]. Tacit knowledge resides mainly within individuals’ mind and cannot
easily be expressed, codified, or explicated (e.g. embodied knowledge, intuition).
Examples of tacit knowledge include

knowledge embedded in skills, i.e., rules, procedures, and know-how, that may be
difficult to verbally explicate (procedural skills);

informal knowledge that encapsulates theoretical knowledge organized around
problems and cases, for instance how to approach and solve problems;
knowledge embedded in regular and predictable patterns of organizational
activities (e.g. an intuitive grasp of the relevance of data that an organization
should focus on and provides a basis for an inimitable competitive advantage).

On the other hand, explicit knowledge is the knowledge that has been or can be
articulated, codified, and stored in certain media and thus, can easily be accessed and
shared. The most common forms of explicit knowledge are manuals, documents,
procedures, and stories (but also audio-visual information). Works of art and product
design can be seen as other forms of explicit knowledge where human skills, motives
and knowledge are externalized. The objective of the KP-Lab Semantic Web
Knowledge Middleware (SWKM) is to provide generic management services for
capturing and archiving; discovering and accessing; combining, modifying and
tracking [Ernst and Young 1997]) knowledge artefacts which encode more or less
formal forms of explicit knowledge (i.e. declarative, procedural and causal). In
particular, KP-Lab abstracts from the various media types employed to encode
explicit knowledge by considering information resources that are uniquely identified
(e.g. by a URI) and appropriately described according to the semantics of a domain of
discourse (e.g. an ontology).

2.2 ‘Trialogical’ Learning Activities and Interactions
TL emphasizes on the intrinsic collaborative nature of innovative practices for both
learning and working with knowledge. Learning is viewed as a social process in
which learners collectively enrich and transform both their individual and shared
understanding. The main question in this context is how shared knowledge artefacts
(or more generally objects of activity) are collaboratively formulated and developed
by using mediating information resources, signs and tools. As a matter of fact,
artefacts are developed and exploited in ways such that they can mediate certain
activities within a community of practice and hence artefacts become an intrinsic part
of this community. These artefacts are employed to alter, extend or preserve group
knowing, sense-making or decision-making [Stahl 2003]. Sharing artefacts can be
viewed as a collective group problem-solving activity for the purpose of aiding,
enhancing, or improving individual and group cognition [Hutchins 1995]. Artefacts
are created, used or evolved within a cognitive space and a socio-cultural environment
and they are employed by the learners to configure and facilitate group decision-
making, thinking and communication [Spillers et al 2003]. In this context, learners are
interacting with themselves as well as with mediating (material or conceptual)
artifacts in order to shape a common understanding and thus as a first step internalize
a body of knowledge. This knowledge is externalized in the sequel under the form of
personal or group knowledge artefacts. In TL scenario described previously we can
distinguish three basic modes of knowledge artefact mediated group interaction
[Stoyanova et al 2002]:

Peer interaction: Group members work autonomously (asynchronous activity) and
produce intermediate knowledge artefacts embodying their individual mental
constructs and precepts (personal space) that are made available in the sequel to
their peer colleagues. This loop is repeated until all group members reach a
common vision of the problem. The process of knowledge acquisition, creation
and internalization is individual.

Moderated interaction: Interaction is facilitated by a group moderator (the role is
taken by one of the group members) who is adjusting individually produced
artefacts until a common group vision is reached. The representations of
individual cognitive structures are not directly accessible but group members are
involved in the process (synchronous/asynchronous activity) of negotiation of
meanings and ideas that take place between them and the moderator (shared
dialogue and interpretation).
Shared interaction: Group members interact directly (synchronous activity) and
pursue common efforts to solve the problem as a group (group space). They share
their knowledge in action. Knowledge is communicated in the process of its
appropriation and creation. Collaborative actions of learners are the individual
inputs toward a shared cognition.

Moreover, based on activity theory [Vygotsky 1978], [Leontiev 1978], [Engeström
1999], temporal coordination of an activity is itself an activity. The object of an
activity can be another activity and temporal coordination is thus in itself an activity,
which seeks to integrate distributed collaborative actions. The dynamic nature of any
activity implies that temporal coordination can be achieved both as an action within
the overall collaborative activity and as an activity in itself directed towards another
collaborative activity. In this sense coordination can be achieved both intrinsically
within a group of collaborating actors sharing the same artefact – i.e. the actors
organize and coordinate the actions themselves – and extrinsically to the group – i.e.
the actions are organized and coordinated by someone outside the group. In particular,
there exist three distinct levels of collaborative work [McGrath et al 1986]:

Synchronization is an ad hoc effort aimed at ensuring that action “a”, by person
“i”, occurs in a certain relation to the time when action “b” is done by person “j”
according to the conditions of collaborative activity. Because synchronization is
tied to the conditions of the activity, synchronization corresponds to the
operational level of temporal coordination.
Scheduling is to create a temporal plan by setting up temporal goals (i.e.
deadlines) for when some event will occur or some product will be available, and
is thus the anticipatory (action) level of temporal coordination.
Allocation is to decide how much time is devoted to various activities. The
essence of allocation is to assign resources according to the overall motives of the
collaborative work setting and hence reflects a temporal priority according to
different motives. Thus, allocation is the intentional (activity) level of temporal
coordination.

As any other activity, temporal coordination is also mediated by artefacts [Bardram
2000]. The coordination of activities in time essentially determines when some event
will occur or some results will be available in relation to other activities and actions.
A particular effective way to do this is to establish starting times and deadlines
according to some external and socially shared time measurement. Hence, a temporal
artefact, such as the clock or the calendar, can be turned into a temporal coordination
artefact, mediating the temporal coordination, when shared within a collaborating
community of practice. The practical process of realizing temporal coordination
cannot be detached from the conditions of the concrete situation. Temporal
coordination is shaped according to the conditions of its object (i.e. the collaborative
activity it tries to coordinate in time) and the conditions of the socio-cultural
environment in which it takes place (e.g. an educational or organizational setting).

SWKM relies on ontologies in order to support interactions among learners and
knowledge artefacts involved in learning processes. Ontology-based interactions
include but are not limited to the ones that deal with organizing or annotating shared
artefacts created by an individual or a group as well as sorting, classifying and
retrieving background knowledge artefacts relevant to the problem at hand. Several
ontologies will be used to capture declarative (about), procedural (how), causal (why)
or temporal (when) knowledge regarding a problem addressed by a group. Moreover,
ontologies themselves might be possibly formed collaboratively based on the
individual conceptualizations, if a consensus on the concepts and relations that are
relevant to the task at hand can be reached. The objective of the KP-Lab SWKM is to
support ontology-based interactions inside both personal and group (or subgroup)
knowledge spaces equipped with appropriate user roles and access rights.

2.3 Shared Knowledge Spaces
Collaborative “knowledgeware” technologies aim to amplify trialogical processes of
learning and working with shared knowledge artefacts of inquiry. This may take place
through computer-based environments that are structured around shared spaces for
creating and storing, annotating and disseminating, discussing and evolving
knowledge artefacts. Rather than two relatively independent cognitive systems which
simply exchange messages, both personal and group spaces are viewed as a cognitive
system per se with is own properties i.e., a shared space. In particular, KP-Lab shared
spaces aims to capture various kinds of knowledge (objectified, interpretative,
relationship, process) shared by a community of practice.

Shared knowledge spaces are composed of personal and (sub-) group spaces allowing
to access (i.e. store, annotate, retrieve) and manipulate (i.e. compare, evolve, version)
the knowledge artefacts produced/consumed by a group. More precisely, the personal
space comprises knowledge artefacts (i.e. information resources and
conceptualizations) either given by the instructor or discovered by the learners
themselves according to the tasks assigned at a certain project phase. Having these
knowledge artefacts at hand, each learner may use them exclusively within his
personal workspace (e.g. to organize the object space), and/or share them with other
peer colleagues in order to be further discussed, criticized, and evaluated (e.g. the
interpretative space). In this context, exploring and providing feedback about interim
versions of a knowledge artefact that has been made available by others is a first task
for building a shared understanding about the working problem. On the other hand,
the group space contains only those knowledge artefacts (eventually more than one
when complementary viewpoints are required by the problem at hand) for which
members had agreed (e.g. the relationship space).

In order to reach consensus on a group knowledge artefact, learners are interacting
among themselves as well as with the knowledge artefacts (as described previously)
available in both personal and group spaces (i.e. the process space). The shared space
essentially provides the means to devise group knowledge artefacts conversationally
by supporting appropriate (meeting) tools to discuss and record argumentation
regarding concepts’ specifications. Additionally, it may provide tools to negotiate the
meaning of commonly specified concepts by inspecting the effect of the proposed
changes when personal ontologies are mirrored to the group one. Going one step
further, shared space tools could also assist learners to come up with some decision,

for instance when an individual suggestion is either accepted by all or by most of peer
colleagues.

Any group member can make available to the shared space a new knowledge artefact,
by specifying the appropriate access rights as well as by describing its subject, scope
and purpose. Inversely, any collaborator can replicate in his personal space an artefact
version developed by others, re-specify, change, enrich, compare, merge it with her
own, exploit it, and publishing it back to the shared space by posting new issues,
arguments and so forth. The latter may also include the possibility to inspect the
impact to personal knowledge artefacts of an interim group conceptualization.
Thus, a shared knowledge space is a virtual collaboration space offering facilities for
interacting with knowledge artefacts during a cooperative learning (or working)
process along with graphical tools for representing and accessing the involved
artefacts, processes and participants. To support a collaborative building of knowing,
shared knowledge spaces should provide functionality for:

Social interaction: facilitating complex interactions, coordinating learning tasks,
helping participants to maintain an overview of them, allowing participants to
negotiate group decisions and knowledge building.
Social awareness: displaying or comparing alternative interpretations of different
participants in collaboration and keeping track of who knows or does what, when,
where.
Social decision support: producing, integrating, and synthesizing diverse
interpretations of a problem at hand so that all participants can come to respect
and understand the differences caused by diverse viewpoints and interests of the
contributing group members, and there can be a movement towards consensus on
at least some of the issues involved.
Personal and group knowledge management: annotating, archiving and accessing
knowledge artefacts that arise in group interactions, including argumentation from
broad discourses, and organize them in a flexible way according to various
perspectives for further manipulation and sharing.

3 Knowledge Creation Processes and Trialogical Learning

Knowledge creation is at the heart of TL and in general of knowledge development
(including also knowledge adoption, distribution, review and revision) within an
organization [Bhatt 2000]. A popular model1 considers knowledge creation as a
process including four conversion patterns [Nonaka & Takeuchi, 1995]: socialization,
which involves sharing tacit knowledge between individuals, externalization, as tacit
knowledge is articulated or translated into readily understandable forms (explicit),
combination, the conversion of explicit knowledge into more complex sets of explicit
knowledge, and internalization, where people identify explicit knowledge that is
relevant to their work and apply it in their actions and practices (tacit knowledge).
Although knowledge is created and transformed spirally at various levels (individual,
group, organizational or inter-organizational), the individual remains at the kernel of a
knowledge creation process because new ideas emerge only through their cognitive
efforts. Since knowledge creation aims to enrich and deepen the knowledge of
participating learners (or workers), it is important to investigate how they can develop

1 Employed by several EU projects such as OntoKnowledge, OntoWeb, Onto-Logging,
KnowledgeWeb, PROLEARN, etc.

tacit knowledge that would facilitate the creation of new explicit knowledge. As a
matter of fact, to capture the intrinsic cooperative nature of the teamwork presented in
the TL scenario of Section 2 we need more expressive frameworks such as [Kukkonen
2001] which distinguishes between the following four activities: comprehension, as a
complex process of surveying and interacting with the social context as well as
integrating with background knowledge to identify problems, needs and opportunities,
communication, for exchanging knowledge artefacts, conceptualization, as a
reflection process articulating tacit knowledge to form explicit conceptualizations, and
finally collaboration, which is the team interaction using the produced/consumed
knowledge artefacts (see also Figure 3.1). Comprehension and communication are
similar respectively to internalization and socialization, while conceptualization
includes both externalization and combination. Collaboration now is viewed in TL as
a process of innovative inquiry where the aim is to progressively expand one's
knowledge and skills based on social interaction, decision support and awareness. It is
characteristic of this kind of knowledge advancement that it takes place within
innovative knowledge communities rather than only within individuals (although
individuals with different skills have an important role) [Paavola et al 2004]. Building
and maintaining a shared conception (understanding) of a problem at hand is both a
group and an individual characteristic while possesses personal meaning for each
group member. All knowledge artefacts and pieces of the shared conception are
meaningfully integrated into the cognitive structure of collaborators and are
interpreted on a similar frame of reference.

Figure 3.1: Knowledge Management Aspects in Trialogical Learning

In the context of SWKM, ontologies [Gruber 1997], [Uschold et al 1996] are
employed to capture such a shared conceptual framework (between humans but also
machines), and make meaning explicit (by definition and context). An ontology

provides the means to define a basic vocabulary of terms, as well as, to specify (to a
certain degree) their meaning. This includes definitions of concepts and how they are
inter-related, which collectively impose a structure on a domain of discourse and
constrain the possible interpretations of terms. Unlike traditional approaches that
conceive ontologies as thorough engineering artefacts objectifying a body of
knowledge (and hence separate them from their original social context of creation to
transfer them across the domain), in TL ontology use, creation and evolution can be
seen as an adequate socially determined activity where learners constantly interact in
order to grasp and negotiate meaning between their individual and group
conceptualizations. Ontologies would thus become an emergent effect of open-ended
interactions within or across groups of individuals as opposed to be a firm
commitment of a close group of domain experts following strict design process and
policies [Aberer et al 2004]. We believe that a TL perspective is particularly useful
when the original community evolves either because members leaving and entering at
free will or because their commitments are changing, and thus a new consensus may
shape up invalidating the knowledge already codified in the original ontology
[Mika2004].

Hereafter, we shall use the term knowledge artefact to refer to information resources
produced/consumed by a group of learners as long as they are appropriately described
(i.e. annotated) according to the knowledge codified in one or several ontologies. It is
worth noticing that ontologies (taxonomies, concept maps, or domain models)
themselves are also knowledge artefacts and thus can in turn be described and shared
using other ontologies. Knowledge artefacts of a TL activity are subject of an endless
re-interpretation and interactive articulation by a collaborating group of learners (or
workers). To support cooperative teamwork, SWKM will provide advanced
interaction services with knowledge artefacts encoded using Semantic Web (SW)
languages (e.g. RDF/S, OWL). These services are offered by the following tree main
SWKM components:

Knowledge Mediator: provides the main registry, discovery and evolution services
for knowledge artefacts. It essentially mediates access to and changes of
knowledge artefacts by employing personal or group conceptualizations under the
form of RDF/S ontologies.

Knowledge MatchMaker: supports advanced knowledge recommendation and
mining services for knowledge artefacts. It essentially enables to match
information resources with the employed ontologies as well as knowledge
artefacts produced/consumed within a group according to various learners’
preferences.

Knowledge Repository: offers scalable access (querying/updating,
loading/exporting) services for large volumes of RDF/S resource descriptions and
schemas stored in a persistent store.

4 Functionality of the Semantic Web Knowledge Middleware
(SWKM)

4.1 Overview
The Semantic Web Knowledge Middleware (SWKM) is responsible for providing the
means to the rest of the tools to create, store and subsequently retrieve, share and

transfer knowledge. These functionalities will be implemented by WP5 in terms of the
appropriate services, as can be seen in Figure 4.1. This array of services is based on
the proper use of namespaces and graphspaces (see section 4.2.1) and is broken to
three conceptual and also development modules:

the knowledge repository,
the knowledge mediator, and,
the knowledge matchmaker,

which are further explained in the subsequent sections.

Figure 4.1: SWKM Services for Knowledge Management

4.2 Knowledge Repository [ICS-FORTH]

The Knowledge Repository will provide scalable persistence services for large
volumes of knowledge artefacts’ descriptions and ontologies. Access and
manipulation will be supported by declarative query [Karvounarakis et al 2003], view
[Magkanaraki et al 2004] and update [Magiridou et al 2005] SW languages exhibiting
important optimization opportunities. Compared to API-based knowledge application
development, the languages supported by the Knowledge Repository aim to satisfy the
requirements of SWKM services and KP-Lab applications for expressiveness (the
ability to express accurately what the query/update initiator wants), generality (the
ability to implement easily new query/update functionality) and performances (the
ability to respond in a fast way to a query/update request). The repository will be built
upon the FORTH-ICS RDFSuite open source platform2.

2 http://139.91.183.30:9090/RDF/

4.2.1 RDF/S Namespaces and Graphspaces
The descriptions of knowledge artifacts as well as their involved conceptualizations
will be in represented and handled in SWKM as RDF/S schemas and resource
descriptions (OWL extensions will be considered in the later phases of the project). In
order to support personal and group knowledge management based on multiple
conceptualizations (i.e. ontologies) the knowledge repository should be able to
distinguish schemas and descriptions according to the actors (individual or group)
involved in their creation. To this end, the SWKM knowledge repository will be able
to store, retrieve and update RDF/S schemas and descriptions based on the name or
graph spaces they belong:

Namespace (or named schemas): a collection of RDFS class or property names
(i.e. graph labels), identified by a URI reference, which can be employed in the
description of a knowledge artefact. Given that these names are unambiguously
defined in an RDFS schema, classes and properties are universally qualified by
their name, which is prefixed by the URI of the namespace (i.e. the schema) they
belong. Thus, namespaces provide a standard way of distinguishing among classes
and properties that carry the same names in different schemas regardless whether
their meaning is the same or not.
Graphspace (or named graphs): a collection of RDF triples (i.e. graph edges),
identified by a URI reference, that form the description of a knowledge artefact.
Given that these URIs essentially identify RDF/S (sub-)graphs, they can be also
employed as source or target resources of properties, so forming complex RDF/S
hyper-graphs (i.e. graphs whose nodes are graphs). There are no constraints
regarding the contents (disjoiness or containment) of a graphspace: the same
(subset of) triples may belong to different graphspaces while graphspaces may be
composed of both schema and data triples. Thus, graphspaces provide a standard
way for distinguishing among descriptions provided by different actors (or
sources), for restricting information access and supporting access control,
versioning etc.

Name or graph spaces will be the core mechanism for abstracting from the syntax and
semantic peculiarities of the RDF/S data model (see object exchange service) in order
to support KP-Lab end-user applications dealing with personal and group knowledge
spaces involved in teamwork. Their unique URIs unambiguously identifies name or
graph spaces produced and consumed in a KP-Lab application space.

4.2.2 Knowledge Storage Tuning and APIs
Several RDF stores have been developed during the last four years for supporting
real-scale Semantic Web applications [Theoharis et al 2005]. They usually rely on
(main-memory) virtual machine-implementations or on (object-) relational database
technology while exploit a variety of storage schemes. Two are the most popular
database representations for shredding RDF/S resource descriptions into relational
tables: schema-oblivious (also called generic or “vertical” representation) and schema-
aware (also called specific or “binary” representation). Given that the range of KP-
Labs applications are quite varied, we need to benchmark the performances of the
database storage schemes supported by RDFSuite with respect to the characteristics of
the KP-Labs ontologies, descriptions and query/update workload (when a first version
of the KP-Lab demonstrators will be available). In particular, we will focus on the
scalability of the knowledge repository to support concurrent users under a mix of
query and update workloads. Finally, for each of these database storage schemes, we

are currently implementing appropriate APIs for bulk loading and exporting of both
resource descriptions and schemata (given a name or graph space) in file streams
(RDF/XML or triple-based ascii formats) to provide a simple communication channel
with KP-Lab applications not featuring sophisticated SW update and query
functionality (see import/export services).

4.2.3 Knowledge Query and Update Languages
Several query languages (e.g. RQL3, SPARQL4) have been developed during the last
five years for supporting declarative access to ontologies and resources descriptions
available on the Semantic Web. One of the unique features of RQL is its ability to
match filtering/navigation patterns against RDF/S graphs by taking into account (or
ignoring) the semantics (e.g. transitivity of subsumption relationships) of the
ontologies employed to describe knowledge artifacts (see [Haase et al 2004] for a
detailed comparison of SW QL expressiveness). This functionality is useful for
abstracting the technicalities of the RDF/S data model from the end-user KP-Lab
applications while it has been efficiently implemented in secondary memory
[Christophides et al 2003]. For these reasons we rely on the RDFSuite RQL
implementation, to support the SWKM query service. We are currently extending
RQL filtering/navigation patterns to support graphspaces (namespaces are already
supported). Furthermore, there is ongoing implementation of the first declarative
language for inserting/deleting/modifying arbitrary RDF/S (or fragments of OWL)
(sub)graphs. The language, called RUL [Magiridou et al 2005], ensures that the
execution of the update primitives on nodes and arcs neither violates the semantics of
the RDF model (e.g. insert a property as an instance of a class) nor the semantics of a
specific RDFS schema (e.g. modify the subject of a property with a resource not
classified under its domain class). This main design choice has been made given that
type safety for updates is even more important than type safety for queries: the more
errors we can catch at update specification time the less costly runtime checks (and
possibly expensive rollbacks) we need. The rest of the design choices concern (a) the
granularity of the supported update primitives; (b) the deterministic or not behavior of
the executed sequences of update statements; (c) the smooth integration with an
underlying RDF/S query language like RQL. For these reasons we rely on the
RDFSuite RUL implementation, to support the SWKM update service.

4.3 Knowledge Mediator [ICS-FORTH]
The Knowledge Mediator provides the main registry, discovery and evolution
services for KP-Lab knowledge artefacts. It essentially mediates access to and
changes of knowledge artefacts by employing personal or group ontologies. These
services will be implemented on top of the functionality supported by the knowledge
repository and will be used by the end-user KP-Lab applications (developed in WP6)
for contextualizing access to knowledge artefacts, as well as enabling to evolve them
in a consistent way w.r.t to their intended meaning.

4.3.1 Knowledge Discovery
In order to be able to access and manipulate knowledge artefacts pertaining to their
needs, learners will need to firstly locate the ontologies (i.e. schema namespaces) that
are used to describe them. If these ontologies do not exist learners should import them

3 http://139.91.183.30:9090/RDF/RQL/
4 http://www.w3.org/TR/rdf-sparql-query/

into the repository and start their knowledge retrieval process thereafter. To this end, a
Registry of ontologies (i.e. schema namespaces) will be supported (see respective
service) containing descriptions the subject, scope and purpose of the available
ontologies (using a suitable registry schema). Learners will be able to query the
registry in order to discover the namespaces (and version IDs) of the ontologies best
matching their needs. Once an ontology is found, learners can then access and
manipulate the knowledge artefacts which are described using this ontology by
issuing queries or updates (see respective services). In particular, learners can
navigate and browse through the classes and properties of the ontology in order to
retrieve or modify the involved knowledge artfacts and this can be done seamlessly
for any ontology available in the Registry.

4.3.2 Knowledge Evolution
Knowledge artefacts will be formally described according to the ontologies
conceptualizing the domains of interest within the scope of KP-Lab
learning applications. The required services will be provided so as to
support the evolution of both these descriptions and the related KP-Lab
ontologies. The former will enable to insert/modify/delete (sub)graphs of semantic
descriptions through the same conceptual navigation/querying metaphor used for
accessing the knowledge artefacts (see update service). The latter will enable to
consistently revise KP-Lab ontologies even after their deployment. By supporting
non-trivial evolution for ontologies expressed in RDF/S or other formalisms with an
axiomatic definition, learners have the ability to revise knowledge in a provably
consistent manner. The system will verify that the required changes will have the
minimum possible impact on the ontology, while learners will have the option to
review and verify that the changes proposed by the system are the intended ones (see
change service). Once these changes are approved, learners can create a new
persistent version of the modified ontology (see versioning service). The importance
of services capturing knowledge dynamics lies in their ability to assess the
consequences of ontology evolution, and thus involves reasoning about the indented
meaning of KP-Lab ontologies while taking into account the axiomatic definition of
the employed knowledge representation formalism (e.g. RDF/S). Finally, learners will
have the ability to compare two versions of the same ontology (or description graphs)
created independently by their peer colleagues (see comparison service).

4.4 Knowledge Matchmaker

The Knowledge Matchmaker aims to support advanced interactions of KP-Lab users
with knowledge artefacts through appropriate mining and recommendation services
employing their semantic descriptions. It essentially enables to match information
resources with the employed ontologies as well as knowledge artefacts
produced/consumed within a group according to various learners’ preferences.

4.4.1 Knowledge Recommendation [LRI-ORSAY]
The objective of this module is to support users accessing the ontology registry by
taking into account their preferences in order to provide customized results. This will
be done by designing and implementing an Ontology Recommendation and Ranking
Service.

The recommendation service [Frej et al 2006] will use a publish/subscribe mode,
whereby the users subscribe their preferences at the publish/subscribe service in the
form of terms (keywords) describing the ontologies of interest. When a new ontology
enters the registry repository the system passes its URI together with its description
over to the matching module. The matching module compares then the description to
the subscriptions of the subscription repository and notifies (automatically) those
users whose subscription matches the description of the new ontology (and only
those users). The main issue here is the design of an efficient matching algorithm to
support the recommendation service. In somehow more formal terms, a user’s
subscription can be seen as a user-defined query that is stored by the registry and
executed whenever a new ontology enters the registry repository (sometimes also
called a “continuous query”); if the new ontology belongs to the answer, then a
notification is sent to the user.

The ranking service [Spyratos et al 2005] will use preferences provided online (by the
user), together with a query against the registry, in order to rank the results of the
query. A preference is an expression of the form s t, where s and t are terms
(keywords) describing ontologies, meaning that ontologies described by s precede
those described by t, in the user’s preferences. As a consequence, in answering the
user query, ontologies described by s should be presented by the system before those
described by t. In contrast to a subscription, which is a stored query expressing long-
range interests of the user, a query with preferences is an online query expressing
current needs and preferences of the user. Its answer is a ranked list of ontology URIs.

4.4.2 Knowledge Mining [TUK, UEP]
Knowledge extraction services will be developed to assist users when creating or
updating the semantic descriptions of KP-Lab knowledge artefacts. The semi-
automatic generation of these descriptions or even of new KP-Lab ontologies will rely
on the textual content or annotations.

Textual resources related to the content or the annotations of various knowledge
artefacts, will be analyzed using different text mining techniques. As a result of this
process, relevant concepts from the KP-Lab ontologies will be suggested to the users
during the formal description of knowledge artefacts. Moreover, unsupervised text
mining techniques, such as clustering, will be used to find some unseen concepts (or
clusters) in the set of analyzed textual resources. These may lead to, e.g., the
suggestion to upgrade existing KP-Lab ontologies, as the knowledge of a KP-Lab
team evolves.

The fundamental tasks for the envisioned services are artefact classification &
clustering – grouping of a given set of artefacts into predefined or ad hoc categories
and automatic extraction of terms describing key concepts and their relationship.
Various kinds of algorithms will be considered for classification - simple term
matching, kNN, SVM, Winnow, Perceptron, Naive Bayes (multinomial and
binomial), boosting, decision rules, decision trees (various combination of growing
and pruning methods) as well as for clustering – kMeans, SOM, GHSOM etc.

5 Architectural Design of the SWKM Prototype

5.1 Overview
The architectural design of the SWKM adopts the SOA (Service Oriented
Architecture) principles. As depicted in Figure 5.2, the functionality of the various
SWKM logical components described in the previous section is implemented by a
series of interrelated services.

Figure 5.1: The overall SWKM architecture

In terms of availability two major categories of services can be identified:
(1) those available for the M12 prototype (V1.0), namely the:

a. Query service
b. Export service
c. Update service
d. Import service
e. Object Exchange Service

(2) those implemented in the next versions of the KP-Lab prototype, namely the:
a. Registry Service
b. Comparison service
c. Versioning service
d. Change service
e. Classification service
f. Clustering service
g. Recommendation Service

h. Ranking Service
This implementation plan is also imposed by the nature of the services, since the latter
are almost based on the former (see Figure 5.1 for service interconnections). KP-Lab
applications can directly invoke any of the above services as long as credentials and
access rights of the involved users are respected. It should be stressed that in the
current design of SWKM, user authentication and authorization is assumed that has
successfully taken place in other components of the KP-Lab prototype (see WP4) and
thus any request addressed to the middleware can safely be served.

The services described hereafter can be implemented either as Java services to support
a tightly coupled interaction among Java based clients and servers (and to be
contacted by means of Java based distributed systems and services, e.g. RMI) or as
web services that will be based on messaging to transport requests and responses
among clients and the services by using e.g. SOAP. Nevertheless the implementation
decisions will exactly follow the specifications presented in this chapter.

5.1.1 The Main Memory Model
For the main memory representation of the RDF data model primitives we have
designed an object oriented class hierarchy as depicted in Figure 5.2. The classes
depict both individual objects (like RDF_Class(-es) and RDF_Property(-ies), based on
the RDF_Resource class) and representation of schemas (RDF_Namespace) and
collection of resources (RDF_Graphspace).

The object-oriented hierarchy is based on the generic class named RDF_Resource,
which essentially corresponds to any resource described in RDF/S. An
RDF_Resource is described by its URI and a set of possible annotations like,
comment, label, seeAlso, isDefinedBy. In short: comment provides a human readable
description of the resource, label is used for the graphical representation of the
schemas and seeAlso, isDefinedBy provide support for provenance information of
class and property definitions. There are four classes that extend RDF_Resource,
namely RDF_Class, RDF_Property, RDF_Container and RDF_ClassInstance. These
classes refine RDF_Resource with some additional attributes and functionality. These
classes include accessors and mutators (where necessary) for each one of their
members described below.

RDF_Class represents the “rdfs:Class” primitive. It disposes a Collection of
superClasses (ancestors, which we can directly obtain through rdf:subClassOf
statements), a Collection of subClasses (descendants, which we can indirectly obtain
through rdf:subClassOf statements) and a Collection of properties declaring the class
as their domain. Additionally each RDF_Class object maintains a Collection of
metaClasses of classes (RDF_MetaClass object) which are specified in RDF with one
or more rdf:type statements. RDF_Property class represents the “rdf:Property”
primitive. It disposes a Collection of superProperties (which we can directly obtain
through rdf:subPropertyOf statements) and a Collection of subProperties (which we
can indirectly obtain through rdf:subPropertyOf statements). Each RDF_Property
object maintains a Collection of RDF_Class objects that represents its domain classes
and a Collection of RDF_Class objects that represents its range classes as they are
defined by rdf:domain and rdf:range statements accordingly. Additionally each
RDF_Property maintains a Collection of metaClasses of properties (RDF_MetaClass
object) which are specified with one or more rdf:type statements.

Figure 5.2: Main Memory Representation of the RDF Data Model in UML

RDF_Container class represents the rdfs:container primitive which may be either an
rdf:Bag or an rdf:Seq or an rdf:Alt. For this purpose a “kind” attribute is attached to
the RDF_Container class with value 0,1 or 2 respectively. An RDF_Container object
maintains a Collection of members that can be either of type RDF_Resource or
RDF_Literal (described later on). In this way, we can represent hierarchies of nested
containers at arbitrary depth.

RDF_ClassInstance class represents the actual resources described in RDF. Each such
resource may be described as instance of one or more schema classes and these
classes are maintained in RDF_ClassInstance object as a Collection of RDF_Class
objects. Each resource can be “connected” to other resources or literal values using
instances of the properties of the classes it is instance of. These resources/literals are
maintained in RDF_ClassInstance class in a Collection named property_instances
that contains RDF_ClassInstance objects and/or RDF_Literal objects.

RDF_Literal class represents the rdfs:literal primitive. Since it has a string
representation with no URI identity, RDF_Literal is not a subClass of RDF_Resource.
From the textual representation of the rdf:literal we can identify three possible parts, it
“type”, its “value” and its “language”. RDF_Literal class maintains instance variables
for each of these attributes.

In order to represent in main memory RDF/S schema and resource description graphs
we have introduced the class RDF_Model as a Collection of the Namespaces and
Graphspaces by which it is defined. Rather than duplicating the graph nodes or edges
of all the consistent Namespaces and Graphspaces, for each Model holds two
Collections, respectively with the namespace and graphspace URIs it is composed of.
The content of each Namespace and Graphspace is maintained only once by a
singleton object and can be accessed on demand by a referring Model. For each
namespace there is a class named RDF_Namespace that holds a Collection of
RDF_Class objects and a Collection of RDF_Property objects that defines. For each
graphspace there is a class named RDF_Graphspace that holds a Collection of
RDF_Container objects and a Collection of RDF_ClassInstance objects that defines.
An RDF_Model object has methods for receiving input from a stream of triples
belonging to a given namespace and graphspace or from an RDF/XML file.
Additionally methods are provided for generating the triples associated with a model
and writing them into a file stream.

Finally, each container class carries the necessary iterators so as to allow iteration
over its member collections in order to produce the required RDF triples by using the
toTriples() method implemented throughout the hierarchy. This method ensures that
the information carried within the classes can be exported to a standard format of
RDF triples (e.g. TRIG5) so as to be readily useful to other applications.

5.1.2 Listener
As depicted in Figure 5.1 a Registration – Listening Mechanism should be supported
by the repository in order to provide the required services in both a consistent and
efficient way. This mechanism will be basically responsible for providing the
notification means for KP-Lab applications interested in a specific name or graph
space. User applications can specify their interest either directly, i.e. by registering
themselves as interested on a specific name or graph space or indirectly by asking to
retrieve the name or graph space. That way changes on the specific name or graph
space will be also part of the listening mechanism and the applications can pole this
mechanism to learn if a change has occurred, in which case they can subsequently
perform a query to retrieve the object(s) of interest. Otherwise the applications would
have to constantly monitor the repository by performing costly queries, which implies
an unnecessary communication and processing overhead. Except from taking the
burden of the server for such a tedious task, the Listening Mechanism acts also as a
single place of convergence where all SWKM service requests dealing with name or
graph spaces will be registered.

It is obvious that the corresponding services described hereafter should also take care
of notifying the Listening Mechanism for successful queries or updates, so that in turn
the application will be notified to undertake the appropriate actions. Note here that it
is not certain that an application, which learns that the retrieved e.g. name or graph
space has changed, will all the time try to retrieve it again - it just might try to save it
as a new version, keep it for personal reference, etc. More precisely, the Update
Service will notify the Listener when any of the registered name or graph spaces
changes. The applications that use any of the Object Exchange, Query, Comparison,
Versioning and Change services, along with the Main Memory Model should also

5 http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/

register to the Listener in order to receive the notifications created upon the commit of
any change in the repository that affects any of the name or graph spaces they are
interested in.

5.2 Knowledge Repository Services

5.2.1 Query Service
The Query Service (see Figure 5.3) is responsible for executing RQL queries. The
service will return its results in an RDF/XML serialization as a bag of resources or a
container of Java objects if a binary representation is requested. The query results can
contain both schema and data information from one or several name and graph spaces.
So the programming interface for the service will look like:
String query(String RQL_Query);
RDF_Resource[] query(String RQL_Query);

Figure 5.3: The Query Service

 The Query Service relies on the RQL Interpreter which is used for both parsing and
executing the query at hand, as well as on its multithreading capabilities for
supporting concurrency control. Since every RQL query posted to the Query Service
is essentially a read transaction the service also provides the required error handling
in case of empty results to notify the application that issued the transaction about the
reason of the failure (due to syntax or typing errors).

5.2.2 Update Service
The Update Service (see Figure 5.4) is responsible for executing RUL updates
involving one or several name or graph spaces. Updating includes construction,
modification and deletion of objects in the repository and returns a Boolean value
“true” or “false” for successful (commit) or unsuccessful (abort) execution. The
programming interface of the query will be:
boolean update(String RUL_Query);

Figure 5.4: The Update Service

The service upon reception of the update will identify the involved name or graph
spaces and register it with the Listener as described previously. The Update Service
relies on the RUL Interpreter which is used for both parsing and executing the update
at hand as well on its multithreading capabilities for supporting concurrency control.
Also since every RUL update posted to the Update Service is essentially a write
transaction, the service also provides the required error handling for FALSE results to
notify the application that issued the transaction about the reason of the failure (due to
syntax or semantic errors). The Update service can be called either by the Object
Exchange Service for namespace or graphspace update or directly by the user
application for updating any of the RDF objects stored in the repository.

5.2.3 Export Service
The Export Service (see Figure 5.5) is responsible for dumping into a file stream (in
RDF/XML serialization or TRIG triple-based formats) the contents of the name or
graph spaces given as input (along with their version ID). The user of the service
needs only to specify which one needs to be exported. The programming interface for
the service will look like:
Stream export(List[String] name_or_graphspaceURI, List[String] versionID);

Figure 5.5: The Export Service

The service receives requests either through the Object Exchange Service, where the
application is responsible to decide if the requested name or graph space should
additionally be loaded into the main memory or directly from the user application
where there is no option of loading the requested name or graph space into the main
memory.

5.2.4 Import Service
The Import Service (Figure 5.6) is responsible for loading the contents of a valid and
well formed name or graph space (along with their version ID). This service is
responsible for creating the necessary database constructs (tables, relationships,
indices) that allow for efficient retrieval and manipulation by the RQL/RUL
interpreter. The service can be invoked by providing as input either a file stream (in
RDF/XML serialization or TRIG triple-based formats). The output of the service is a
TRUE or FALSE statement accounting for successful or unsuccessful completion.
The service uses the main memory representation described earlier to firstly load the
schema into the main memory before committing it to the repository in order to be
able to choose the best possible representation for its storage and perform a series of
operations like validation. The schema is afterwards unloaded from the main memory
unless it is kept by the service for caching reasons or explicitly kept by the application
for easy and fast later usage. The corresponding programming interface will be:
boolean import(String name_or_graphspaceURI, String versionID);

Figure 5.6: The Import Service

In the case of an application tries to import an already loaded name or graph space
(identified by the same URI and version ID) the service returns a corresponding error
message. The user or the application can accordingly change the namespace URI,
invoke the versioning service to create a new version or decide to use the already
loaded name or graph space.

5.3 Knowledge Manager Services

5.3.1 Object Exchange Service
The Object Exchange Service (see Figure 5.7) enables SWKM to a directly exchange
objects of the RDF Model (see section 5.1.1) already fetched in main memory that
belongs to a specific name or graph space. By using this service a KP-Lab application
can avoid the execution of costly queries in the repository and the reconstruction of
the objects in the main memory. Instead it can request the specific objects that it needs
and received them in Java serialized binary format, i.e. bytes that can be directly
reconstructed as Java objects by the client for immediate consumption. In case where
the involved name or graph spaces are not loaded in the main memory the service will
contact the Export Service in order to retrieve them from the repository. There will
also be a garbage collection process that will unload form the main memory the name
or graph spaces that are not used by anyone anymore. Also the service will have the
ability to return on request the RDF triples (in TRIG format) of the requested name or
graph space. Finally, the service will also provide an interface for storing a changed
name or graph space. This will invoke the Versioning Service but it allows the
application to directly provide binary objects to be stored in the repository.
The programming interface of the service will be:
Stream fetch(List[String] name_or_graphspaceURIs, boolean BinaryOrTriples);
boolean store(String name_or_graphspaceURI,

Stream changedName_Or_GraphSpace,

String versionID, boolean BinaryOrTriples);

Figure 5.7: The Object Exchange Service

This service to be used for the binary retrieval of the requested objects requires that
the client is also implemented in Java so that the binary objects can be directly
consumed. This means that it can be implemented (see also paragraph 5.1 for a more
general discussion) directly as a tightly coupled Java service and only indirectly as a
web service (since transporting binary objects through SOAP messages is currently
infeasible).

5.4 Knowledge Mediator Services

5.4.1 Registry Service
This service (see Figure 5.8) is responsible for recording the RDFS schema
namespaces (i.e. ontologies) stored in the knowledge repository along with their
versions as well as descriptions about their subject, scope and purpose than can be
created by employing other RDFS schemas. When invoking this service by passing as
input the URI of a namespace it replies with the corresponding list of version IDs that
are available in the repository. To record a new RDFS schema the URI of its
namespace and the graphspace containing its description is required. Only registered
namespaces can afterwards be imported into the knowledge repository. When an
inserted namespace is already stored in the repository, a new version will be created
by invoking the versioning service and the registry will be updated automatically. In
both cases the new VersionID is returned. Finally, the registry could return the
graphspace URI (or a list of graphspace URIs) describing a namespace as long as its
URI and version ID are given as input. So the service’s programming interface is:
List[String] lookup(String namespaceURI);
String insert(String namespaceURI, String versionID, String graphspaceURI);
List[String]retrieve(String namespaceURI, String versionID, String RQL_Query);

Figure 5.8: The Registry Service

The underlying implementation of this service relies on a dedicated instance of the
knowledge repository that will be responsible for retrieving and updating the
descriptions of RDFS schema namespaces.

5.4.2 Comparison Service
The Comparison Service (see Figure 5.9) is responsible for comparing two name or
graph spaces (obviously is meaningless to compare a schema with a description
graph) already stored in the repository and compute their delta in an appropriate form
(e.g. as triples serialized in TRIG or as a RUL statement). The programming interface
will be:
String diff(String name_or_graphspaceURI, String name_or_graphspaceURI);

Figure 5.9: The Comparison Service

5.4.3 Versioning Service
The Versioning Service (see Figure 5.10) is responsible for constructing a new
persistent version of a namespace (or graphspace) already stored in the repository. To

this end it takes as input the original namespace (or graphspace) as well the delta
specified in an appropriate form (e.g. as triples serialized in TRIG or as a RUL
statement) for constructing a new version. The version ID is returned when the service
is successfully executed while all changes are logged and, this change log is made
available to the Registry Service (which could be used for describing the new
version). It is under the responsibility of the service to determine the best possible
way to render persistent the new version according to the established version policies.
When the versioned name or graph space is already loaded into the main memory and
caching is used, then changes could be additionally applied to the corresponding
objects of the RDF Data Model. The programming interface will be:
String version(String name_or_graphspaceURI, String Delta);

Figure 5.10: The Versioning Service

5.4.4 Change Service
The Change Service (Figure 5.11) is responsible for determining the changes that
should occur on a name or graph space in response to a change request. The service
takes a change request as input and returns series of primitive update operation that
capture all the effects (in explicit knowledge) and side-effects (in implied knowledge)
of the original change request in a target name or graphspace. As a result, these series
of operations have no side-effects and can be easily implemented by the Update
service (see section 5.2.2). All change requests will describe the necessary changes as
a String Delta of required actions in an appropriate form (e.g. as triples serialized in
TRIG or as a RUL statement). The service will ensure that the requested change will
be realized in the target namespace (or graphspace) with the minimal possible impact
(changes) upon the original namespace or graphspace, without negating its
consistency. If this is not possible, the empty string will be returned (no changes
performed). The minimality of a change is determined using some kind of "impact
preference ordering" that allows us to compare the impact of different sorts of update
operations (e.g. on schema classes and properties as well as their instances). This
preference ordering is given as a parameter of the service and plays a critical role in
the determination of the actual change meaning. The programming interface of the
service will be:
String change(name_or_graphspace URI, String Delta, Preference_Order PO);

Figure 5.11: The Change Service

5.5 Knowledge Matchmaker Services

5.5.1 Preference Services
This service supports users accessing the ontology registry by taking into account
their preferences in order to provide customized results. This will be done by
designing and implementing an Ontology Recommendation Service and a Ranking
Service.

5.5.1.1 Ontology Recommendation Service
The recommendation service uses a publish/subscribe mode, whereby the users
subscribe their preferences at the publish/subscribe service in the form of terms
(keywords) describing the ontologies of interest (see Figure 5.12). When a new
ontology enters the registry repository the system passes its URI together with its
description over to the matching module. The matching module compares then the
description to the subscriptions of the subscription repository and notifies
(automatically) those users whose subscription matches the description of the new
ontology (and only those users). The programming interfaces of the service will be:
String subscribe(String UID, List[String] terms);
String unsubscribe(String UID, List[String] terms);
String recommend(String event, String namespaceURI, List[String] terms);

Figure 5.12: The Recommendation Service

5.5.1.2 Ranking Service
The ranking service uses preferences provided online (by the user), together with a
query against the registry. A second RQL query is built based on the combination of
the provided one and the user preferences and this query is executed against the
registry. The answer to the query is a ranked list of ontology URIs that respects the
user’s preferences. The programming interface of the service will be:
String rank(String RQL_Query, Preference_Order PO);

Figure 5.13: The Ranking Service

5.5.2 Text Mining Services
Text Mining (TM) can be defined as a (semi-) automatic extraction of knowledge
components (concepts) from plain texts. In the KP-Lab project, the Text Mining
Services (as a part of Knowledge MatchMaker) will inspect textual descriptions or
annotations of knowledge artefacts to suggest relevant concepts from KP-Lab
ontologies, and extend the underlying KP-Lab ontologies (see also in section 0).

The following two basic tasks can be identified for core functionality of the Text
Mining Services:
Classification – supervised method. Can be used for classification of artefacts to some
pre-defined categories (i.e. ontology concepts).
Clustering – unsupervised method. Can be used to group similar artefacts together.

Derived TM tasks are:
Keyword extraction / summarisation. Can be used to extract keywords from textual
descriptions of artefacts. This task can be used to create an initial dictionary for
ontology.
Information extraction. Can extract the values of various metadata properties.

The classification task is supervised by a model, which is created from a training set.
The model contains a set of parameters (weights, rules, etc. – based on the used
algorithm) created in the process of training and used in the classification of unknown
examples.
Algorithms for Classification:

simple term matching
kNN
SVM
Winnow
Perceptron
Naive Bayes (multinomial and binomial)
boosting
decision rules
decision trees (various combination of growing and prunning methods)

Algorithms for Clustering:
kMeans
SOM
GHSOM

The following services correspond to the Classification and Clustering TM tasks:
1a) Classification service - Learning (i.e. creation of mining model):

The service is provided by the Mining Engine component and is accessible
through the Mining Service Interface (see Figure 5.12).
INPUT:

a) training examples - annotated artefacts [plain text + RDF]
b) ontology [RDF, taken from the Object Exchange Service]
c) text mining settings [Serialized Java Objects, taken from the Mining Engine

Console]
OUTPUT: mining model [Serialized Java Objects, passed to the Mining Object
Repository]

1b) Classification service - Classification:
The service is provided by the Annotation Engine component and is accessible
through the Recommendation for Annotation Service interface.
INPUT:

a) description/annotation of an artefact [plain text]
b) mining model + settings [Serialized Java Objects, taken from the Mining

Object Repository]
OUTPUT: recommendation of metadata/ontology concepts [RDF format]

2) Clustering service - Clustering:
The service is provided by the Annotation Engine component and is accessible
through the Recommendation for Annotation Service interface.
INPUT: description/annotation of artefacts [plain text]
OUTPUT: structure of clustered artefacts [RDF format]

The architectural design of the Text Mining Services (TMS), as an integral part of
Knowledge MatchMaker functional component of the SWKM, follows the principles
of the SOA (Service Oriented Architecture) principles. The structure of particular
high-level services and its interconnections are presented on the Figure 5.14.

Functionality of the TM services and components is described in more details in the
following paragraphs.

Figure 5.14: Overall Schema of the Text Mining Services

Mining Engine Console is a specialized tool for setting up proper (global) parameters
of a mining algorithm in the Mining Engine and to inspect and visualize the mining
models saved in the Mining Object Repository. The Mining Engine Console tool
should be used by an expert only.

Shared Space (i.e. its Annotation tools, e.g. Knowledge Artefact Annotation and
Knowledge Process Annotation) will use the Recommendation for Annotation Service
as a supporting tool in the process of annotation, i.e. in the description of textual
knowledge artefacts by proper metadata.
On the output, the Recommendation for Annotation Service will provide a set of
ontology concepts – recommendations for describing an artefact with metadata.

Other external KP Lab Tools, which can use the text mining services, as e.g.:
a service to share internal model of mining algorithm,
a service to set up the parameters of algorithm in the Mining Engine,
a service to update model of algorithm in the Mining Engine.

These services could be used by the KP Lab Tools, which will be designed to inspect
and visualize the mining models saved in the Mining Object Repository.

Object Exchange Service returns the requested metadata as Serialized Java Object
(see section 5.3.1).

Content Mediator Service returns the content as Item (JCR (JSR170)), based on the
requested URI6.

Mining Service Interface will be used by the KP Lab components, which will inspect
and visualize mining models, and which will be responsible for setting up parameters
of mining algorithms to build new mining models (e.g. by the Mining Engine
Console). IN and OUT will be specified according to the Java Data mining API (JSR
73) extended for text mining methods.

Recommendation for Annotation Service is an interface to the Annotation Engine. It
provides the metadata, which will be proposed to user to annotate given artefact (by
specialized Annotation Tools in the Shared Space).

Content API for querying the Content Mediator Service.

Metadata API for querying the Knowledge Repository by RQL. The Object Exchange
Service will be used to query the Knowledge Repository.

Data Mediator is an internal component, used by Mining Engine and Annotation
Engine for accessing data by the Metadata API and the Content API (a
synchronization of metadata with the content by URI). This module expects metadata
in an uniform format, e.g. as Serialized Java Object in the RDF model from the Object
exchange service.

Mining Engine (see Figure 5.15) will provide following text mining tasks:
computing a vector representation of the (textual description of) artefacts,
building the text mining model,
testing the built model,
import and export of the mining model.

6 Using of JSR170 is still open question in WP4. This service could be provided by Transaction
/ Synchronization services by WP4, which is still a matter of discussion in the WP4.

Input to the Mining engine is a set of parameters (settings) specifying the input for
building a mining model. The Build Settings may be global (high level), specified for
a task (i.e. input data), or specific for particular mining algorithm.
The Mining engine will contain an implementation of various algorithms (i.e. NLP
algorithms based on the matching of analyzed text, machine learning algorithms for
text clustering or classification, etc.). These algorithms can be selected on input (by
the input settings) to produce various mining models. The mining model will then
contain the essential knowledge extracted from the textual data as determined by the
algorithm.

A single type of the model (i.e. linear classifier, or clustering centroid model) can be
produced by different algorithms (i.e. SVM, Perceptron or k-Means and Self
Organizing Maps). A model can be descriptive or predictive. A descriptive model
helps in understanding the underlying data or model behavior. For example, a
clustering model that will describe each cluster with the set of characteristic terms can
be used to describe a set of artefacts. A predictive model can be an equation or a set of
rules that makes it possible to select the set of concepts from the domain ontologies
related to the artefact. Mining models are stored in the Mining object repository
together with all data required to build or evaluate models (i.e. vector representation
of the artefact content, statistics about the term/concept co-occurrences, dictionaries,
etc.). Stored mining models can be inspected by others KP-lab components by the
task of importing the mining model, which will load and retrieve selected model from
the Mining object repository.

Figure 5.15: Mining Engine

Annotation engine (see Figure 5.16) loads a pre-configured set of mining models and
then applies these models to the (already annotated) artefact. Mining models will
provide two types of metadata:

List of selected concepts from the existing domain ontologies, which will be
proposed to the user annotating the artefact in a KP-Lab annotation tool.

List of terms (words or phrases) extracted from the artefact content, which will be
proposed as candidates for new concepts in a domain ontology. A list of extracted
terms can be extended with various types of relations (i.e. broader/narrower, is
related to, etc.) between extracted terms mutually, or between extracted terms and
the concepts already existing in the domain ontologies.

All the entries in these lists can be weighted. The weight value will indicate a
confidence level, estimated by the mining model. All extracted metadata will be
provided for the annotation tools as RDF objects defined by Object exchange service.

Figure 5.16: Annotation Engine

Figure 5.17: NLP Analysis Tools

A set of NLP Analysis Tools (see Figure 5.17) will be used for text pre-processing.
These tools are composed from several modules, which are used by particular NLP
techniques and algorithms.
Basic NLP Analysis techniques are:

tokenization (split of input text to individual tokens),
stemming,
elimination of stop words,
morphological analysis (part-of-speech tagging),
syntactical analysis,
semantic analysis, etc.

Modules of the NLP Analysis Tools may vary for different languages (not all modules
could be implemented for all languages).

Mining Object Repository is an internal component that contains mining models
created by the text mining methods.

Bibliography

[Aberer et al 2004] Aberer, K., Cudre-Mauroux, P., Ouksel, A.M., Catarci, T., Hacid, M.S.,
Illarramendi, A., Kashyap, V., Mecella, M., Mena, E., Neuhold, E.J., Troyer, O.D., Risse, T.,
Scannapieco, M., Saltor, F., de Santis, L., Spaccapietra, S., Staab, S., Studer, R.: Emergent
Semantics Principles and Issues. In: Database Systems for Advanced Applications 9th
International Conference, DASFAA 2004. Volume 2973 of LNCS. pages 14–43, (2004)

[Anderson 1975] Anderson J. R., Cognitive Psychology and Its Implications, 2nd Edition, (New
York: W. H. Freeman and Company, 1985); Schank, R. C., "The Structure of Episodes in
Memory", in D. G. Bobrow and A. Collins (eds.), Representation and Understanding: Studies in
Cognitive Science, (New York: Academic Press, 1975), pp. 237-272

[Athanasis et al 2004] N. Athanasis, V. Christophides and D. Kotzinos: Generating On the Fly
Queries for the Semantic Web: The ICS-FORTH Graphical RQL Interface (GRQL), Third
International Semantic Web Conference (ISWC'04), Hiroshima, Japan, November, 2004.

[Bhatt 2000] Bhatt, G.D. Organizing knowledge in the knowledge development cycle, Journal of
Knowledge Management, Vol. 4, No. 1, 2000.

[Bardram 2000] Bardram J. E. Temporal Coordination: On Time and Coordination of
Collaborative Activities at a Surgical Department. Computer Supported Cooperative Work 9:
157–187, 2000.

[Chistophides et al 2004] V. Christophides, G. Karvounarakis, D. Plexousakis, Michel Scholl and
S. Tourtounis: Optimizing Taxonomic Semantic Web Queries Using Labeling Schemes. Web
Semantics: Science, Services and Agents on the World Wide Web, Vol. 1(2), 2004, pp. 207-228;

 [Engeström 1999] Engeström, Y. Activity theory and individual and social transformation. In:
Engeström, Y., Miettinen, R., Punamäki R.-L. (eds.): Perspectives on Activity Theory. Cambridge
Univer-sity Press: Cambridge 19-38, 1999.

[Ernst&Young 1997] Knowledge Management Case Study: Knowledge Management at
Ernst&Young, 1997, Available at http://www.bus.utexas.edu/kman/e_y.htm.

 [Frej et al 2006] Hanen Belhaj Frej, Philippe Rigaux, Nicolas Spyratos, Matching Algorithms for
User Notification in Digital Libraries, Proceedings of BDA 2006, Lille, France, 2006.

[Gruber 1995] Gruber T.R.. Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(5-6):907–928, 1995.

[Haase et al 2004] Haase P, Broekstra J, Eberhart A, and Volz R. A Comparison of RDF Query
Languages. In Proceedings of the 3rd International Semantic Web Conference, Japan, 2004.

[Hutchins 1995] Hutchins, E. Cognition in the Wild. Cambridge MIT Press 1995.

[Karvounarakis et al 2003] G. Karvounarakis, A. Magkanaraki, S. Alexaki, V. Christophides, D.
Plexousakis, M. Scholl, K. Tolle: Querying the Semantic Web with RQL. Computer Networks and
ISDN Systems Journal, Vol. 42(5), August 2003, pp. 617-640. Elsevier Science

[Keenoy et al 2004] K. Keenoy, A. Poulovassilis, V. Christophides, P. Rigaux, G. Papamarkos,
A. Magkanaraki, M. Stratakis, N. Spyratos and P. Wood: Personalization Services for Self e-
Learning Networks. Fourth International Conference on Web Engineering (ICWE'04), Munich,
July, 2004.

[Kotzinos et al 2005] D. Kotzinos, S. Pediaditaki, A. Apostolidis, N. Athanasis and V.
Christophides: Online Curriculum on the Semantic Web: The CSD-UoC Portal for Peer-to-peer e-
learning. 14th International World Wide Web Conference (WWW'05), Chiba, Japan, May 10-14,
2005

[Kukkonen 2001] Oinas Kukkonen The 7C model for organizational knowledge creation and
management 2001.

[Leontiev 1978] Leontiev, A.N. Activity, Consciousness, and Personality. Prentice Hall:
Englewood Cliffs, New Jersey, 1978.

[Magiridou et al 2005] M. Magiridou, S. Saxtouris, V. Christophides, M. Koubarakis.RUL: A
Declarative Update Language for RDF. In Proc. Of the 4th International Conf. On the Semantic
Web, Galway, Ireland, November 2005.

[Magkanaraki et al 2004] A. Magkanaraki, V. Tannen, V. Christophides and D. Plexousakis:
Viewing the Semantic Web Through RVL Lenses. Web Semantics: Science, Services and Agents
on the World Wide Web, Vol. 1(4), 2004, pp. 359-375

[McGrath et al 1986] McGrath, J. E. & Kelly, J. R. Time and Human Interaction: Toward a Social
Psychology of Time. New York: Guilford Publications, Inc., 1986.

[Mika 2004] Mika P. “Ontologies Are Us: A Unified Model of Social Networks and Semantics”.
In Proc. of the International. Semantic Web Conference (ISWC), 2005, pages 522–536, 2005.

[Nonaka & Takeuchi, 1995] Nonaka, I., Takeuchi, H. The knowledge-creating company, How
Japanese companies create the dynamics of Innovation, Oxford University Press, New York, 284
pp. 1995

[Norman 1991] Norman, D.A. Cognitive artefacts , In Designing interaction: Psychology at the
human-computer interface, Cambridge University Press, Cambridge, England, John M. Carroll,
(Ed.), pp. 17-38, 1991.

 [Paavola et al 2004] Paavola S., Lipponen L., and Hakkarainen K. “Models of Innovative
Knowledge Communities and Three Metaphors of Learning”. Review of Educational Research,
74(4):557–576, 2004.

[Polanyi 1966] Polanyi, M. The tacit dimension. London: Routledge & Kegan, Paul 1966.

 [Solomon 2000] It’s not just the tool, but the educational rationale that counts. Invited keynote
address at the Ed-Media Meeting. Montreal, June 28, 2000. Available at
http://www.aace.org/conf/edmedia/00/salomonkeynote.htm.

[Sørensen et al 2002] Sørensen C. & Kakihara M. Knowledge Discourses and Interaction
Technology Proceedings of the 35th Hawaii International Conference on System Sciences – 2002.

[Spillers et al 2003] Spillers F. & Loewus-Deitch D. Temporal attributes of shared artefacts in
collaborative task environments. Workshop on the Temporal Aspects of Tasks (HCI 2003)

[Spyratos et al 2005] Spyratos N. and Christophides V., Querying with Preferences in a Digital
Library, Dagstuhl Seminar (Nº 05182) Federation over the Web, May 2005.

[Stacey 2000] Stacey P. E-Learning & Knowledge Management. E-Learning for the BC Tech
Industry October 2000.

HYPERLINK
HYPERLINK
http://www.aace.org/conf/edmedia/00/salomonkeynote.htm
http://www.dagstuhl.de/Events/05/

 [Stahl 2003] Stahl, G. Building collaborative knowing: Elements of a social theory of learning, In
What We Know about CSCL in Higher Education, Kluwer, Amsterdam, NL, J.-W. Strijbos, P.
Kirschner, & R. Martens (Eds.) 2003.

 [Stoyanova et al 2002] Stoyanova N., Kommers P. Learning Effectiveness of Concept Mapping in
a Computer Supported Collaborative Problem Solving Design. Journal of Interactive Learning
Research, 13(1/2), 111-133, 2002.

 [Theoharis et al 2005] Theoharis Y., Christophides V., Karvounarakis G. Benchmarking Database
Representations of RDF Stores. In Proc. Of the 4th International Conf. On the Semantic Web,
Galway, Ireland, November 2005.

[Vygotsky 1978] Vygotsky, L. Mind and Society. Cambridge, MA: Harvard University Press,
1978.

 [Uschold et al 1996] M. Uschold and M. Gruninger, “Ontologies: Principles, Methods and
Applications,” The Knowledge Eng. Rev., vol. 11, no. 2, pp. 93–136, 1996.

[Zhang et al 1994] Zhang, J., and Norman D.A. Representations in Distributed Cognitive Tasks,
Cognitive Science, 18: 87-122, 1994.

	Table of Contents
	Executive Summary
	1 Introduction
	2 Motivating Scenario for ‘Trialogical’ Learning
	2.1 Knowledge Artefacts
	2.2 ‘Trialogical’ Learning Activities and Interactions
	2.3 Shared Knowledge Spaces

	3 Knowledge Creation Processes and Trialogical Learning
	4 Functionality of the Semantic Web Knowledge Middleware (SWKM)
	4.1 Overview
	4.2 Knowledge Repository [ICS-FORTH]
	4.2.1 RDF/S Namespaces and Graphspaces
	4.2.2 Knowledge Storage Tuning and APIs
	4.2.3 Knowledge Query and Update Languages

	4.3 Knowledge Mediator [ICS-FORTH]
	4.3.1 Knowledge Discovery
	4.3.2 Knowledge Evolution

	4.4 Knowledge Matchmaker
	4.4.1 Knowledge Recommendation [LRI-ORSAY]
	4.4.2 Knowledge Mining [TUK, UEP]

	5 Architectural Design of the SWKM Prototype
	5.1 Overview
	5.1.1 The Main Memory Model
	5.1.2 Listener

	5.2 Knowledge Repository Services
	5.2.1 Query Service
	5.2.2 Update Service
	5.2.3 Export Service
	5.2.4 Import Service

	5.3 Knowledge Manager Services
	5.3.1 Object Exchange Service

	5.4 Knowledge Mediator Services
	5.4.1 Registry Service
	5.4.2 Comparison Service
	5.4.3 Versioning Service
	5.4.4 Change Service

	5.5 Knowledge Matchmaker Services
	5.5.1 Preference Services
	5.5.1.1 Ontology Recommendation Service
	5.5.1.2 Ranking Service

	5.5.2 Text Mining Services

	Bibliography

