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Abstract — A method to measure elastic and dissipative properties of the constituentanfiaich
structure is proposed and validated. The method relies on the comparis@ehéa) the modal frequen-
cies and dampings of a thick plate as predicted by an extended Rayleigh-®&tiedpre and (b) the their
values as given by experimentation or numerical simulation. On real platege-point measurement of
free vibrations is sufficient, provided that a high-resolution modal aisa§$is used [2]. For valida-
tion purposes, the experimental modal analysis is replaced by a finite-e&lsrodal analysis (humerical
measurement). Minimising the differences between the modal characteristids §n estimation of
the values of the elastic and dissipative material properties. Agreemergdreegtimated and original
mechanical parameters is shown to be good for the parameters which aeatiadl in plate vibration.
Mots clés— Elasticity parameters estimation — Loss factor estimation — Thick-plate vibrations.

1 Introduction

Sandwich structures are often used in the industry because they canlbdghaand stiff. However,
mechanical properties of sandwich plates may be difficult to predict atadyrparticularly if damping is
considered. Measurements on isolated samples of the constituents orlefpahels are often needed.

The problem of the estimation of solely te&sticityparameters of a homogeneous material using
plate vibrations has been widely addressed usitigclt-plate(see for example [3, 4, 5, 6]) and provides
in-plane and out-of-plane information about the materials. The problerstiofi&ing theelasticity and
dampingparameters by using point measurements [7, 8, 9, 10] has retained somiemtteut in athin-
platecontext only. In a&hick-platecontext, only methods involvinfyll-field measurements are currently
available [11, 12, 13]: they are very time-consuming or need sophistiegtédment.

In this paper, a previously presented method for estimating some complex robelsisticity of
the constituents of sandwich structures [2, 14] is numerically validated piidpmosed procedure yield-
ing in-plane and out-of-planeelasticity and dissipation parameters of the constituents of the sandwich
is schematically presented in Fig. 1. The analytical model of the sandwiah isgoresented in Sec. 2.
Based on this model, the numerical modal frequentj¥& and dampings\U™ are derived by means of
an extended Rayleigh-Ritz procedure (Sec. 3). In the validation puoegethe modal frequencigg ="
and dampingsifEM replace the experimental values; they are given by a finite-element mualgbis
of a known virtual plate (Sec. 4). Given the numerical and virtual érpartal data, the optimisation
procedure that estimates the elasticity and damping parameters of the cotstiube sandwich ma-
terial is detailed in Sec. 5. The estimation results and a sensitivity analysib@w $n Sec. 6 and 7
respectively.

2 Mechanical model of sandwich panels

The sandwich panel consists in two identical skins and a core (Fig. lthelfollowing, “panel”
designates the physical structure whereas “plate” refers to the idealisetlre made out of an equiv-
alent homogeneous material. Parameters pertaining to the core, the skiine dnmogeneous material
constitutive of the equivalent plate are respectively denoted with cdd-ddndexes. The thicknesses of
the core, skins, and panel &g h%, andh = h® + 2hS respectively.
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Figure 1: Left: geometry of the sandwich plate. Right: exeprimental and-F&llation procedures.

The skin and core materials are considered as homogeneous, orthatrtpecx andy directions,
and viscoelastic. The standard hysteretic model (which is frequenep@mdlent) has been retained for
describing the viscoelastic behaviour, with complex moHu# E(1+ jn). The stress-strain relationship
oY(eY) in eachy—material § =s, c, or H) involves 7 complex numbers and can be written, to first order
innYas:

EX(1+jnY) VyxEx[1+ J(nvyx+nx)] 0 0 0
VIyEY[1+ j(nY,, +nY)] Ey(1+ny) 0 0 0
o¥= 0 0 Glz(1+ jnk) 0 0 €Y
0 0 0 Gyz(l‘{' jrﬂz) 0
0 0 0 0 Gly(1+ inky)
(1y)

The symmetry of the strain/stress relation impNgEy = v,EX andny = nY,_+ny =n),, +nY,
leaving 12 independent real parameters to be identified for each ma®drialtdgether).
The following hypotheses are made on the sandwich panel:
— The sandwich panel is symmetric with respect to its mid-plane.
— Compared to the core, skins are thin enough to ensure that sheairsthesskin can be ignored:
h*Clzy. < M°Gzyz
— The core is much softer than the skif & Eg, E; < EJ, G5, < G5). Given the generic expres-

c\ 3 c
sion of the moduli of the homogeneous equivalent mat&ia= (T\) EC+ |1- (T}) ] ES,

this ensures that all in-plane stress in the plate are entirely due to those kirthe s
Accordlng to these hypotheses, there is no stress associateithvisH vosH GE, G,
Giy» Viys Vi Which are ignored in what follows.
Under the hypothesis given in section 2, the sandwich panel behaveslowtfrequency range like
a homogeneous thick-plate [15]. The thickness of the plate is chosertoltsemechanical properties
are given in Eqg. (2) as functions of the mechanical and geometricatgiep of the skins and the core.

E%, EJ,

(

. . hey 3 . . hey 3
EF (L Jnf) = BX(1+ jng) 1—(h)] EF (L4 ing) = 51+ ing) 1—(h)]
H i~ H S tAS H hC : (2)
ny(1+ Jnvxy) - ny(1+ Jr]vxy) G (1+ Jnxy) <1+ Jr]xy> F
| Gio(1+jnk) = G5,(1+ jng,) Gly(1+jnl}) = G5(1+ jnSy)

The 12 independent real parametgEg', ni!,El',ni!, G, iy, GI,, ni, GiY.nlh vid, ni'} are to be es-
timated. Their knowledge vyields the elastic and dissipative properties oflagehof the sandwich
panel provided that the system of 12 real equations formed by Egs.i(Rjertible. Given the previous
hypotheses, a sufficient condition is:

JES Gy
NXEs < ny CEyys <ny nxy << Nyy 3)

This condition is not satisfled only if thg-coefficients are several orders of magnitude larger than

thens-ones.



3 An extended Rayleigh-Ritz procedure for obtaining modal dampings

3.1 Modal representation

In the present study, it is assumed that structural damping is dominardawvging due to acoustical
radiation and boundary conditions. The honeycomb sandwich paneisgdered here as a system with
N degrees of freedom = {qn}, wheregq is any set of generalised displacements. The equation of its
free motion is [16]:

M{i+Cq+Kq=0 (4)

whereM, C, andK are the mass, damping, and stiffness matrices. The link bet@Weserd the dissipa-
tive model presented previously will be made further. The associatesgpative system (corresponding
to C' = 0) hasN normal modes with modal shapgsand normal frequencief,. If the complete, non-
conservative, system is lightly damped, it can be shown [16] that, to fidgroits so-called natural
modes have the same modal shafieand natural frequencies afg+ jan.

3.2 Potential, kinetic and dissipated energies in the equatent thick-plate

Let U, be the potential energy associated with tifenatural mode of the dissipative plate for a
maximum vibrational amplitude of 1 on the plate. It varies in time ag-e2n,t). Since the conservative
and non-conservative systems have the same modal shapes, the sarial gotergy is associated with
their n" mode, equal to the kinetic enerdy of the n'" normal mode of the conservative system. The
energy lost by this mode during one cydd, is therefore:

AU, = —220y, = 2% (5)
fn fn

Within the frame of the first order Reissner-Mindlin theory [17, Chaptt®],displacementgu, v,w}
in the {x,y, z}-directions respectively can be written within a good approximation (se&/peak

u(x,y,z,t) = —zdx(Xx,y,t) V(X,Y,Zt) = —zPy(X,y,t) W(X,Y,z,t) = wp(X,Y,t) (6)
The potential energy of the plate is:

1 I\ 2 Iy IDy oDy ? ) owo [ owp\?

W, oo 2 D\ 2 9Dy 9D by \
Dyz <q3)2,—2q3yayo+ (ayo> >+ny<< ayx> +2 ayx aXy+< axy) >]dXdy

(7)
with
b Ef'h? b vxyEy'h® D E)'h?
X 12(1 — nyVyx) ny o 6(1 - VXyVyX) y— 12(1 - VXyVyX) (8)
GHhs
Dxz = 2h G Dy, = 2K)2/th’_|2 Dy = é

The shear correction facto@Z andk2, account for the fact that Eq. (6) is an approximation: the
(functional) anglesb, and®y, depend lightly orz and sections of the plate do not remain plane in the
flexural deformation. The values,; = Ky, = 1 have been chosen according to the recommendations
of [18] for sandwich panels.

By definition and based on the material model (Sec 2), the fraction of y@¢fglost during one
cycleT is:
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The kinetic energyl’ of the system is:

(9)

pHw? h®
W2+ + w2 dt = 7// [(¢§+¢§)+th} dxdly (10)
2 (s) 112
wherep™ is the density of the equivalent homogeneous thick plapé:= h°p® + 2hsp®.

3.3 Derivation of the modal dampingsaNU™

In order to derive the modal dampingg from Egs. 5, 9, and 10, analytical expressions ofdhe
®y-, andwp-modal fields are needed. This is achieved by a Rayleigh-Ritz procéolutbe normal
modes of the associated conservative system since they are the sansead the natural modes.

The generalised-displacement fieftlg(x,y), ®y(X,y), andwp(x,y) are projected on the elements of
an orthonormal polynomial basis of ord@rsatisfying partially the free-free boundary conditions [19]:

%) = SLIPMOPIY) ®y0cy) = S MIROIPI(Y) Wolcy) = SNpOORIY) (A1)
1)

This procedure generates a new setlef 3Q? generalised displacemerits, Mij andN;j. The next
step consists in writing the kinetic and potential energiemdU. The Hamilton principle reads as:

. 5. 0(T—-U) o(T-U) o(T-U)
v(i,j) €[0,Q—1]": v TijfO (12)

The above system ofF linear equations can be re-written[d€ — 412 > M |]q = 0. The expressions
of the partial derivatives dfl with respect td.jj, Mij,N;; yield K while the partial derivatives of with
respect td.;, Mj;, N;; yield M. The resolution of this eigenvalue problem gives a straightforwardsacce
to the modal frequencief, and modal shape,.

Introducing the modal coefficient, (expressed in th¢L;j,Mij,N;;} system of coordinates) into
Egs. 11 yields the desired analytical expressions fodthedy, andwy modal fields and also for their
x- andy-derivatives. For each of tHe modes, the potential, lost, and kinetic energies can be written by

introducing these expressions into Egs. 7, 9, and 10:

6 6
vne[LN]: Ta=4f3t, Up= 5 Dp AUn= -0y nDiug (13)
k=1 k=1

where the subscriptgl, 2,3,4,5,6} stand for{x,v,y,xz yz xy} respectively. The coefficients anduy
depend on the geometry and mass parameters of the plate, and are qiadratial shapegh'™.

The expression (14) of the modal dampirng¥™ can be deduced from the Eq. (5) and the last two
expressions of (13):

fL,AUNC 1

Num n n n
=- = NkDkUy
n 2T,$ 8nfr’,\'umtn k;

(14)
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Table 1: Geometry and constituent densities of the virtual sandwich-plate.

4 Modal frequencies and dampings of a virtual plate

Finite-element modelling and the associated computations have been perfaimg&ast3M [20],

a free software developed by the French Centre for Atomic Energy JCH#e model consists of 8-
node quadratic R-thick-shell elements and assumes the Reissner-Mindlin hypothesis. Baelhas 6
degrees of freedom. Elements are placed on a regular mé$h=080 elements per side of the plates.
The chosen sandwich plate is made of 3 homogeneous layers and is symmeéthaaspect to its
mid-plane. Geometrical, mechanical and mass parameters of the plate aréenghad. 1 and in Fig. 2
(numbers).

Modal frequencies and dampings of the virtual plates are computed in tp® gtefirst, the modal
frequencies of the conservative systéfrare computed by solving the eigenvalue probRfig + K q =
0. In the second step, the non-conservative system is describadiagco the constitutive model of the
material (section 2) which implies th&f is a complex matri¥s * = K + j K'. The dynamic equation of
the dissipative system becom&$j + Cq+ K q = 0 with C = K'/w. The “light damping hypothesis”
has been retained. The dampingis obtained as the real part of theh eigenvalue of this new problem
whereC is taken asK’/(2mtf,). Unlike in the usual modal analysis, the eigenvalue problem must be
re-written (and solved) with a new parametér)(as many times as the number of complex eigenvalues
to be found.

For the 3-layer virtual sandwich plate virtual plate, increasing the nunfleements above 60 ele-
ments per side results in less than a 1 % relative variation of the 35 first nmedakncies (conservative
and non conservative cases) and in less thdd® of the 35 first modal dampings. Thus, 60 elements
per side are enough to ensure the desired precision on the analysidicdttB® modes of the two plates.

5 Optimisation procedure

This section describes how to derive, in two steps, the complex moduli dfcéha®of the ho-
mogenised equivalent material of the sandwich pf&g,n!,E!, n/!, G}, ni, Gi\. i, Gh, i vid i}
from the virtual and numerical values of the modal frequencies and dasffFV, fN'™ ofEM and

Num
ahum,

The estimation of the elasticity parametdis!!, E/!, G}, G}, Gl i} } is done by comparing the
experimental and numerical modal frequencies. The estimation problemvéasoon-linear and several

orders of magnitude are involved in the properties values. The followisgfoaction was used:

N /f nFEM _f rl\\lum 2
Ci = () (15)
nzl fFEM

A simplex search method [21] (functioffminsearch” in Matlab™) based on the rigidities
{DX,DVXY,Dy, Dyz,Dyz,Dxy} has been chosen. Estimation results obtained by this methods are known
to be dependent on the initial values of the parameters. To minimise the infloktieestarting point,
the following initialisation strategy for the rigidities has been chosen:

1. The initial values of in-plane rigiditieBy, Dy,,, Dy andDyy are the most influential; they were
derived from the three lowest modal frequencies of the panel, apgedpn [7].

2. The initial values of out-of-plane rigiditieBy, and Dy, are less critical, homogenisation theory
proposed by Gibson [22] for honeycomb core sandwich panels is uBeid theory requires a
value for the elasticity moduli of the material composing the honeycomb coesfifEhestimation
was based on static tests.
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Figure 2: Comparison between the values of the mechanical parameteis ttse FEM analysis ("FEM
input data"), and their estimated values ("Estimation results") for eachitem (Skins, Core) of the
virtual sandwich plate.

As can be seen in Eq. (14), modal dampings depend linearly on the Idessfag,',n}!,n%,. nk..
n?z,r]vH} once the rigidities have been found. The estimation of the loss factors iateeneuch easier
than that of the elasticity parameters. A simple least-square optimisation predsdufficient to esti-
mate the loss factors from the modal dampings. A cost-function similar to (E5héen chosen. The
optimisation procedure is not iterative and needs no particular initialisation.

6 Estimation results for the 3-layer virtual sandwich-plate

The 3-layer virtual sandwich-plate has been used to validate the estimatioedpre described in
Fig. 1. Based on the first 35 modal frequencies given by the FEM dnd asRayleigh-Ritz ordey = 16,
the estimated values of the elasticity parameters are compared to the origires gaien to the FEM.
The loss factors have been estimated with 28 modes and a modetierdeéd. The estimated mechanical
parameters are presented in Fig. 2 for each layer of the sandwich.

The residual mismatch between the results of estimation and the original valdissuissed here.

AN
The mean absolute vaIL<e1 .
n

L . . . Ad . .
frequencies is B %. For the dampings, the residual mismatc 4 n > is 216 % in average but
n

widely different between coefficients. These orders of magnitudeestidgigat the assumption that a 3-
layer sandwich plate can be modelled as a simple homogeneous thick plateets aothe frequency
range under study.

It can be seen in Fig. 2 that the agreement between estimated and origixalepars is globally
very good. In-plane elasticity parameters of the skins and out-of-plastioity parameters of the core
are estimated with a mean absolute relative error o2 20. Principal in-plane loss-factorg, andny
are estimated with a comparable accuracy.6f%. The imaginary part oj)t'y is largely overestimated
while the imaginary part og'jy is underestimated. However, the overestimation of one parameter may
be the result of the underestimation of the other, by compensation. The imagarés ofG, andgf,'z
are assigned zero values by the estimation process. This underestimatientésttie fact that only a
marginal part of the total energy-loss per cycle is dissipated through tbleamieal couplings described
by GH, andgyz. As a consequence, modal dampings factors are not very sensitive tosthfactors
described by their imaginary parts.

> of the relative difference between experimental and numerical modal

7 Sensitivity analysis

The sensitivities of the modal frequencigs or dampings, to the coefficients{E}', vi{E/!, GI,

H G';'y} (for the modal frequencies) and to the corresponding loss fagtb(gor the modal dampings)

GH,
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Figure 3: Sensitivities of the modal frequencies to the real parts of thetiggidjiven by Eqgs. 8. Each
column is the sum of the sensitivitiesy, Dy, Dy, andDyy (left frame) and td; andDy, (right frame).
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increased by (X)%. The sensitivities reflect the information contained in a modal value relative

a given material parameter.

Results on modal frequencies with regard to the rigidibgsDy,, Dy, Dxy (which depend on the
elastic parameters as given by Egs. 8) are presented in the left frange 8fhereas the sensitivities to
the out-of-plane rigiditie®y, andDy, are presented in the right frame. Since the modal frequencies are
very little sensitive to the Poisson coefficients, the corresponding sétisgiltave not been represented.
As expected, it turns out that modes of the foi@ni) or (j,0) convey a lot of information relatively to
Ex andE, respectively (left part of Fig. 3). Since the thick-plate model diffeosrfithe thin-plate model
in the high-frequencies only, it is normal that there is almost 10 times morematan relative taGy,
and toGy; in the higher modes than in the lower ones (right part of Fig. 3). The loaesitvity of the
modal frequencies tGy; than toGy, is simply due to the aspect ratio of the plate< Iy).

Results on the sensitivities of modal dampings to the dissipative parameters fidtibus mate-
rial of the equivalent homogenised platg( n{! , n}', andnj}) are given in Fig. 4. Modal dampings
are sensitive to all in-plane parameters whereas out-of-plane paramgtand r]§‘Z were found to be
irrelevant.

are defined aSg (X) . if the X parameter is increased by 1%, tih modal value, is

8 Conclusion

An easy-to-implement method to measure all relevant elastic and dissipaiperpes of the con-
stituents of a sandwich structure has been described. Its experimetnahiempétion has been presented
elsewhere [2]. For the sake of numerical validation, a finite-element miegkdces the experimental
modal analysis. The sensitivity analysis shows that, within the homogenisgfotheses, only half of
all elastic and dissipative parameters are relevant for the vibration of phats. The method appears
as reliable for their determination. The method does not give access to trepatlameters but on the



other hand, they are of little practical importance as far as the vibratiomdfxgeh plates is concerned.
Compared to the method by De Visscle¢rl. [8], it gives access to much higher frequencies and thus,
to out-of-plane parameters. It is much simpler to implement and faster to petifian the method by
Pagnacceet al. [11] and to that of Matteet al. [12], based on measurements of the vibration on the
whole panel.
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