
HAL Id: hal-00593140
https://hal.science/hal-00593140v1

Preprint submitted on 13 May 2011 (v1), last revised 7 Nov 2011 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the first eigenvalue of the Dirichlet-to-Neumann
operator on forms

Simon Raulot, Alessandro Savo

To cite this version:
Simon Raulot, Alessandro Savo. On the first eigenvalue of the Dirichlet-to-Neumann operator on
forms. 2011. �hal-00593140v1�

https://hal.science/hal-00593140v1
https://hal.archives-ouvertes.fr


On a Steklov eigenvalue problem for differential forms∗

S. Raulot and A. Savo

May 13, 2011

Abstract

We study a Steklov eigenvalue problem for differential forms on a compact Riemannian
manifold with smooth boundary. This problem is a natural generalization of the classical
Steklov (or Dirichlet to Neumann) problem on functions. We derive a number of upper and
lower bounds for the first eigenvalue in several contexts: many of these estimates will be
sharp, and for some of them we characterize equality. We also relate these new eigenvalues
with those of other operators, like the Hodge Laplacian or the biharmonic Steklov operator.

1 Introduction

Let Ω be a compact, connected (n + 1)−dimensional Riemannian domain with smooth
boundary Σn. The Steklov operator T , also called Dirichlet to Neumann operator, acts
on smooth functions on Σ in the following way. If f ∈ C∞(Σ) and f̂ denotes the unique
harmonic extension of f to Ω, then:

Tf = − ∂f̂

∂N
, (1)

where N is the inner unit normal vector field on Σ. T defines a pseudo-differential operator
on C∞(Σ) which is known to be elliptic and self-adjoint; hence T has a discrete spectrum
0 = ν1 < ν2 ≤ ν3 ≤ . . . . Note that the lowest eigenvalue is ν1 = 0, corresponding to the
constant eigenfunctions; therefore, in our convention, the first positive eigenvalue of T
will be denoted by ν2. There is a vast literature on eigenvalue estimates for the operator
T ; directly related to our paper are the estimates given in [5] and [6].

In this paper, we consider a natural extension of the Steklov operator T to an elliptic
operator T [p] acting on differential forms of arbitrary degree p on the boundary Σ and
then prove some geometric lower bounds for its first eigenvalue, given in terms of the
second fundamental form of the boundary. We then estimate these new eigenvalues from
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above in terms of the isoperimetric ratio Vol(Σ)/Vol(Ω), and in terms of the eigenvalues
of other differential operators, like the Hodge-Laplace operator on the boundary Σ and
the biharmonic Steklov operator. In some cases we improve some known estimates. The
operator T [p] seems to have interesting spectral properties which, we hope, justify the
present work.

In the rest of the introduction we state the main results of the paper.

1.1 The definition of T [p]

Let ω be a form of degree p on Σn, with p = 0, 1, . . . , n. Then there exists a unique p-form
ω̂ on Ω such that:

{

∆ω̂ = 0

J⋆ω̂ = ω, iN ω̂ = 0,

where J⋆ denotes the restriction of ω̂ to Σ, and iN is the interior product of ω̂ with the
inner unit normal vector field N . The form ω̂ will be called the harmonic tangential
extension of ω. Its existence and uniqueness is proved, for example, in Schwarz [15]. We
set:

T [p]ω = −iNdω̂,
and then we have a linear operator T [p] : Λp(Σ) → Λp(Σ), the (absolute) Steklov operator,
which reduces to the classical Steklov operator acting on functions when p = 0, so that
T [0] = T . Here Λp(Σ) denotes the vector bundle of differential p-forms on Σ.

We observe in Section 2 that T [p] is an elliptic self-adjoint pseudo-differential operator,
with discrete spectrum

ν1,p(Ω) ≤ ν2,p(Ω) ≤ . . .

Moreover, T [p] is non-negative so that ν1,p(Ω) ≥ 0. Actually, it follows easily from the
definition that KerT [p] is isomorphic to Hp(Ω), the p-th absolute de Rham cohomology
space of Ω with real coefficients. Therefore:

− a positive lower bound of ν1,p(Ω) will imply in particular that Hp(Ω) = 0;
− a positive upper bound of ν1,p(Ω) will be significant only when Hp(Ω) = 0.

As Ω is connected, we see that H0(Ω) is 1−dimensional. Therefore, in our notation,
ν1,0(Ω) = 0 and ν2,0(Ω) = ν2 is the first positive eigenvalue of the classical problem (1).

Finally, using the Hodge star operator, we define a dual operator T
[p]
D , also acting on Λp(Σ);

in particular, the dual of T [n] defines an operator T
[0]
D acting on C∞(Σ) and different from

the classical Steklov operator T (see Section 2.1 for details).

The operator T [p] belongs to a family of operators depending on a complex parameter
z, introduced by G. Carron in [2] (see the proof of Theorem 11). Other Dirichlet to
Neumann operators acting on differential forms, but different from T [p], were introduced
by Joshi and Lionheart in [10], and Belishev and Sharafutdinov in [1]. In the preprint
[17], the operator ⋆ΣT

[p] : Λp(Σ) → Λn−p(Σ) appears in a certain matrix decomposition
of the Joshi and Lionheart operator. None of these works, however, discuss eigenvalue
estimates.
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1.2 Lower bounds by the extrinsic geometry

First, some notations. Fix a point x ∈ Σ and let η1(x), . . . , ηn(x) be the principal
curvatures of Σn at x (our sign convention is that the principal curvatures of the unit
ball in Rn+1 are positive). The p-curvatures of Σ are, by definition, all possible sums
ηj1(x) + · · ·+ ηjp(x) for j1, . . . , jp ∈ {1, . . . , n}. Arrange the sequence of principal curva-
tures so that it is non-decreasing: η1(x) ≤ · · · ≤ ηn(x), and call

σp(x)
.
= η1(x) + · · ·+ ηp(x)

the lowest p-curvature at x. We say that Σ is p-convex if σp(x) ≥ 0 for all x ∈ Σ, and let

σp(Σ) = inf
x∈Σ

σp(x).

Note that 1-convex means, simply, convex (all principal curvatures are non-negative)
and n-convex means that Σ has non-negative mean curvature because, by definition,
σn(Σ) = nH , where H is a lower bound of the mean curvature of Σ. Finally, it is clear
from the definition that, if Σ is p−convex, then it is q−convex for all q ≥ p.

Recall that, if ω is a p-form on Ωn+1, the Bochner formula gives

∆ω = ∇⋆∇ω +W [p],

where W [p] is a symmetric endomorphism acting on Λp(Ω), called the Bochner curvature
term. One knows that W [1] = Ric, the Ricci tensor, hence W [1] ≥ 0 provided that Ω has
nonnegative Ricci curvature.
From the work of Gallot and Meyer (see [8]) we also know that, if γ is a lower bound of
the eigenvalues of the Riemann curvature operator (seen as a symmetric endomorphism
of Λ2(Ω)), then W [p] ≥ p(n+ 1− p)γ. Hence

− if the curvature operator of Ω is nonnegative then W [p] ≥ 0 for all degrees p.

However, the condition W [p] ≥ 0 is sometimes much weaker than assuming the positivity
of the curvature operator.

Theorem 1. Let p = 1, . . . , n. Assume that Ωn+1 satisfies W [p] ≥ 0 and that Σ is strictly
p-convex, that is σp(Σ) > 0.

(a) If p <
n+ 1

2
then ν1,p(Ω) >

n− p+ 2

n− p+ 1
σp(Σ).The equality never holds.

(b) If p ≥ n + 1

2
then

ν1,p(Ω) ≥
p+ 1

p
σp(Σ), (2)

which is an equality when Ω is a ball in the Euclidean space Rn+1.
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Remark. Note that under the given curvature assumptions we have in particularHq(Ω) =
0 for all q ≥ p; so, the p−convexity has interesting topological consequences. This is not
new: in [20] it was proved by other methods that, if σp(Σ) > 0 and the sectional cur-
vatures of Ω are non-negative, then Ω has the homotopy type of a CW−complex with
cells only in dimensions ≤ p − 1. For a result in negative curvature we refer to [14]: in
particular, if Ω is a p−convex domain in Hn then Hp(Ω) = 0 for all q ≥ p, provided that
p > (n+ 1)/2.

The proof of Theorem 1 uses a Reilly-type formula for differential forms, proved in [12].
We characterize the equality in (2) in the following two cases: when p = n and when
p > (n+ 1)/2 and Ω is a Euclidean domain. Precisely:

Theorem 2. Assume that Ω has non-negative Ricci curvature and mean-convex boundary.
Then

ν1,n(Ω) ≥ (n+ 1)H,

where H is a lower bound of the mean curvature. If n ≥ 2, equality holds if and only if Ω
is a Euclidean ball.

Theorem 3. If p > n+1
2

and Ω is a Euclidean domain, then we have equality in (2) if
and only if Ω is a ball.

For Euclidean domains we also prove an inequality relating the first eigenvalues for con-
secutive degrees.

Theorem 4. Let Ω be any compact domain in Rn+1, and let σp(Σ) be a lower bound of
the p-curvatures of Σ (which we do not assume to be positive).

(i) For all p = 1, . . . , n one has ν1,p(Ω) ≥ ν1,p−1(Ω) + σp(Σ)/p.

(ii) If Ω is convex, then ν1,p > 0 for all p ≥ 1 and

ν1,1(Ω) ≤ ν1,2(Ω) ≤ · · · ≤ ν1,n(Ω).

The inequality (i) is sharp for p > n+1
2

since equality is achieved by the unit Euclidean
ball. The monotonicity property in (ii) is an immediate consequence of (i), because if Ω
is convex then σp(Σ) ≥ 0 for all p.

We remark that the property (ii) holds also for the first eigenvalues of the Laplacian
acting on p-forms of a convex Euclidean domain Ω, for the absolute boundary conditions
(see [9]).

1.3 Upper bounds by the isoperimetric ratio

It turns out that the existence of parallel forms implies that, for suitable degrees, the
Steklov eigenvalues can be bounded above by the isoperimetric ratio Vol(Σ)/Vol(Ω). Pre-
cisely, if Ω supports a non trivial parallel p-form, and Hp(Ω) = Hp

R(Ω) = 0, then

ν1,p−1(Ω) + ν1,n−p(Ω) ≤
Vol(Σ)

Vol(Ω)
. (3)
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In some cases the estimate is sharp and we can characterize equality. Either one of the
two cohomology assumptions can be removed if the given parallel form is known to be
exact (respectively, co-exact): so, for example, (3) holds in all degrees for all domains in
Euclidean space, since the parallel p−form dx1 ∧ · · · ∧ dxp is exact and co-exact.

The inequality (3) follows from the estimates in Section 4, which apply more generally to
the ratio

∫

Σ
‖ξ‖2/

∫

Ω
‖ξ‖2, where ξ is a harmonic field, that is, a differential form which is

closed and co-closed (we remark that on a manifold with nonempty boundary the vector
space of harmonic fields of a given degree is infinite dimensional, and is properly contained
in the space of harmonic forms).

As the volume form of Ω is parallel we have, for all compact manifolds with boundary,
the estimate:

ν1,n(Ω) ≤
Vol(Σ)

Vol(Ω)
, (4)

which reduces to an equality when Ω is a Euclidean ball.

Then, we examine the equality case in (4). To that end, consider the mean-exit time
function E, solution of the problem:

{

∆E = 1 on Ω,

E = 0 on Σ.

Any domain for which the normal derivative ∂E/∂N is constant on Σ will be called a
harmonic domain. The reason for this terminology is given by Proposition 18, in which
we observe the following simple fact: ∂E/∂N is constant on Σ if and only if the mean
value of any harmonic function on Ω equals its mean value on the boundary.

Theorem 5. Let Ω be any compact domain. Then ν1,n(Ω) ≤ Vol(Σ)/Vol(Ω).

a) If equality holds, then Ω is a harmonic domain.

b) Conversely, if Ω is a harmonic domain, then Vol(Σ)/Vol(Ω) belongs to the spectrum
of T [n] (an associated eigenform being ⋆dE).

It remains to see how rigid the harmonicity condition is, and what conditions it imposes
on the geometry of the boundary. For Euclidean domains the question was settled in
a famous paper by Serrin [16] which states in particular that any harmonic domain in
Rn+1 is a ball. This rigidity result was extended by Kumaresan and Prajapat (see [11])
to domains in the hyperbolic space Hn+1 and in the hemisphere Sn+1

+ . To our knowledge,
the classification of harmonic domains in Sn+1 is still an open (and interesting) question.
Then, we have the following

Corollary 6. a) For Euclidean domains the equality holds in (4) iff Ω is a ball.

b) Let Ω be a domain in Hn+1 or in Sn+1
+ . If the equality holds in (4), then Ω is a geodesic

ball.
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Finally, using the estimate (4) and the inequalities of Theorem 1 and Theorem 4, one gets
the following fact.

Proposition 7. For the unit Euclidean ball Bn+1 in Rn+1 one has ν1,p(B
n+1) = p+1 for

all p ≥ (n + 1)/2.

This calculation shows that the estimates of Theorems 1 and 4 are indeed sharp.

Remark. In a forthcoming paper, we will compute the whole spectrum of the Steklov
operator acting on p−forms of the unit Euclidean ball. In particular it turns out that, if
1 ≤ p < (n+1)/2, then p+1 is still an eigenvalue of T [p], however it is no longer the first.

In that range one has in fact ν1,p(B
n+1) =

n + 3

n + 1
p.

1.4 Upper bounds by the Hodge-Laplace eigenvalues

The Hodge Laplacian acting on p-forms of a closed manifold Σ is the operator de-
fined by ∆Σ = dΣδΣ + δΣdΣ, where dΣ and δΣ denote respectively the differential and
the co-differential acting on forms of Σ. We let λ′1,p(Σ) (resp. λ′′1,p(Σ)) be the first

eigenvalue of ∆Σ restricted to the subspace of exact (resp. co-exact) forms (these sub-
spaces are preserved by ∆Σ because it commutes with dΣ and δΣ). Differentiating eigen-
forms, one sees that, if λ1,p(Σ) is the first positive eigenvalue of ∆Σ, then λ1,p(Σ) =
min{λ′1,p(Σ), λ′1,p+1(Σ)}.
We then have the following lower bound.

Theorem 8. Assume that Hp
R(Ω) = 0, min(σp(Σ), σn−p+1(Σ)) ≥ 0 and W [p] ≥ 0. Then,

for all p = 1, . . . , n:

λ′1,p(Σ) ≥
1

2

(

σp(Σ)ν1,n−p(Ω) + σn−p+1(Σ)ν1,p−1(Ω)
)

.

Observe that λ′1,1(Σ) = λ1(Σ), the first positive eigenvalue of the Laplacian acting on
functions of Σ. Taking p = 1 in the previous theorem we obtain the following sharp lower
bound.

Theorem 9. Assume that Ω has non-negative Ricci curvature and that Σ is strictly
convex, with principal curvatures bounded below by σ1(Σ) > 0. Then:

λ1(Σ) ≥
1

2

(

σ1(Σ)ν1,n−1(Ω) + nHν2,0(Ω)
)

,

where H is a lower bound of the mean curvature of Σ, and ν2,0(Ω) is the first positive
eigenvalue of the Steklov operator on functions. Moreover, if n = dim(Σ) ≥ 3, the
equality holds if and only if Ω is a Euclidean ball.
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The motivation for looking at such a bound was given by the following estimate of Escobar
[6], which holds under the same assumptions of Theorem 9:

λ1(Σ) >
nH

2
ν2,0(Ω). (5)

We observe that the defect λ1(Σ)−
nH

2
ν2,0(Ω) in (5) is bounded below by the first Steklov

eigenvalue in the degree n− 1, thus obtaining a sharp bound.

1.5 An upper bound by the first biharmonic Steklov eigenvalue

The following problem on functions is classical, and is known as the fourth order (or
biharmonic) Steklov eigenvalue problem:







∆2f = 0 on Ω,

f = 0, ∆f = µ
∂f

∂N
on Σ.

(6)

For recent results on the problem, we refer to [7] and [19]. An immediate application of
the min-max principle associated to the Steklov operator on n-forms gives:

Theorem 10. One has always µ1(Ω) ≥ ν1,n(Ω), where µ1(Ω) is the first eigenvalue of
(6). If the equality holds, then Ω is a harmonic domain.

In [19] Wang and Xia prove that, if the Ricci curvature of Ω is non-negative and the mean
curvature of Σ is bounded below by H > 0, then µ1(Ω) ≥ (n + 1)H . Moreover equality
occurs if and only if Ω is isometric to a ball of Rn+1. Combining Theorem 10 and our
estimate of Theorem 2 we see that, under the given assumptions:

µ1(Ω) ≥ ν1,n(Ω) ≥ (n + 1)H

which implies the result of Wang and Xia. On the other hand, it is easy to observe
that µ1(Ω) ≤ Vol(Σ)/Vol(Ω) (see for example [19]). Then the estimate (4) is a direct
consequence of this fact and Theorem 10.

The paper is organized as follows. In Section 2 we state the main properties of the operator
T [p]. In Section 3 we prove the lower bounds and in Section 4 we give the proof of the
upper bounds. Finally, in Section 5, we prove a rigidity result needed for the equality
case of Theorem 3.

2 Generalities on the Steklov operator

Before stating the main properties of T [p], let us recall the following well-known facts.
The Hodge-de Rham theorem for manifolds with boundary asserts that Hp

dR(Ω,R), the
absolute de Rham cohomology space in degree p with real coefficients, is isomorphic to the
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(finite dimensional) vector space of harmonic p-forms φ satisfying the absolute boundary
conditions (iNφ = iNdφ = 0 on Σ), which we denote by Hp(Ω). Equivalently, one has:

Hp(Ω) = {φ ∈ Λp(Ω) : dφ = δφ = 0 on Ω, iNφ = 0 on Σ}.

By duality, the relative de Rham cohomology space in degree p is isomorphic to the vector
space

Hp
R(Ω) = {φ ∈ Λp(Ω) : dφ = δφ = 0 on Ω, J⋆φ = 0 on Σ}.

Theorem 11. Let Ωn+1 be a compact domain with smooth boundary Σn. Let T [p] be the
Steklov operator acting on p−forms of Σ, as defined in Section 1.1. Then:

(a) T [p] is nonnegative and self-adjoint.

(b) The kernel of T [p] consists of the boundary values of absolute cohomology classes, and
the restriction J⋆ induces an isomorphism between Hp(Ω) and Ker(T [p]).

(c) T [p] is an elliptic pseudo-differential operator of order one. Hence it admits an in-
creasing sequence of eigenvalues with finite multiplicities

ν1,p(Ω) ≤ ν2,p(Ω) ≤ . . .

with ν1,p(Ω) = 0 repeated bp(Ω) = dimHp(Ω) times. In particular, ν1,p(Ω) > 0 if and only
if Hp(Ω) = 0.

(d) The first eigenvalue of T [p] satisfies the min-max principle

ν1,p(Ω) = inf

{

∫

Ω
‖dφ̂‖2 + ‖δφ̂‖2

∫

Σ
‖φ̂‖2

}

(7)

where the infimum is taken over all p−forms φ̂ on Ω such that iN φ̂ = 0 on Σ.

We remark that (b) has already been observed in [17].

Proof. (a) We prove that the operator is self-adjoint. Recall the Stokes formula:
∫

Ω

〈dω1, ω2〉 =
∫

Ω

〈ω1, δω2〉 −
∫

Σ

〈J⋆ω1, iNω2〉

for all ω1 ∈ Λp−1(Ω) and ω2 ∈ Λp(Ω). Now let φ, ψ ∈ Λp(Σ) and denote by φ̂, ψ̂ their
harmonic tangential extensions on Ω. The definition of T [p] and the Stokes formula give:

∫

Σ

〈T [p]φ, ψ〉 = −
∫

Σ

〈iNdφ̂, J⋆ψ̂〉 =
∫

Ω

〈dφ̂, dψ̂〉 − 〈δdφ̂, ψ̂〉.

As ψ̂ is harmonic and iN ψ̂ = 0 we have

−
∫

Ω

〈δdφ̂, ψ̂〉 =
∫

Ω

〈dδφ̂, ψ̂〉 =
∫

Ω

〈δφ̂, δψ̂〉.
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So
∫

Σ
〈T [p]φ, ψ〉 =

∫

Ω
〈dφ̂, dψ̂〉+〈δφ̂, δψ̂〉 which shows that T [p] is self-adjoint. Taking ψ = φ

yields:
∫

Σ

〈T [p]φ, φ〉 =
∫

Ω

‖dφ̂‖2 + ‖δφ̂‖2 ≥ 0.

and T [p] is nonnegative.

(b) If φ ∈ Ker(T [p]) then its harmonic tangential extension φ̂ satisfies, on Σ: iN φ̂ = iNdφ̂ =
0. Hence φ is the restriction of a form (cohomology class) in Hp(Ω). Conversely, it is
clear by the definition that an absolute cohomology class restricts to a form in the kernel
of T [p]. Then:

Ker(T [p]) = J⋆(Hp(Ω)).

We observe that the map J⋆ : Hp(Ω) → J⋆
(

Hp(Ω)
)

is injective: in fact, if J⋆φ̂ = 0 for

some cohomology class φ̂, then φ̂ is harmonic and zero on the boundary, which implies
φ̂ = 0. Then the dimension of Ker(T [p]) equals bp(Ω).

(c) The proof that T [p] is an elliptic pseudo-differential operator follows the lines of the
proof done in Section 6.4 of [2]. There, in studying determinants, G. Carron considers the
linear operator Tz : Λp(Σ) → Λp(Σ) depending on a complex parameter z ∈ C \ [0,∞)
and defined by

Tzφ = −iNdφ̂z,

where φ̂z is the unique solution of
{

∆φ̂z = zφ̂z on Ω,

iN φ̂z = 0, J⋆φ̂z = φ on Σ.
(8)

Carron shows that Tz is an elliptic, pseudo-differential, invertible operator. In fact, the
inverse Sz of Tz is shown to be the operator obtained by restricting to the boundary the
Green kernel of the Hodge Laplacian ∆ acting on p-forms of Ω, for the absolute boundary
conditions; as Sz is pseudo-differential of order −1, the operator Tz is pseudo-differential
of order 1. The restriction on z is imposed precisely because then Tz will be invertible,
since z avoids the spectrum of ∆ (which is contained in the nonnegative half-line).

Our operator is obtained by taking z = 0 in (8): it is no longer invertible when Hp(Ω) 6=
{0} but it is still pseudo-differential and elliptic because, by (b), its kernel is finite dimen-
sional, isomorphic to Hp(Ω). In fact, the operator S0 is now invertible modulo compact
operators, given by the projection onto the kernel of T0 and its transpose. The rest of
Carron’s proof carries over and so T0 = T [p] is an elliptic PDO of order 1. More gener-
ally, Tz is an elliptic PDO for all z, and is invertible as long as z does not belong to the
spectrum of ∆.

The rest of (c) now follows from the standard theory of elliptic PDO (see [18]).

(d) The min-max principle gives

ν1,p(Ω) = inf

{

∫

Ω
‖dφ̂‖2 + ‖δφ̂‖2

∫

Σ
‖φ̂‖2

: ∆φ̂ = 0, iN φ̂ = 0

}

.
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We only have to show that we can remove the condition ∆φ̂ = 0. This follows from the
fact that among all tangential extensions ξ of a given form φ ∈ Λp(Σ), the harmonic

tangential extension φ̂ minimizes the quadratic form
∫

Ω
‖dξ‖2 + ‖δξ‖2. Indeed, assume

that J⋆ξ = φ = J⋆φ̂ and iNξ = 0 = iN φ̂. Let ψ = ξ − φ̂ so that ψ = 0 on the boundary.
Using the Stokes formula one verifies that:

0 ≤
∫

Ω

‖dψ‖2 + ‖δψ‖2 =
∫

Ω

‖dξ‖2 + ‖δξ‖2 −
∫

Ω

‖dφ̂‖2 + ‖δφ̂‖2,

and the assertion follows.

2.1 The dual problem

Let p = 0, . . . , n. Given a p-form φ on Σ consider the unique (p + 1)-form on Ω φ̃ which
satisfies:

{

∆φ̃ = 0 on Ω

J⋆φ̃ = 0, iN φ̃ = φ on Σ.

The form φ̃ will be called the harmonic normal extension of φ. Its existence and uniqueness
is also proved in Schwarz [15]. We set

T
[p]
D φ = J⋆(δφ̃)

and call T
[p]
D the relative Steklov operator. It defines another elliptic pseudo-differential

operator of order one acting on Λp(Σ), which is self-adjoint and nonnegative. These

properties can easily be derived from Theorem 11 and the fact that T
[p]
D is related to the

absolute Steklov operator by the identity T
[p]
D = (−1)p(n−p) ⋆Σ T

[n−p]⋆Σ, where ⋆Σ denotes
the Hodge-star operator acting on forms on Σ. Denoting by νD1,p(Ω) the first eigenvalue

of T
[p]
D , we have

νD1,p(Ω) = ν1,n−p(Ω).

Moreover, the min-max principle for the dual problem takes the form:

νD1,p(Ω) = inf

{

∫

Ω
‖dφ̂‖2 + ‖δφ̂‖2

∫

Σ
‖φ̂‖2

: φ̂ ∈ Λp+1(Ω), J⋆φ̂ = 0

}

. (9)

Note that T
[0]
D is an operator acting on functions, which clearly differs from the operator

T [0].
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3 Lower bounds: proofs

3.1 Reilly formula for differential forms

The main tool used in the proof of the lower bound is a Reilly-type formula for differential
forms proved by the authors in [12], which we state below.

Denote by S the shape operator of the immersion of Σ in Ω; it is defined as S(X) = −∇XN
for all tangent vectors X ∈ TΣ. S admits a canonical extension acting on p-forms on Σ
and denoted by S [p]. Explicitly, if ω is a p-form on Σ one has:

S [p]ω(X1, . . . , Xp) =

p
∑

j=1

ω(X1, . . . , S(Xj), . . . , Xp),

for tangent vectors X1, . . . , Xp ∈ TΣ. It is clear from the definition that the eigenvalues
of S [p] are precisely the p-curvatures of Σ: therefore we have immediately

〈S [p]ω, ω〉 ≥ σp(Σ)‖ω‖2

at all points of Σ and for all p-forms ω. Now let ω be a p−form on Ω. The Reilly formula
says that

∫

Ω

‖dω‖2 + ‖δω‖2 =
∫

Ω

‖∇ω‖2 + 〈W [p](ω), ω〉+ 2

∫

Σ

〈iNω, δΣ(J⋆ω)〉+
∫

Σ

B(ω, ω), (10)

where the boundary term has the following expression:

B(ω, ω) = 〈S [p](J⋆ω), J⋆ω〉+ nH‖iNω‖2 − 〈S [p−1](iNω), iNω〉
= 〈S [p](J⋆ω), J⋆ω〉+ 〈S [n−p+1](J⋆ ⋆ ω), J⋆ ⋆ ω〉

By convention, we set S [0] = S [n+1] = 0. For a detailed proof of (10) see [12].

3.2 Proof of Theorem 1

We assume thatW [p] ≥ 0, and that the p-curvatures of Σ are bounded below by σp(Σ) > 0.
We have to prove that, if p < n+1

2
then:

ν1,p(Ω) >
n− p+ 2

n− p+ 1
σp(Σ), (11)

and if p ≥ n+1
2

then

ν1,p(Ω) ≥
p+ 1

p
σp(Σ). (12)

Let ω be an eigenform associated to ν1,p(Ω) and let ω̂ be its harmonic tangential extension
to Ω. By the variational characterization (7):

∫

Ω

‖dω̂‖2 + ‖δω̂‖2 = ν1,p(Ω)

∫

Σ

‖ω‖2 (13)

11



because, on the boundary, ‖ω̂‖2 = ‖ω‖2 + ‖iN ω̂‖2 = ‖ω‖2. We apply the Reilly formula
to ω̂. As W [p] ≥ 0 and iN ω̂ = 0 we get

∫

Ω

(

‖dω̂‖2 + ‖δω̂‖2
)

≥
∫

Ω

‖∇ω̂‖2 +
∫

Σ

〈S [p](ω), ω〉

≥
∫

Ω

‖∇ω̂‖2 + σp(Σ)

∫

Σ

‖ω‖2
(14)

We will use the following estimate of Gallot and Meyer [8], valid for any p-form ω̂:

‖∇ω̂‖2 ≥ ‖dω̂‖2
p+ 1

+
‖δω̂‖2

n− p+ 2
. (15)

When p < n+1
2

one has p+ 1 < n− p+ 2 hence:

‖∇ω̂‖2 ≥ ‖dω̂‖2 + ‖δω̂‖2
n− p+ 2

, (16)

and the equality implies dω̂ = 0. Inserting (16) in (14), and taking into account (13),
we obtain (11). Note that then ν1,p(Ω) > 0. Equality in (16) implies that dω̂ = 0 hence
iNdω̂ = 0: but this is impossible because otherwise ν1,p(Ω) = 0. So the inequality is
always strict.

If p ≥ n+1
2

one has

‖∇ω̂‖2 ≥ ‖dω̂‖2 + ‖δω̂‖2
p+ 1

. (17)

and proceeding as before we obtain (12). The inequality (12) is sharp: for the unit Eu-
clidean ball we have σp(Σ) = p and ν1,p(B

n+1) = p + 1 (see Proposition 7). We finally
remark that, if p > n+1

2
and the equality holds in (12), it holds also in (17) and then

δω̂ = 0. �

Now we study the equality case of this estimate. Recall that the p-form ω̂ is a conformal
Killing form if it satisfies the differential equation

∇X ω̂ =
1

p+ 1
iXdω̂ − 1

n− p+ 2
X∗ ∧ δω̂

for all X ∈ TΩ. A co-closed conformal Killing form is called a Killing form. It is well-
known that the inequality (15) is an equality if and only if ω̂ is a conformal Killing form
(see for example [8]). We then have:

Proposition 12. Assume p ≥ (n + 1)/2. If equality holds in (12) then the harmonic
tangential extension of a p-eigenform associated to ν1,p(Ω) is a conformal Killing p-form
(a Killing form if p > n+1

2
) and the p lowest principal curvatures of the boundary are

constant, equal to c = ν1,p(Ω)/(p+ 1).

12



Proof. Looking at the proof of (12) we see immediately that if the equality holds then
ω̂ is a conformal Killing form and, by the last remark in the proof, it is a Killing form
when p > n+1

2
. It remains to show the last assertion. Now, the Gauss formula leads to

the following relations (see Section 6 in [12]):
{

∇Σ
X(iN ω̂) = iN∇X ω̂ − iS(X)J

⋆ω̂

∇Σ
X(J

⋆ω̂) = J⋆(∇X ω̂) + S(X)⋆ ∧ iN ω̂,
(18)

for all X ∈ TΣ, where ∇Σ is the Levi-Civita connection of Σ. Since ω̂ is the harmonic
tangential extension of ω, we have iN ω̂ = 0 and the first equation in (18) reads:

iN∇X ω̂ = iS(X)ω. (19)

On the other hand, since ω̂ is a conformal Killing p-form we have for all X ∈ Γ(TΣ):

iN∇X ω̂ = − 1

p + 1
iX(iNdω̂) =

ν1,p(Ω)

p+ 1
iXω. (20)

We used the fact that iNδω̂ = −δΣ(iN ω̂) = 0, which immediately implies iN(X
⋆∧δω̂) = 0.

Combining (19) and (20) gives:

i
S(X)−

ν1,p(Ω)

p+1
X
ω = 0 (21)

for all X ∈ Γ(TΣ). The form ω, being an eigenform of an elliptic operator, can’t vanish on
an open set and therefore is non-zero a.e. on Σ. Take a point x where it does not vanish:
then, at x, there exists p principal directions, say v1, . . . , vp, such that ω(v1, . . . , vp) 6= 0.
Choosing successively X = v1, . . . , vp one sees from (21) that the associated principal

curvatures satisfy λ1 = · · · = λp =
ν1,p(Ω)

p+1
.

3.3 Proof of Theorem 2

Assume that Ωn+1 has nonnegative Ricci curvature and that Σ has mean curvature
bounded below by H > 0. Then σn = nH and applying Theorem 1 for p = n we
get ν1,n(Ω) ≥ (n + 1)H . It remains to show that, if the equality holds, then Ω is a Eu-
clidean ball. Now, under the given assumptions, we have Vol(Σ)/Vol(Ω) ≥ (n + 1)H by
Theorem 1 in [13], with equality if and only if Ω is a Euclidean ball. It is then enough to
show that

Vol(Σ)

Vol(Ω)
= (n + 1)H.

From Proposition 12, we know that if ω ∈ Λn(Σ) is a eigenform associated with ν1,n(Ω) =
(n + 1)H , then its harmonic tangential extension ω̂ ∈ Λn(Ω) is a Killing n-form on Ω; in
particular, δω̂ = 0. We can write dω̂ = fΨΩ, where ΨΩ is the volume form of Ω and f is
a smooth function. As ω̂ is harmonic and co-closed, we have

0 = δdω̂ = δ(fΨΩ) = −i∇fΨΩ,
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which immediately implies ∇f = 0. By renormalization, we can assume that f = 1 and
so dω̂ is the volume form of Ω. By assumption, J⋆dω̂ = 0 and iNdω̂ = −(n+1)Hω. Then,
on Σ

1 = ‖iNdω̂‖2 = (n + 1)2H2‖ω‖2.
On the other hand, by the Stokes formula and the fact that dω̂ has constant unit norm:

Vol(Ω) =

∫

Ω

‖dω̂‖2 = −
∫

Σ

〈ω, iNdω̂〉 = (n + 1)H

∫

Σ

‖ω‖2 = Vol(Σ)

(n+ 1)H
,

which proves the assertion.

3.4 The equality case for Euclidean domains: proof of Theorem 3

We fix c > 0 and let Fp(c) denote the set of p-forms ω̂ on Ω, p = 0, . . . , n, with the
following properties:

a) ω̂ is harmonic and tangential (that is iN ω̂ = 0 on Σ).

b) ω̂ is Killing and dω̂ is parallel.

c) iNdω̂ = −(p + 1)cω, where ω = J⋆ω̂ is the restriction to Σ.

Note that F0(c) consists of all harmonic functions f̂ with parallel gradient and such that
∂f̂

∂N
= −cf̂ : if f̂ is not trivial, its restriction to the boundary is a Steklov eigenfunction

associated to the eigenvalue c.

Lemma 13. Let p ≥ 1. If ω̂ ∈ Fp(c) and V is a parallel vector field on Rn+1, then
iV ω̂ ∈ Fp−1(c).

Proof. The Cartan formula gives diV ω̂ + iV dω̂ = LV ω̂, where LV is the Lie derivative
along V . If V is parallel and ω̂ is Killing, we have LV ω̂ = ∇V ω̂ = 1

p+1
iV dω̂ and then:

diV ω̂ = − p

p + 1
iV dω̂. (22)

Now ∇V dω̂ = LV dω̂ = diV dω̂ = 0 by Cartan formula and (22). This holds for all parallel
vector fields: in particular, any Killing form of degree p ≥ 1 in Euclidean space has
parallel exterior derivative.

Fix ω̂ ∈ Fp(c). As V is parallel, iV commutes with ∆ and anticommutes with iN . Then
iV ω̂ satisfies a).

As iV anticommutes with δ, we see that iV ω̂ is co-closed. On the other hand, since V is
parallel:

∇XiV ω̂ = iV∇Xω̂ =
1

p+ 1
iV iXdω̂ = − 1

p+ 1
iX iV dω̂ =

1

p
iXdiV ω̂

where we used (22) in the last equality. Hence iV ω̂ is a Killing (p− 1)−form. A similar
calculation shows that ∇XdiV ω̂ = 0, hence diV ω̂ is parallel and b) follows.

14



Finally, again using (22):

iNdiV ω̂ = − p

p+ 1
iN iV dω̂ =

p

p+ 1
iV iNdω̂ = −pciV ω̂,

and c) follows as well.

Now assume that Ω is an extremal domain for our inequality, and let ω̂ be the tangential
harmonic extension of an eigenform ω associated to ν1,p(Ω). Set c = ν1,p(Ω)/(p + 1).
By Proposition 12, ω̂ is a Killing p−form: in particular, as observed in the proof of the
Lemma 13, dω̂ is parallel. Moreover, iNdω̂ = −(p + 1)cω by definition. This means that
ω̂ is a form in Fp(c). As ω̂ is non trivial, we can find p parallel vector fields V1, . . . , Vp
such that the function f̂ = ω̂(V1, . . . , Vp) is non trivial. Applying the lemma successively

to the parallel fields V1, . . . , Vp, we see that f̂ ∈ F0(c), that is, f̂ satisfies







∇df̂ = 0 on Ω,

∂f̂

∂N
= −cf̂ on Σ.

By Proposition 12, the lowest p principal curvatures are constant, equal to c, and then
S ≥ c. We now apply Theorem 19 in the Appendix, to conclude that Ω is a Euclidean
ball. The proof of Theorem 3 is now complete.

3.5 An inequality for consecutive degrees: proof of Theorem 4

We have to show that if Ω is a domain in Rn+1, then for all p = 1, . . . , n:

ν1,p(Ω) ≥ ν1,p−1(Ω) +
σp(Σ)

p
. (23)

For the proof, we consider the family of unit length parallel vector fields on Rn+1, which
is naturally identified with Sn.

Let ω ∈ Λp(Σ) be an eigenform associated to the eigenvalue ν1,p(Ω) and denote by ω̂
its harmonic tangential extension. Let V be a unit length parallel vector field. Since ∆
commutes with the contraction iV , the (p−1)-form iV ω̂ is harmonic. Moreover we clearly
have iN iV ω̂ = 0. Hence we can use iV ω̂ as test form for the eigenvalue ν1,p−1(Ω), and by
the min-max principle we have

ν1,p−1(Ω)

∫

Σ

‖iV ω̂‖2 ≤
∫

Ω

‖diV ω̂‖2 + ‖δiV ω̂‖2 (24)

for all V ∈ Sn. Now we want to integrate this inequality with respect to V ∈ Sn. In order
to simplify the formulae, we use the renormalized measure

dµ =
n + 1

Vol(Sn)
dvolSn ,
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where dvolSn is the canonical measure of Sn. Then, we have the following identities, which
are valid pointwise and are proved in [9] (Lemma 4.8, p. 336):

∫

Sn

‖iV ω̂‖2dµ(V ) = p‖ω̂‖2
∫

Sn

‖diV ω̂‖2dµ(V ) = ‖∇ω̂‖2 + (p− 1)‖dω̂‖2
∫

Sn

‖δiV ω̂‖2dµ(V ) =
∫

Sn

‖iV δω̂‖2dµ(V ) = (p− 1)‖δω̂‖2.

Integrating (24) with respect to V ∈ Sn and using the previous identities, we then have,
by the Fubini theorem:

pν1,p−1(Ω)

∫

Σ

‖ω̂‖2 ≤
∫

Ω

‖∇ω̂‖2 + (p− 1)

∫

Ω

‖dω̂‖2 + ‖δω̂‖2.

On the other hand, the Reilly formula (10) applied to ω̂ gives:
∫

Ω

‖dω̂‖2 + ‖δω̂‖2 =
∫

Ω

‖∇ω̂‖2 +
∫

Σ

〈S [p](J⋆ω̂, )J⋆ω̂〉 ≥
∫

Ω

‖∇ω̂‖2 + σp(Σ)

∫

Σ

‖ω̂‖2.

Eliminating
∫

Ω
‖∇ω̂‖2 in the previous two inequalities leads to:

pν1,p−1(Ω)

∫

Σ

‖ω̂‖2 ≤ p

∫

Ω

(

‖dω̂‖2 + ‖δω̂‖2
)

− σp(Σ)

∫

Σ

‖ω̂‖2

= pν1,p(Ω)

∫

Σ

‖ω̂‖2 − σp(Σ)

∫

Σ

‖ω̂‖2

Dividing both sides by p
∫

Σ
‖ω̂‖2 proves (23).

4 Upper Bounds: proofs

4.1 Upper bounds by the isoperimetric ratio

A p-form ξ is said to be a harmonic field if dξ = δξ = 0. We start from the following:

Proposition 14. Let ξ be a harmonic field of degree p on Ω.

(a) If ξ is exact and p = 2, . . . , n+ 1 then ν1,p−1(Ω)
∫

Ω
‖ξ‖2 ≤

∫

Σ
‖iNξ‖2.

(b) If ξ is exact and p = 1 then ν2,0(Ω)
∫

Ω
‖ξ‖2 ≤

∫

Σ
‖iNξ‖2.

(c) If ξ is co-exact and p = 1, . . . , n then ν1,n−p(Ω)
∫

Ω
‖ξ‖2 ≤

∫

Σ
‖J⋆ξ‖2.

Proof. (a) By the Hodge-Morrey decomposition (see [15]) if ξ is an exact p−form, there
is a unique co-exact (hence co-closed) (p − 1)−form ω, called the canonical primitive of
ξ, which satisfies:

{

dω = ξ

iNω = 0 on Σ.
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We use ω as a test-form for the eigenvalue ν1,p−1(Ω) and then

ν1,p−1(Ω)

∫

Σ

‖ω‖2 ≤
∫

Ω

‖dω‖2.

By the Stokes formula
∫

Ω
‖dω‖2 = −

∫

Σ
〈iNdω, J⋆ω〉; by the Schwarz inequality

(

∫

Ω

‖dω‖2
)2

≤
∫

Σ

‖iNdω‖2 ·
∫

Σ

‖ω‖2.

Eliminating
∫

Σ
‖ω‖2 from the previous two inequalities we get

ν1,p−1(Ω)

∫

Ω

‖dω‖2 ≤
∫

Σ

‖iNdω‖2,

which is the assertion. We remark that the equality holds if and only if the canonical
primitive of ξ is an eigenform of T [p−1] associated to ν1,p−1(Ω).

(b) If ξ is an exact harmonic field of degree 1, then ξ = df for an harmonic function f .
We can assume that f integrates to zero on Σ, and so we can use f as a test function for
the eigenvalue ν2,0(Ω). The rest of the proof is as in (a).

(c) Let ξ be a co-exact p−harmonic field. Then ⋆ξ is an exact (n− p+1)−harmonic field
and we can apply (a) to it. The inequality follows because ‖iN ⋆ ξ‖2 = ‖⋆ΣJ⋆ξ‖2 = ‖J⋆ξ‖2.
If the equality holds, then the canonical primitive of ⋆ξ is an eigenform of T [n−p] associated
to ν1,n−p(Ω).

We can also characterize the equality by duality, as follows. If ξ is co-exact, it has a
unique canonical co-primitive, that is, a unique exact (p+ 1)-form α such that:

{

δα = ξ

J⋆α = 0 on Σ.

It is clear that if we have equality then α is an eigenform of the dual operator T
[p]
D

associated to νD1,p(Ω) = ν1,n−p(Ω). That is,

J⋆(δα) = ν1,n−p(Ω)iNα.

We remark that if Hp(Ω) = 0 (resp. Hp
R(Ω) = 0) then any p−harmonic field is auto-

matically exact (resp. co-exact). Therefore, as at any point of the boundary one has
‖ξ‖2 = ‖J⋆ξ‖2 + ‖iNξ‖2, we have, summing the two inequalities of the Proposition:

Corollary 15. Assume that Hp(Ω) = Hp
R(Ω) = 0. Let ξ be a harmonic field of degree p.

(a) If p = 2, . . . , n then ν1,p−1(Ω) + ν1,n−p(Ω) ≤
∫

Σ
‖ξ‖2/

∫

Ω
‖ξ‖2. If ξ is parallel then it

has constant norm and

ν1,p−1(Ω) + ν1,n−p(Ω) ≤
Vol(Σ)

Vol(Ω)
.
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(b) If p = 1 then ν2,0(Ω) + ν1,n−1(Ω) ≤
∫

Σ
‖ξ‖2/

∫

Ω
‖ξ‖2.

(c) In particular, if H1
R(Ω) = 0 and f is any harmonic function then

ν2,0(Ω) + ν1,n−1(Ω) ≤
∫

Σ
‖df‖2

∫

Ω
‖df‖2 .

On the other hand, the volume form of Ω is parallel, exact and has degree n+1. Then it
follows directly from the first point of the Proposition 14 that, for all compact manifolds
with boundary, one has the sharp bound:

ν1,n(Ω) ≤
Vol(Σ)

Vol(Ω)
. (25)

We have equality in (25) when Ω = Bn+1 is the unit Euclidean ball: in fact Vol(Σ)/Vol(Ω) =
n + 1 and by the main lower bound (Theorem 2) we have ν1,n(B

n+1) ≥ n + 1. So
ν1,n(B

n+1) = n+ 1. We will reprove (25) and discuss its equality case in Section 4.2.

We end this section with the following calculation.

Proposition 16. We have ν1,p(B
n+1) = p+ 1 for all p ≥ n+1

2
.

Proof. Let Ω = Bn+1 and let ν1,p = ν1,p(B
n+1). We just observed that ν1,n = n + 1. We

now use Theorem 4; as σp(Σ)/p = 1 for all p, we see that ν1,p ≥ ν1,p−1+1. Then ν1,n−1 ≤ n
and, by induction, ν1,p ≤ p+1 for all p. However, when p ≥ (n+1)/2, Theorem 1 applied
to Ω gives ν1,p ≥ p+ 1 and so ν1,p = p+ 1.

For later use, we observe the following

Proposition 17. Assume that Ω supports a non constant linear function, that is, a smooth
function f with df non trivial and parallel. If H1

R(Ω) = 0, then:

ν2,0(Ω) + ν1,n−1(Ω) ≤
Vol(Σ)

Vol(Ω)
.

(a) If the equality holds, then Σ has constant positive mean curvature H = ν1,n−1(Ω)/n,
and the restriction of f to Σ is an eigenfunction of ∆Σ associated to the eigenvalue
λ
.
= ν2,0(Ω)ν1,n−1(Ω).

(b) If n = dim(Σ) ≥ 3 and Ω ⊂ Rn+1, then the equality holds if and only if Ω is a ball.

Proof. The inequality follows immediately from (c) of Corollary 15 applied to df (which
has constant norm by our assumptions). We can assume that f integrates to zero on Σ.
(a) If the equality holds, then f has to be a Steklov eigenfunction associated to ν2,0(Ω):

∂f

∂N
= −ν2,0(Ω)f,
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and (see the proof of Proposition 14) the canonical co-primitive α of df , solution of the
problem

{

δα = df, dα = 0

J⋆α = 0 on Σ

must be a dual eigenform associated to νD1,1(Ω) = ν1,n−1(Ω):

J⋆(δα) = ν1,n−1(Ω)iNα.

As J⋆(δα) = dΣf we have dΣf = ν1,n−1(Ω)iNα. It follows that

∆Σf = δΣdΣf = ν1,n−1(Ω)δ
ΣiNα = −ν1,n−1(Ω)iNδα

= −ν1,n−1(Ω)
∂f

∂N
= ν2,0(Ω)ν1,n−1(Ω)f,

that is, f is an eigenfunction of ∆Σ associated to ν2,0(Ω)ν1,n−1(Ω), as asserted. Observe
that then ν1,n−1(Ω) > 0 otherwise f would be constant. To prove the first assertion, recall
that, for any smooth function on Ω one has, at all points of Σ:

∆f = ∆Σf − ∂2f

∂N2
+ nH

∂f

∂N
.

As ∇2f = 0, we have ∆f = 0 and ∂2f

∂N2 = 0, and we easily obtain nH = ν1,n−1(Ω).

(b) The equality holds for the Euclidean unit ball, by Proposition 7 (it is known that
ν2,0(B

n+1) = 1). Now, if the equality holds, then Σ has constant mean curvature by (a),
hence Σ is a sphere by a well-known result of Alexandrov.

4.2 Harmonic domains

Recall that the domain Ω is called harmonic if ∂E/∂N is constant on Σ, where E is the
mean-exit time function, solution of the problem ∆E = 1 on Ω, E = 0 on Σ. Any ball in
a constant curvature space form is harmonic, simply because the mean-exit time function
is radially symmetric. We observe the following equivalent condition.

Proposition 18. Ω is harmonic if and only if, for all harmonic functions f on Ω, one
has:

1

Vol(Ω)

∫

Ω

f =
1

Vol(Σ)

∫

Σ

f

(that is, the mean value of any harmonic function on the domain equals its mean value
on the boundary).

Proof. Assume that Ω is harmonic and let f be any harmonic function on Ω. By the
definition of E and the Green formula, we have:

∫

Ω

f =

∫

Ω

f∆E =

∫

Σ

f
∂E

∂N
.
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As ∂E/∂N is constant, say equal to c, we have
∫

Ω
f = c

∫

Σ
f . Taking f = 1 we see that

c = Vol(Ω)/Vol(Σ) and the first half is proved.

Conversely, assume that the above mean-value property is true for all harmonic functions
on Ω . Fix a point x ∈ Σ and let fk ∈ C∞(Σ) be a sequence of functions converging to

the Dirac measure of Σ at x as k → ∞. Let f̂k be the harmonic extension of fk. Then
∫

Ω
f̂k =

∫

Σ
fk∂E/∂N and the assumption gives

Vol(Ω)

Vol(Σ)

∫

Σ

fk =

∫

Σ

fk
∂E

∂N

for all k. Letting k → ∞ we obtain

Vol(Ω)

Vol(Σ)
=
∂E

∂N
(x).

As x is arbitrary, we see that ∂E/∂N is indeed constant on Σ.

4.3 Proof of Theorem 5

It is perhaps simpler to reprove the inequality using the dual operator T
[0]
D , with first

eigenvalue νD1,0(Ω) = ν1,n(Ω). So, we need to show that νD1,0(Ω) ≤ Vol(Σ)/Vol(Ω). Consider

the 1−form α = dE. Then J⋆α = 0 and we can use α as a test-form for νD1,0(Ω). Since
iNα = ∂E/∂N , by the variational characterization (9) we get

νD1,0(Ω)

∫

Σ

(

∂E

∂N

)2

≤
∫

Ω

‖δα‖2 = Vol(Ω).

By the Schwarz inequality:
∫

Σ

(

∂E

∂N

)2

≥ 1

Vol(Σ)

(
∫

Σ

∂E

∂N

)2

=
Vol(Ω)2

Vol(Σ)

and the inequality follows immediately.

If the equality holds then ∂E/∂N must be constant and then Ω is a harmonic domain.
Conversely, assume that Ω is harmonic. Then the normal derivative of E is constant along
Σ, and equals c = Vol(Ω)/Vol(Σ). Let α = dE. Then







∆α = 0

J⋆α = 0, iNα =
∂E

∂N
= c.

By the definition of T
[0]
D :

T
[0]
D (c) = J⋆(δα) = 1

because δα = ∆E = 1. This shows that 1/c is an eigenvalue of T
[0]
D as asserted, and the

associated eigenfunction is constant.
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4.4 Hodge-Laplace eigenvalues: proof of Theorem 8

Fix a degree p = 1, . . . , n. We assume that Hp
R(Ω) = 0, min(σp(Σ), σn−p+1(Σ)) ≥ 0 and

W [p] ≥ 0. We have to show:

λ′1,p(Σ) ≥
1

2

(

σp(Σ)ν1,n−p(Ω) + σn−p+1(Σ)ν1,p−1(Ω)
)

. (26)

Let φ be a co-exact eigenform associated to λ = λ′′1,p−1(Σ) = λ′1,p(Σ) and consider the

exact p-eigenform ω = dΣφ also associated to λ. Let φ̂ be a solution of
{

∆φ̂ = 0 on Ω,

J⋆φ̂ = φ, J⋆(δφ̂) = 0 on Σ,

which exists by Lemma 3.4.7 in [15]. Then, using the Stokes formula one checks that

δdφ̂ = 0 on Ω (the extension φ̂ first appeared in the paper of Duff and Spencer [4]).

If we let ω̂ = dφ̂, then ω̂ is an exact p-harmonic field satisfying:
{

dω̂ = δω̂ = 0 on Ω

J⋆ω̂ = ω on Σ.

We apply the Reilly formula (10) to ω̂; as W [p] ≥ 0 and δΣ(J⋆ω̂) = δΣdΣφ = λφ we obtain

−2λ

∫

Σ

〈iN ω̂, φ〉 ≥
∫

Σ

〈S [p](J⋆ω̂), J⋆ω̂〉+ 〈S [n−p+1](J⋆ ⋆ ω̂), J⋆ ⋆ ω̂〉.

The Stokes formula gives:
∫

Σ

〈iN ω̂, φ〉 =
∫

Σ

〈iNdφ̂, J⋆φ̂〉 =
∫

Ω

〈φ̂, δdφ̂〉 −
∫

Ω

‖dφ̂‖2 = −
∫

Ω

‖ω̂‖2.

By our curvature assumptions, we end-up with

2λ

∫

Ω

‖ω̂‖2 ≥ σp(Σ)

∫

Σ

‖J⋆ω̂‖2 + σn−p+1(Σ)

∫

Σ

‖iN ω̂‖2.

The p-harmonic field ω̂ is exact, and also co-exact because Hp
R(Ω) = 0. We can then

apply Proposition 14 to estimate the boundary integrals in the right hand side, and the
estimate (26) follows.

4.5 Proof of Theorem 9

Let λ1(Σ) be the first positive eigenvalue of the Laplacian on functions of Σ. We assume
that Ω has nonnegative Ricci curvature and that Σ is strictly convex, with principal
curvatures bounded below by σ1(Σ) > 0. We have to show that

λ1(Σ) ≥
1

2
(σ1(Σ)ν1,n−1(Ω) + nHν2,0(Ω)) . (27)

Moreover, if n = dim(Σ) ≥ 3, the equality holds if and only if Ω is a Euclidean ball.
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Proof. Let φ be an eigenfunction associated to λ1(Σ), φ̂ its harmonic extension to Ω and

ω̂ = dφ̂. Then ω̂ is an harmonic field of degree 1. We apply the Reilly formula to ω̂; as
‖∇ω̂‖2 ≥ 0 and σn(Σ) = nH , we obtain:

2λ

∫

Ω

‖ω̂‖2 ≥ σ1(Σ)

∫

Σ

‖J⋆ω̂‖2 + nH

∫

Σ

‖iN ω̂‖2.

Note that, if the equality holds, then ω̂ must be parallel. Our curvature assumptions
imply in particular that H1

R(Ω) = 0. Therefore we can apply Proposition 14 and obtain

∫

Σ

‖J⋆ω̂‖2 ≥ ν1,n−1(Ω)

∫

Ω

‖ω̂‖2 and

∫

Σ

‖iN ω̂‖2 ≥ ν2,0(Ω)

∫

Ω

‖ω̂‖2. (28)

The lower bound (27) follows. The estimate is sharp because, for the Euclidean unit ball,
we have λ1(Σ) = λ1(S

n) = n, ν2,0(B
n+1) = 1 and, for n ≥ 3, ν1,n−1(B

n+1) = n.

Now assume that (27) is an equality. Then ω̂ = dφ̂ is parallel, and we can apply Propo-

sition 17 to f = φ̂. However, as we must have equalities in (28), we conclude that

Vol(Σ)

Vol(Ω)
= ν2,0(Ω) + ν1,n−1(Ω),

and we are in the equality case of Proposition 17. So the mean curvature is constant:
nH = ν1,n−1(Ω) and λ1(Σ) = ν2,0(Ω)νn−1(Ω). By assumption

2λ1(Σ) = σ1(Σ)ν1,n−1(Ω) + nHν2,0(Ω)

and we easily obtain ν2,0(Ω) = σ1(Σ). Now, at each point of Σ, the mean curvature
is always no less than the lowest principal curvature, which implies that H ≥ σ1(Σ) =
ν2,0(Ω). We arrive at the inequality

Vol(Σ)

Vol(Ω)
≤ (n+ 1)H.

By the result of Ros already cited ([13]) we know that Vol(Σ)/Vol(Ω) ≥ (n + 1)H with
equality if and if Ω is a Euclidean ball. Then Ω must be a Euclidean ball, and the proof
is complete.

4.6 Biharmonic operator: proof of Theorem 10

We now consider the fourth order Steklov problem (6) and its first eigenvalue µ1(Ω). As
ν1,n(Ω) = νD1,0(Ω) it is enough to show that

µ1(Ω) ≥ νD1,0(Ω).
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Let f be a first eigenfunction associated to µ1(Ω). As J⋆(df) = 0 we can use df as a
test-form in (9). Then

νD1,0(Ω) ≤
∫

Ω
(∆f)2

∫

Σ

(

∂f

∂N

)2 = µ1(Ω)

where the equality follows from the Rayleigh-Ritz characterization of µ1(Ω) (see [7]). If

equality holds, then df must be an eigenform of T
[0]
D associated to νD1,0(Ω), hence ∆df = 0.

But then ∆f is a constant, and we can assume ∆f = 1. As f = 0 on Σ we see that
f = E, the mean-exit time function, and the boundary conditions satisfied by f imply
that the normal derivative of E is constant. Hence Ω is harmonic.

5 Appendix

Here we state a general result which gives sufficient conditions on a manifold to be isomet-
ric with a Euclidean ball. This result is used in the proof of Theorem 3 but it is perhaps
of independent interest.

Theorem 19. Let (Ωn+1, g) a compact, connected Riemannian manifold with smooth
boundary Σ. Assume that there exist a non-trivial function f ∈ C∞(Ω) and a number
c > 0 such that:







∇df = 0 on Ω

∂f

∂N
= −cf on Σ.

If Ω has non-negative sectional curvature and the second fundamental form of Σ satisfies
S ≥ c, then Ω is isometric with a Euclidean ball.

Proof. It is enough to prove that the boundary is isometric to a round sphere. Then, by
Theorem 1 in [21], we conclude that (Ωn+1, g) is isometric with a Euclidean ball.
Here are the main steps. We prove that:

a) Σ is connected.

b) RicΣ ≥ (n− 1)c2.

c) Σ has diameter greater than or equal to π
c
.

The proof of the Theorem will follow by observing that, by Myers’ theorem and a), b),
one has diam(Σ) ≤ π

c
; hence, by c), the diameter is equal to π

c
. By the rigidity theorem

of Cheng [3], Σ is isometric to a sphere of radius 1/c, as asserted.
We prove a). Looking at the long exact sequence of the pair (Ω,Σ), it is enough to show
that H1

R(Ω) = 0: in fact, in that case H0(Σ) ∼ H0(Ω) ∼ R. Now the Ricci curvature of
Ω is non-negative and the mean curvature of Σ is bounded below by c > 0: by Theorem
2 we have ν1,n(Ω) > 0 and then Hn(Ω) = H1

R(Ω) = 0.
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We prove b). It is enough to prove that, for any unit length tangent vector X ∈ TΣ, one
has RicΣ(X,X) ≥ (n − 1)c2. The Gauss lemma and the non-negativity of the sectional
curvatures of Ω give:

RicΣ(X,X) ≥ nH〈S(X), X〉 − |S(X)|2.
Fix an orthonormal frame (e1, . . . , en) of principal directions, so that S(ej) = ηjej for all
j. Then:

RicΣ(X,X) ≥
n

∑

j=1

(ηj(nH − ηj))〈X, ej〉2;

as ηj ≥ c for all j one sees that ηj(nH−ηj) ≥ (n−1)c2 for all j and the assertion follows.

We finally prove c). Since ∇f is parallel we have that |∇f | is constant on Ω, and we can
assume that it is equal to 1. The restriction of f is continuous on Σ, which is compact:
then let p+ ∈ Σ (resp. p− ∈ Σ) be a point where the restriction of f is maximum (resp.
minimum). We prove d(p−, p+) ≥ π

c
. Now:

1 = |∇f |2(p±) = |∇Σf |2(p±) +
( ∂f

∂N

)2

(p±)

= c2f(p±)
2.

The function f is not constant on Σ (because it is harmonic on Ω and c > 0) therefore:

f(p+) =
1

c
, f(p−) = −1

c
.

As Σ is connected, there exists a minimizing geodesic γ : [0, l] → Σ parametrized by arc
length and joining p− with p+. So we have γ(0) = p−, γ(l) = p+ and the distance from
p− to p+ is l. It is now enough to prove that l ≥ π

c
.

Let α(t) := f ◦ γ(t) for t ∈ [0, l], so that α′(t) ≤ |∇Σf(γ(t))|. Since ∇f has unit length
we have: 1 = |∇Σf |2

(

γ(t)
)

+ c2α(t)2 and therefore

|α′(t)|2 ≤ 1− c2α(t)2.

Fix ε > 0 and let A = {t ∈ [0, l] : α′(t) > 0}. Then:

l ≥
∫

A

dt ≥
∫

A

α′(t)dt
√

1− c2α(t)2 + ε
≥

∫ l

0

α′(t)dt
√

1− c2α(t)2 + ε
.

Changing variables and observing that α(0) = −1
c
and α(l) = 1

c
we have

l ≥ 1

c

∫ 1

−1

dx√
1− x2 + ε

.

Letting ε→ 0+ gives l ≥ π
c
, as asserted.

Finally, we remark that the conclusion of the Theorem holds also if the assumption on the
non-negativity of the sectional curvature is replaced by the following assumptions: the
Ricci curvature of Ω is non-negative, and the mean curvature of Σ is constant. We omit
the details.
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