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MANIFOLD EMBEDDING FOR CURVE REGISTRATION

By Chloé Dimeglio
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and

By Jean-Michel Loubes and Elie Maza

Institut de Mathématiques de Toulouse

We focus on the problem of finding a good representative of a
sample of random curves warped from a common pattern f . We first
prove that such an problem can be moved onto a manifold framework.
Then, we propose an estimation of the common pattern f based on
an approximated geodesic distance on a suitable manifold. We then
compare the proposed method to more classical methods.

1. Introduction. The outcome of a statistical process is often a sam-
ple of curves, fi, i = 1, . . . ,m, showing an unknown common structural
pattern, f , which characterizes the behaviour of the observations. Exam-
ples are numerous, ,among others growth curves analysis in biology and
medicine, quantitative analysis of microarrays in molecular biology and ge-
netics, speech signals recognition in engineering, study of expenditure and
income curves in economics.... Hence, among the last decades, there has been
a growing interest to develop statistical methodologies which enables to re-
cover from the observation functions a single ”mean curve” that conveys all
the information of the data.

A major difficulty comes from the fact that there are both amplitude (vari-
ation in the y-axis) or phase (variation in the x−axis) which prevent any
direction extraction of the mean, median, correlations or any other statistical
indices for a the standard multivariate procedure such as principal compo-
nent analysis, and canonical correlations analysis, see [KG92] or [RS05] and
references therein. Indeed the classical cross-sectional mean does not provide
a consistent estimate of the function of interest f since it fails to capture
the structural characteristics in the sample of curves as quoted in [RL98].
Hence curve registration (also called curve alignment, structural averaging,
and time warping) methods have been proposed in the statistical literature.
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2 C. DIMEGLIO, J-M. LOUBES & E. MAZA

We refer to [KG92], [Sil95], [WG97], [Røn01], [LM04], [GG05], [GLM07],
[Jam07], and [DLM11] just to name a few.

This issue is closely related to the problem of finding the mean of ob-
servations lying in a space with an unknown, non necessarily euclidean,
underlying geometry. The problem is thus twofold.

First, the mere definition of the mean should be carefully studied. Indeed,
let E = {X1, . . . ,Xn} be a sample of i.i.d random variables of law X ∈ M
where M is a submanifold of Rp. If we denote by d the Euclidean distance
on R

p, then the classical sample mean, or Fréchet sample mean, defined by

(1) µ̂ = arg min
µ∈Rp

n∑

i=1

d2 (Xi, µ)

is not always a good representative of the given sample E , and, obviously,
of the underlying population. Using the geometry of the manifold, it seems
natural to replace Criterion (1) by

µ̂I = arg min
µ∈M

n∑

i=1

δ2 (Xi, µ)

where δ is the geodesic distance on M, giving rise to the intrinsic mean,
whose existence and properties are studied for instance in [BP03]. When
dealing with functional data, we assume that the functions fj can be modeled
as variables with values on a manifold, and curve registration amounts to
considering an intrinsic statistics that reflects the behaviour of the data. In
the following we will consider for α > 0,

(2) µ̂α
I = arg min

µ∈M

n∑

i=1

δα (Xi, µ) .

In particular for α = 1, we will deal with µ̂1
I , the intrinsic sample median.

Second, previous construction relies on the choice of the embedding which
may not be unique, then the manifold itself and its underlying geodesic dis-
tance. Actually we only have at hand a sample of random variables which
are sought to be a discretization of an unobserved manifold. Over the last
decade, some new technics have been developed to find and compute the nat-
ural embedding of data onto a manifold and to estimate the corresponding
geodesic distance, see for instance [dST03] for a review of global (ISOMAP
type) and local (LLE type) procedures, while applications have been widely
developed, see for instance [Pen06].

In the following, we will consider an approximation, achieved with a graph
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MANIFOLD EMBEDDING FOR CURVE REGISTRATION 3

theory approach inspired by works on manifold learning and dimension re-
duction [TdSL00]. We will first show that curve registration for parametric
transformations can be solved using a manifold geodesic approximation pro-
cedure. Then, we will highlight that this enables to recover a mean pattern
which conveys the information of a group of curves. This pattern is used
for curve classification for simulated data and real data which consist in
predicting a particular landscape using the reflectance of the vegetation. We
will compare this procedure to the one built with the pattern coming from
the moments alignment procedure described in [Jam07].

This article falls into the following parts. Section 2 is devoted to the con-
struction of the approximated geodesic distance. In Section 3, we describe
the manifold framework point of view for curve registration. We then ex-
plain how to estimate a representative of a sample of warped curves. The
performance of this estimator is then studied in Section 4 using simulated
data, and in Section 5 with a real data set. Proofs are gathered in Section 7.

2. A graph construction for topology estimation. Let X be a ran-
dom variable with values in an unknown connected and geodesically com-
plete Riemannian manifold M ⊂ R

p. We observe an i.i.d sample E = {Xi ∈
M, i = 1, . . . , n} with distribution X. Set d the Euclidean distance on R

p

and δ the induced geodesic distance on M. Our aim is to estimate intrinsic
statistics defined by Equation (2). Since the manifold M is unknown, the
main issue is to estimate the geodesic distance between two points on the
manifold, that is δ (Xi,Xj).

Let γij be the geodesic path connecting two points Xi and Xj , that is the
minimum length path on M between points Xi and Xj . Denoting by L (γ)
the length of a given path γ on M, we have that δ (Xi,Xj) = L (γij).

In the Isomap algorithm, [TdSL00] propose to learn manifold topology
from a graph connecting k-nearest neighbors for a given integer k. In the
same way, our purpose is to approximate the geodesic distance δ with a
suitable graph connecting nearest neighbors. Our approximation is carried
out in three steps. Thereafter, we denote gij a path connecting two points
Xi and Xj on a given graph, and L (gij) the length of such a graph.

Step 1. Consider K = (E , E) the complete Euclidean graph associated to
sample E , that is the graph made with all the points of the sample E as
vertices, and with edges E = {{Xi,Xj} , i = 1, . . . , n− 1, j = i+ 1, . . . , n}.
For an Euclidean graph, the edge weights are the edge lengths, that is, the
Euclidean distances between each pair of points.
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4 C. DIMEGLIO, J-M. LOUBES & E. MAZA

Step 2. Let T = (E , ET ) be the Euclidean Minimum Spanning Tree (EMST)
associated to K, that is, the spanning tree that minimizes

∑

{Xi,Xj}∈ET

d (Xi,Xj) .

We point out that, the underlying idea in this construction is that, if two
pointsXi andXj are relatively close, then we have that δ (Xi,Xj) ≈ d (Xi,Xj).
This may not be true if the manifold is very twisted and may induce bad
approximations, hence the algorithm will produce a good approximation
for relatively regular manifolds. It also requires a large number of sampling
points on the manifold in order to guarantee the quality of this approxima-
tion. This drawback is well known when dealing with graph based approx-
imation of the geodesic distance. Then, the graph T is a connected graph
spanning K which mimics the manifold M. Furthermore, an approximation
of the geodesic distance δ (Xi,Xj) is provided by the sum of all the euclidean
distance of the edges of the shortest path on T connecting Xi to Xj, namely

δ̂ (Xi,Xj) = min
gij∈T

L (gij) .

However, this approximation is too sensitive to perturbations of the data,
and hence, very unstable. To cope with this problem, we propose to add
more edges between the data to add extra paths in the data sample and
thus to increase stability of the estimator. The idea is that paths which are
close to the ones selected in the construction of the EMST could provide
alternate ways of connecting the edges. Close should be here understood as
lying in balls around the observed points. Hence, these new paths between
the data are admissible and should be added to the edges of the graph. This
provides redundant information but also stabilizes the constructed distance,
and may also provide an answer to the the main defect of the algorithm that
considers that two points very close with respect to the Euclidean distance
are also close with respect to the geodesic distance.

Step 3. Let B (Xi, ǫi) ⊂ R
p the open ball of center Xi and radius ǫi defined

by ǫi = max{Xi,Xj}∈ET
d (Xi,Xj). Let graph K ′ = (E , E′) defined by

{Xi,Xj} ∈ E′ ⇐⇒ XiXj ⊂

n⋃

i=1

B (Xi, ǫi)

where XiXj = {X ∈ R
p, ∃λ ∈ [0, 1], X = λXj + (1− λ)Xi}. Then, K ′ is

the graph which gives rise to our estimator of the distance δ :

(3) δ̂ (Xi,Xj) = min
gij∈K ′

L (gij) .
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MANIFOLD EMBEDDING FOR CURVE REGISTRATION 5

Hence, δ̂ is the distance associated with K ′, that is, for each pair of points
Xi and Xj , we have δ̂ (Xi,Xj) = L (γ̂ij) where γ̂ij is the minimum length
path between Xi and Xj associated to K ′.

We note that, the 3-steps procedure described above contains widespread
graph-based methods to achieve our purpose. In this article, our graph-based
calculations, such as MST estimation or shortest path calculus, were carried
out with R Language [R D10] with the igraph library for network analysis
[CN06].

An example of this 3-steps procedure and its behaviour when the number
of observations increases are displayed respectively in Figure 1 and Figure 2.
In Figure 1, points

(
X1

i ,X
2
i

)
i
are simulated as follows :

(4) X1
i =

2i− n− 1

n− 1
+ ǫ1i and X2

i = 2

(
2i− n− 1

n− 1

)2

+ ǫ2i

where ǫ1i and ǫ2i are normaly distributed with mean 0 and variance 0.01. In
Figure 2, we give some results of graph K ′ for n ∈ {10, 30, 100, 300}. We
can see in such a figure that graph K ′ tends to be close to the manifold{(

t, t2
)
∈ R

2, t ∈ R
}
.

The main difference between our algorithm and the Isomap algorithm lies
in the treatment of points which are far from the others. Indeed, the first
step of the original Isomap algorithm consists in constructing the k-nearest
neighbor graph or the ǫ-nearest neighbor graph for a given integer k or a real
ǫ > 0. Hence, points which are not connected to the biggest graph, since they
are too distant, are not used for the construction of the estimated distance.
Such a step is not present in our algorithm since in the applications we
consider a distant point is not always an outlier. Hence, we do not exclude
any points, and rather, for the construction of the EMST, all points of the
data set are connected. Moreover, the Isomap algorithm requires the choice
of parameters which are closely related to the local curvature of the manifold
(see, for instance, [BS02]). This involves a heavy computing phase which is
crucial for the quality of the construction, while, in our version we tend to
give an automatic selection of parameters.

In the following section, we present a new application of manifold learning
to the curve alignment problem.

3. Application to curve alignment. Consider a function f : R → R,
which will be the pattern to be recovered, observed in a translation effect
framework. Let A be a real valued random variable with unknown distribu-
tion on an interval (b, c) ⊂ R. The observation model is defined by

(5) X
j
i = f (tj −Ai) , i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
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6 C. DIMEGLIO, J-M. LOUBES & E. MAZA

Data Step 1

Step 2 Step 3

Fig 1. Construction of a subgraph K′ from Simulation (4) with n = 30 points. On the
top left, a simulated data set. On the top right, the associated complete Euclidean graph
K (Step 1). On the bottom left, the EMST associated with the complete graph K (Step 2).
On the bottom right, the associated open balls and the corresponding subgraph K′ (Step
3).

where (Ai)i are i.i.d random variables drawn with distribution A which
model the unknown translation parameters, while (tj)j ∈ R

m stand for the
measurement points.

This situation usually happens when individuals experience similar events,
which are explained by a common pattern f , and when the starting times
of the events are not synchronized. Such a model has been studied, for
instance, in [Sil95] and in [Røn01]. This issue has also received a specific
attention in a semi-parametric framework in [GLM07] or [CL09]. In these
works, among others, shift parameters are estimated, which enables to align
the observations and thus to get rid of the translation issue. Model (5) falls
also under the generic warping model proposed in [Maz06] and in [DLM11]
which purpose is to estimate the underlying structure of the curves. For
this, the authors define the structural median fSM of the data. In the case
of translation effects, it corresponds to

(6) fSM = f (· −med(A))
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MANIFOLD EMBEDDING FOR CURVE REGISTRATION 7

n=10 n=30

n=100 n=300

Fig 2. Evolution of graph K′ for Simulation (4) and n ∈ {10, 30, 100, 300}.

with med(A) the median of A. Hence, a natural estimator of the structural
median fSM, related to Model (5), would be

(7) f̂SM =
(
f
(
t1 − m̂ed(A)

)
, f

(
t2 − m̂ed(A)

)
, . . . , f

(
tm − m̂ed(A)

))

with m̂ed(A) the median of sample (Ai)i. However, we first note that the
translation parameters (Ai)i are not observed, and, as a consequence, that

the median m̂ed(A) can not directly be calculated. Then, the function f is

also unknown, so, estimating m̂ed(A) is not enough to calculate f̂SM. Our
purpose is to show that our manifold point of view provides a direct estimate
of fSM without the prior estimation of med(A).

In order to use the manifold embedding approach, define

X : R → R
m

a 7→ X(a) = (f (t1 − a) , f (t2 − a) , . . . , f (tm − a))

and set
C = {X(a) ∈ R

m, a ∈ R} .
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8 C. DIMEGLIO, J-M. LOUBES & E. MAZA

As soon as f ′ 6= 0, the mapX : a 7→ X(a) provides a natural parametrization
of C which can thus be seen as a submanifold of Rm of dimension 1. The
corresponding geodesic distance is given by

δ (X(a1),X(a2)) =

∣∣∣∣
∫ a2

a1

∥∥X ′(a)
∥∥ da

∣∣∣∣ .

The observation model (5) can be seen as a discretization of the manifold
C for different values (ai)i. Finding the median of all the shifted curves
can hence be done by understanding the geometry of space C, and thus
approximating the geodesic distance between the curves.

The following theorem states that the structural median defined by Equa-
tion (7) is equivalent to the median with respect to the geodesic distance on
C, which provides a geometrical interpretation of the structural median.

Theorem 1. Recall the definition of the intrinsic median:

µ̂1
I = argminµ∈C

∑n
i=1 δ (Xi, µ) . Under the assumption that f ′ 6= 0, we get

that

µ̂1
I = f̂SM.

Previous theorem can be extended to the more complex case of parametric
deformations of the type

X : R3 → R
m

(a, b, c) 7→ X(a, b, c) = (af (t1 − b) + c, . . . , af (tm − b) + c)

as soon as a 6= 0 and f ′ 6= 0. Such a model has been described in [Vim10]
and in [BLV10]. In this case, the submanifold is obviously of dimension 3.

In an even more general framework, when the observations can be modeled
by a set of curves warped one from another by an unobservable deformation
process, this estimate enables to recover the main pattern. It relies on the
assumption that all the data belong to a manifold whose geodesic distance
can be well approximated by the graph structure of the modified minimal
spanning tree described in Section 2.

Finally, we propose the following estimator of the structural median

(8) µ̃1
I = argmin

µ∈E

n∑

i=1

δ̂ (Xi, µ) ,

using the geodesic distance δ̂, estimated by the algorithm described in Sec-
tion 2. The numerical properties of this estimator is studied using simula-
tions in Section 4, and for real data sets in Section 5.
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MANIFOLD EMBEDDING FOR CURVE REGISTRATION 9

4. Simulations. We consider the target function f : R → R defined by
f(t) = t sin(t). We simulate deformations of this function on j = 1, . . . ,m =
100 equally distributed points tj of the interval [−10, 10], according to the
following model :

(9) Yi (tj) = Aif (Bitj − Ci) i =, . . . , n, j = 1, . . . ,m

where (Ai)i, and (Ci)i are i.i.d uniform random variables on [−10, 10] while
(Bi)i are an i.i.d sample of a uniform distribution on [−1, 1]. We finally
obtain a data set of n = 100 curves where each differs from the initial
function f by a translation and an amplitude deformation. The data is
displayed on the left graph of Figure 4.

We then consider three estimators of the function f . The first one, which
minimizes the approximated geodesic distance, defined by Equation (8), will
be referred to as the structural median estimator. The second one is ob-
tained by the Curve Alignment by Moments procedure (CAM) developped
by [Jam07]. The last one is the mere mean of the data. We recall here that
the CAM procedure consists on extracting the mean pattern by synchro-
nization of the moments of the simulated curves. For this, he introduces the
feature function concept for a given function g, defined as Ig(t):

(10) Ig(t) ≥ 0 and

∫
Ig(t)dt = 1

and the moments

(11) µ(1)
g =

∫
tIg(t)dt and µ(k)

g =

∫
(t− µ(1)

g )kIg(t)dt, k ≥ 2

Then, the CAM procedure is align the curves by warping their moments,
for instance, the amplitude of the peaks, at the location they occur, the
variance around these peaks, and so on. This method relies on the choice of

a proper feature function, for instance I
(l)
g (t) = |g(l)(t)|∫

|g(l)(s)|ds
for a given l ≥ 0,

on an approximation of the functions by splines, and the selection of the
number of moments to be synchronized. Hence, it highly depends on the
choice of these tuning parameters. We have chosen the optimal value of the
parameters over a grid.

These three estimators are shown on Figure 4. With the CAM or the
mere mean procedure, the average curve does not reflect the structure of
the initial curves, or the amplitude of their variations. On the contrary, the
structural median extracted by Manifold Warping has the characteristics of
the closest target curve, but is also its best approximation.

imsart-aoas ver. 2009/02/27 file: ManiWarp3.5.tex date: March 30, 2011



10 C. DIMEGLIO, J-M. LOUBES & E. MAZA

−10 −8 −6 −4 −2 0 2 4 6 8 10
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Fig 3. Data simulated from Model (9)
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Fig 4. The target function f (red dotted line), an estimation of the structural median by
Manifold Warping (green solid line), an estimation with mean (blue dashed line), and an
estimation obtained with CAM procedure (black dashed line)
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MANIFOLD EMBEDDING FOR CURVE REGISTRATION 11

5. Real data. Consider the real data case where an observation curve
represents the reflectance of a particular landscape and fully characterizes
the nature of ths landscape. The purpose of this study is to predict the
different landscapes while observing the reflectance profiles. In Figures 5
and 6, we present two data sets corresponding to reflectance patterns of two
landscapes in the same region with the same period. However, the reflectance
depends on the vegetation whose growth depends on the weather condition
and the behavior in soil. It is therefore relevant to consider that these profiles
are deformations in translation and/or amplitude of a single representative
function of the reflectance behaviour of each landscape in this region at this
time.

0 10 20 30 40 50

10
0

15
0

20
0

25
0

0 10 20 30 40 50

10
0

15
0

20
0

25
0

Fig 5. On the left, the first landscape data. On the right, the CAM representative estima-
tion (black dashed line) and the Manifod Warping estimation (green solid line).

Our aim is to build a classification procedure. For this, we will use a
labeled set of curves and extract from each group of similar landscape a rep-
resentative profile. Then, we will allocate a new curve to the group whose
representative curve will be the closest. That is the reason why it is impor-
tant to obtain a pattern which captures the structure of the curves. We will
use three different ways to get a representative group of curves, the mean
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12 C. DIMEGLIO, J-M. LOUBES & E. MAZA
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Fig 6. On the left, the second landscape data. On the right, the CAM representative esti-
mation (black dashed line) and the Manifod Warping estimation (green solid line).

curve, the CAM method and our method, referred to as the manifold warp-
ing. We will compare their classification performance together with a usual
classification procedure : the classical k-nearest neighbours.

In Figure 5, we observe that the CAM average oversmoothes the peaks
of activity at times 12 and 22 to make them almost nonexistent. This is
a clear defect since, according to the experts of landscape remote sensing,
these peaks of activity are representative of the nature of landscape. Indeed,
these peaks convey essential informations which determines, among other
things, the type of landscape. On the other hand, these changes are very
well rendered by the pattern obtained by Manifold Warping. The same con-
clusions can be drawn in Figure 6 for an other landscape. In this application
domain, extracting a curve by Manifold Warping is best able to report data
as reflecting their structure and thus to obtain a better representative.

So, if we try to identify ”unknown” landscapes by classifying each curve.
We find the nearest representative by Euclidean distance, we obtain the
confusion matrices displayed in Table 1. Note that here we have sought to
classify the two landscapes plots at the earliest in the season. To benchmark
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MANIFOLD EMBEDDING FOR CURVE REGISTRATION 13

our procedure, we compare our performance to the method of the k-nearest
neighbors classification. We classified our data by Euclidean distance in our
initial data sets and we get the confusion matrix of Table 2. We get a much
better discrimination of landscapes, working on parts of curves, with the
method of estimating a representative by Manifold Warping than by the
CAM method or by classical mean.

Pixel Manifold classification CAM classification

Reference Landscape1 Landscape2 Landscape1 Landscape2

Landscape1 21 0 12 9

Landscape2 1 19 1 19
Table 1

Manifold Warping and CAM confusion matrices.

Pixel Mean classification k-nn classification

Reference Landscape1 Landscape2 Landscape1 Landscape2

Landscape1 12 9 15 6

Landscape2 0 20 2 18
Table 2

Classical mean and k-nearest neighbors confusion matrices.

6. Conclusion. By using an ISOMAP inspired strategy, we have ex-
tracted from a pattern of curves, a curve which, playing the role of the
mean, serves as a pattern conveying the information of the data. In some
cases, in particular when the structure of the deformations entails that the
curve can be embedded into a manifold regular enough, we have shown that
this corresponds to finding the structural expectation of the data, devel-
oped in [DLM11], which improves the performance of other mean extraction
methods. This enables to derive a classification strategy that assigns a curve
to the group, whose representative curve is the closest, with respect to the
chosen distance. Of course, the performance of this allocation rule deeply
relies on the good performance of the pattern extraction.

One of the major drawbacks of this methodology are that first a high
number of data are required in order to guarantee a good approximation of
the geodesic distance at the core of this work. Actually, note that the num-
ber of observations, i.e the sampling rate of the manifold highly depends
on the regularity of the manifold such that the assumption that the eu-
clidean path between two observations follow approximatively the geodesic
path. Hence, the data set should be carefully chosen for the manifold to
be smooth enough. We point out that an enhancement could come from a
prior registration procedure first applied to the curve and then the manifold
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14 C. DIMEGLIO, J-M. LOUBES & E. MAZA

warping procedure applied to the registered data. The second drawback
which may also be viewed as an advantage, is the following : the extracted
pattern is a curve that belong to the observations. One the one hand, it may
contains noise if the data are noisy observations but on the other hand it
thus guarantees that the pattern shares the mean properties and specifies
of the observations. A solution when the noise must be removed is either to
directly smooth the resulting pattern or to consider the neigbourhood of the
extracted pattern with respect to the approximated geodesic distance and
then use a kernel estimator with these observations to obtain a regularized
mean curve.

Nevertheless, we promote this procedure when a large amount of data
are available and when the sets of similar curves share a common behaviour
which fully characterizes the observations, coming from an economic, phys-
ical or biological model for instance. This methods has been applied with
success to a large amount of cases. Numerical packages for R or Matlab are
available on request.

7. Appendix.

Proof of Theorem 1. Take µ = X(α) with α ∈]b, c[, we can write

µ̂1
I = arg min

X(α)∈C

n∑

i=1

δ (X (Ai) ,X(α))

= arg min
X(α)∈C

n∑

i=1

D (Ai, α) = arg min
X(α)∈C

C(α)

where D is the following distance on ]b, c[ :

D (Ai, α) =

∣∣∣∣
∫ α

Ai

∥∥X ′(a)
∥∥ da

∣∣∣∣ .

In the following, let
(
A(i)

)
i
the ordered parameters. That is

A(1) < A(2) < · · · < A(n).

Then, for a given α ∈]b, c[ such that A(j) < α < A(j+1), we get that

C(α) = jD
(
α,A(j)

)
+

j−1∑

i=1

iD
(
A(i), A(i+1)

)

+ (n − j)D
(
α,A(j+1)

)
+

n−1∑

i=j+1

(n− i)D
(
A(i), A(i+1)

)
.
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For the sake of simplicity, let n = 2q + 1. It follows that m̂ed(A) = A(q+1).
Moreover, let α = A(j) with j < q+1. By symmetry, the case j > q+1 will
hold. Then, we rewrite C (α) as

C (α) =

j−1∑

i=1

iD
(
A(i), A(i+1)

)
+

n−1∑

i=j

(n− i)D
(
A(i), A(i+1)

)

and, by introducing A(q+1), we get that

C(α) =

j−1∑

i=1

iD
(
A(i), A(i+1)

)
+

q∑

i=j

iD
(
A(i), A(i+1)

)

+

q∑

i=j

(n− 2i)D
(
A(i), A(i+1)

)
+

n−1∑

i=q+1

(n− i)D
(
A(i), A(i+1)

)
.

Finally, we notice that

C(α) = C
(
A(q+1)

)
+

q∑

i=j

(n− 2i)D
(
A(i), A(i+1)

)
> C

(
A(q+1)

)
.

And the result follows since

µ̂1
I = arg min

X(α)∈C
C(α) = X

(
A(q+1)

)
= X

(
m̂ed(A)

)
= f̂SM.
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