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Abstract — A method to measure elastic and dissipative properties of the constituents of asandwich
structure is proposed and validated. The method relies on the comparison between (a) the modal frequen-
cies and dampings of a thick plate as predicted by an extended Rayleigh-Ritz procedure and (b) the their
values as given by experimentation or numerical simulation. On real plates, aone-point measurement of
free vibrations is sufficient, provided that a high-resolution modal analysis [1] is used [2]. For valida-
tion purposes, the experimental modal analysis is replaced by a finite-element model analysis (numerical
measurement). Minimising the differences between the modal characteristics yields an estimation of
the values of the elastic and dissipative material properties. Agreement between estimated and original
mechanical parameters is shown to be good for the parameters which are influential in plate vibration.
Mots clés— Elasticity parameters estimation – Loss factor estimation – Thick-plate vibrations.

1 Introduction

Sandwich structures are often used in the industry because they can be made light and stiff. However,
mechanical properties of sandwich plates may be difficult to predict accurately, particularly if damping is
considered. Measurements on isolated samples of the constituents or of whole panels are often needed.

The problem of the estimation of solely theelasticityparameters of a homogeneous material using
plate vibrations has been widely addressed using athick-plate(see for example [3, 4, 5, 6]) and provides
in-plane and out-of-plane information about the materials. The problem of estimating theelasticity and
dampingparameters by using point measurements [7, 8, 9, 10] has retained some attention, but in athin-
platecontext only. In athick-platecontext, only methods involvingfull-field measurements are currently
available [11, 12, 13]: they are very time-consuming or need sophisticatedequipment.

In this paper, a previously presented method for estimating some complex moduliof elasticity of
the constituents of sandwich structures [2, 14] is numerically validated. Theproposed procedure yield-
ing in-planeandout-of-planeelasticity and dissipation parameters of the constituents of the sandwich
is schematically presented in Fig. 1. The analytical model of the sandwich panel is presented in Sec. 2.
Based on this model, the numerical modal frequenciesf Num

n and dampingsαNum
n are derived by means of

an extended Rayleigh-Ritz procedure (Sec. 3). In the validation procedure, the modal frequenciesf FEM
n

and dampingsαFEM
n replace the experimental values; they are given by a finite-element model analysis

of a known virtual plate (Sec. 4). Given the numerical and virtual experimental data, the optimisation
procedure that estimates the elasticity and damping parameters of the constituents of the sandwich ma-
terial is detailed in Sec. 5. The estimation results and a sensitivity analysis are shown in Sec. 6 and 7
respectively.

2 Mechanical model of sandwich panels

The sandwich panel consists in two identical skins and a core (Fig. 1). Inthe following, “panel”
designates the physical structure whereas “plate” refers to the idealisedstructure made out of an equiv-
alent homogeneous material. Parameters pertaining to the core, the skin, andthe homogeneous material
constitutive of the equivalent plate are respectively denoted with c, s, and H indexes. The thicknesses of
the core, skins, and panel arehc, hs, andh= hc+2hs respectively.
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Figure 1: Left: geometry of the sandwich plate. Right: exeprimental and FEM-validation procedures.

The skin and core materials are considered as homogeneous, orthotropicin the x andy directions,
and viscoelastic. The standard hysteretic model (which is frequency-independent) has been retained for
describing the viscoelastic behaviour, with complex moduliE =E(1+ jη). The stress-strain relationship
σγ(ǫγ) in eachγ−material (γ =s, c, or H) involves 7 complex numbers and can be written, to first order
in ηγ as:
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The symmetry of the strain/stress relation impliesνγ

xyE
γ
y = νγ

yxE
γ
x andηγ

ν = ηγ
νxy +ηγ

y = ηγ
νyx +ηγ

x,
leaving 12 independent real parameters to be identified for each material (24 altogether).

The following hypotheses are made on the sandwich panel:
– The sandwich panel is symmetric with respect to its mid-plane.
– Compared to the core, skins are thin enough to ensure that shear stressin the skin can be ignored:

hsGs
xz,yz≪ hcGc

xz,yz.
– The core is much softer than the skins (Ec

x ≪ Es
x, Ec

y ≪ Es
y, Gc

xy ≪ Gs
xy). Given the generic expres-

sion of the moduli of the homogeneous equivalent materialEH =

(

hc

h

)3

Ec+

[

1−

(

hc

h

)3
]

Es,

this ensures that all in-plane stress in the plate are entirely due to those in the skins.
According to these hypotheses, there is no stress associated withEc,s,H

z , νc,s,H
xz , νc,s,H

yz ,Gs
xz, Gs

yz, Ec
x, Ec

y,
Gc

xy, νc
xy, νc

yx which are ignored in what follows.
Under the hypothesis given in section 2, the sandwich panel behaves in the low frequency range like

a homogeneous thick-plate [15]. The thickness of the plate is chosen to beh. Its mechanical properties
are given in Eq. (2) as functions of the mechanical and geometrical properties of the skins and the core.
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The 12 independent real parameters{EH
x ,ηH

x ,E
H
y ,ηH

y ,G
H
xy,ηH

xy,G
H
xz,ηH

xz,G
H
yz,ηH

yz,νH
xy,ηH

ν } are to be es-
timated. Their knowledge yields the elastic and dissipative properties of eachlayer of the sandwich
panel provided that the system of 12 real equations formed by Eqs. (2)is invertible. Given the previous
hypotheses, a sufficient condition is:

ηc
x
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x

Es
x
≪ ηs

x ηc
y

Ec
y

Es
y
≪ ηs

y ηc
xy

Gc
xy

Gs
xy

≪ ηs
xy (3)

This condition is not satisfied only if theηc-coefficients are several orders of magnitude larger than
theηs-ones.
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3 An extended Rayleigh-Ritz procedure for obtaining modal dampings

3.1 Modal representation

In the present study, it is assumed that structural damping is dominant overdamping due to acoustical
radiation and boundary conditions. The honeycomb sandwich panel is considered here as a system with
N degrees of freedomq = {qm}, whereq is any set of generalised displacements. The equation of its
free motion is [16]:

Mq̈+Cq̇+Kq = 0 (4)

whereM , C, andK are the mass, damping, and stiffness matrices. The link betweenC and the dissipa-
tive model presented previously will be made further. The associated conservative system (corresponding
to C = 0) hasN normal modes with modal shapesξn and normal frequenciesfn. If the complete, non-
conservative, system is lightly damped, it can be shown [16] that, to first order, its so-called natural
modes have the same modal shapesξn and natural frequencies arefn+ jαn.

3.2 Potential, kinetic and dissipated energies in the equivalent thick-plate

Let Un be the potential energy associated with thenth natural mode of the dissipative plate for a
maximum vibrational amplitude of 1 on the plate. It varies in time as exp(−2αnt). Since the conservative
and non-conservative systems have the same modal shapes, the same potential energy is associated with
their nth mode, equal to the kinetic energyTn of the nth normal mode of the conservative system. The
energy lost by this mode during one cycle∆Un is therefore:

∆Un =−2
αn

fn
Un =−2

αn

fn
Tn (5)

Within the frame of the first order Reissner-Mindlin theory [17, Chap. 3],the displacements{u,v,w}
in the{x,y,z}-directions respectively can be written within a good approximation (see below) as:

u(x,y,z, t) =−zΦx(x,y, t) v(x,y,z, t) =−zΦy(x,y, t) w(x,y,z, t) = w0(x,y, t) (6)

The potential energy of the plate is:
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(7)
with
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GH
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3

6

(8)

The shear correction factorsκ2
yz andκ2

xz account for the fact that Eq. (6) is an approximation: the
(functional) anglesΦx andΦy depend lightly onz and sections of the plate do not remain plane in the
flexural deformation. The valuesκyz = κxz = 1 have been chosen according to the recommendations
of [18] for sandwich panels.

By definition and based on the material model (Sec 2), the fraction of energy ∆U lost during one
cycleT is:
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The kinetic energyT of the system is:

T =
ρHω2

2

∫∫∫
(V )

[

u2+v2+w2]dτ =
ρHω2

2

∫∫
(S )

[

h3

12
(Φ2

x +Φ2
y)+hw2

0

]

dxdy (10)

whereρH is the density of the equivalent homogeneous thick plate:hρH = hcρc+2hsρs.

3.3 Derivation of the modal dampingsαNum
n

In order to derive the modal dampingsαn from Eqs. 5, 9, and 10, analytical expressions of theΦx-,
Φy-, andw0-modal fields are needed. This is achieved by a Rayleigh-Ritz procedurefor the normal
modes of the associated conservative system since they are the same as those of the natural modes.

The generalised-displacement fieldsΦx(x,y), Φy(x,y), andw0(x,y) are projected on the elements of
an orthonormal polynomial basis of orderQ satisfying partially the free-free boundary conditions [19]:

Φx(x,y) = ∑
i, j

Li j pi(x)p j(y) Φy(x,y) = ∑
i, j

Mi j pi(x)p j(y) w0(x,y) = ∑
i, j

Ni j pi(x)p j(y) (11)

This procedure generates a new set ofN = 3Q2 generalised displacementsLi j , Mi j andNi j . The next
step consists in writing the kinetic and potential energiesT andU . The Hamilton principle reads as:

∀(i, j) ∈ [0,Q−1]2 :
∂(T −U)

∂Li j
= 0

∂(T −U)

∂Mi j
= 0

∂(T −U)

∂Ni j
= 0 (12)

The above system of 3Q2 linear equations can be re-written as[K−4π2 f 2M ]q= 0. The expressions
of the partial derivatives ofU with respect toLi j ,Mi j ,Ni j yieldK while the partial derivatives ofT with
respect toLi j ,Mi j ,Ni j yieldM . The resolution of this eigenvalue problem gives a straightforward access
to the modal frequenciesfn and modal shapesξn.

Introducing the modal coefficientsξn (expressed in the{Li j ,Mi j ,Ni j} system of coordinates) into
Eqs. 11 yields the desired analytical expressions for theΦx, Φy, andw0 modal fields and also for their
x- andy-derivatives. For each of theN modes, the potential, lost, and kinetic energies can be written by
introducing these expressions into Eqs. 7, 9, and 10:

∀n∈ [1,N] : Tn = 4π2 f 2
n tn Un =

6

∑
k=1

Dku
n
k ∆Un =−π

6

∑
k=1

ηkDku
n
k (13)

where the subscripts{1,2,3,4,5,6} stand for{x,ν,y,xz,yz,xy} respectively. The coefficientstn andun
k

depend on the geometry and mass parameters of the plate, and are quadraticin modal shapesξNum
n .

The expression (14) of the modal dampingsαNum
n can be deduced from the Eq. (5) and the last two

expressions of (13):

αNum
n =−

fn∆UNC
n

2TC
n

=
1

8π f Num
n tn

6

∑
k=1

ηkDku
n
k (14)

4



lx (m) ly (m) h (m) ρ (kg/m3)

0.4 0.6
Core Skin Core Skin

4×10−3 0.2×10−3 40 700

Table 1: Geometry and constituent densities of the virtual sandwich-plate.

4 Modal frequencies and dampings of a virtual plate

Finite-element modelling and the associated computations have been performed using Cast3M [20],
a free software developed by the French Centre for Atomic Energy (CEA). The model consists of 8-
node quadratic 2D-thick-shell elements and assumes the Reissner-Mindlin hypothesis. Each node has 6
degrees of freedom. Elements are placed on a regular mesh ofN = 60 elements per side of the plates.
The chosen sandwich plate is made of 3 homogeneous layers and is symmetrical with respect to its
mid-plane. Geometrical, mechanical and mass parameters of the plate are given in Tab. 1 and in Fig. 2
(numbers).

Modal frequencies and dampings of the virtual plates are computed in two steps. At first, the modal
frequencies of the conservative systemf C

n are computed by solving the eigenvalue problemMq̈+Kq=
0. In the second step, the non-conservative system is described according to the constitutive model of the
material (section 2) which implies thatK is a complex matrixK∗ =K+ jK ′. The dynamic equation of
the dissipative system becomesMq̈+Cq̇+Kq = 0 withC =K ′/ω. The “light damping hypothesis”
has been retained. The dampingαn is obtained as the real part of then-th eigenvalue of this new problem
whereC is taken asK ′/(2π fn). Unlike in the usual modal analysis, the eigenvalue problem must be
re-written (and solved) with a new parameter (C) as many times as the number of complex eigenvalues
to be found.

For the 3-layer virtual sandwich plate virtual plate, increasing the number of elements above 60 ele-
ments per side results in less than a 1 % relative variation of the 35 first modal frequencies (conservative
and non conservative cases) and in less than 0.4 % of the 35 first modal dampings. Thus, 60 elements
per side are enough to ensure the desired precision on the analysis of thefirst 35 modes of the two plates.

5 Optimisation procedure

This section describes how to derive, in two steps, the complex moduli of elasticity of the ho-
mogenised equivalent material of the sandwich plate{EH

x ,ηH
x ,E

H
y ,ηH

y ,G
H
xy,ηH

xy,G
H
xz,ηH

xz,G
H
yz,ηH

yz,νH
xy,ηH

ν }
from the virtual and numerical values of the modal frequencies and dampings f FEM

n , f Num
n , αFEM

n , and
αNum

n .
The estimation of the elasticity parameters{EH

x ,E
H
y ,G

H
xy,G

H
xz,G

H
yz,νH

xy} is done by comparing the
experimental and numerical modal frequencies. The estimation problem to solve is non-linear and several
orders of magnitude are involved in the properties values. The following cost-function was used:

Cf =
N

∑
n=1

(

f FEM
n − f Num

n

f FEM
n

)2

(15)

A simplex search method [21] (function“fminsearch” in MatlabTM) based on the rigidities
{Dx,Dνxy,Dy,Dxz,Dyz,Dxy} has been chosen. Estimation results obtained by this methods are known
to be dependent on the initial values of the parameters. To minimise the influenceof the starting point,
the following initialisation strategy for the rigidities has been chosen:

1. The initial values of in-plane rigiditiesDx, Dνxy, Dy andDxy are the most influential; they were
derived from the three lowest modal frequencies of the panel, as proposed in [7].

2. The initial values of out-of-plane rigiditiesDxz andDyz are less critical; homogenisation theory
proposed by Gibson [22] for honeycomb core sandwich panels is used. This theory requires a
value for the elasticity moduli of the material composing the honeycomb core. The first estimation
was based on static tests.
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Figure 2: Comparison between the values of the mechanical parameters used in the FEM analysis ("FEM
input data"), and their estimated values ("Estimation results") for each constituent (Skins, Core) of the
virtual sandwich plate.

As can be seen in Eq. (14), modal dampings depend linearly on the loss factors {ηH
x ,ηH

y ,ηH
xy,ηH

xz,
ηH

yz,ηH
ν } once the rigidities have been found. The estimation of the loss factors is therefore much easier

than that of the elasticity parameters. A simple least-square optimisation procedure is sufficient to esti-
mate the loss factors from the modal dampings. A cost-function similar to (15) has been chosen. The
optimisation procedure is not iterative and needs no particular initialisation.

6 Estimation results for the3-layer virtual sandwich-plate

The 3-layer virtual sandwich-plate has been used to validate the estimation procedure described in
Fig. 1. Based on the first 35 modal frequencies given by the FEM and using a Rayleigh-Ritz orderq= 16,
the estimated values of the elasticity parameters are compared to the original values given to the FEM.
The loss factors have been estimated with 28 modes and a model orderq= 18. The estimated mechanical
parameters are presented in Fig. 2 for each layer of the sandwich.

The residual mismatch between the results of estimation and the original values isdiscussed here.

The mean absolute value

〈∣

∣

∣

∣

∆ fn
fn

∣

∣

∣

∣

〉

of the relative difference between experimental and numerical modal

frequencies is 2.6 %. For the dampings, the residual mismatch

〈∣

∣

∣

∣

∆αn

αn

∣

∣

∣

∣

〉

is 21.6 % in average but

widely different between coefficients. These orders of magnitude suggest that the assumption that a 3-
layer sandwich plate can be modelled as a simple homogeneous thick plate is correct in the frequency
range under study.

It can be seen in Fig. 2 that the agreement between estimated and original parameters is globally
very good. In-plane elasticity parameters of the skins and out-of-plane elasticity parameters of the core
are estimated with a mean absolute relative error of 10.2 %. Principal in-plane loss-factorsηx andηy

are estimated with a comparable accuracy of 7.5 %. The imaginary part ofνH
xy is largely overestimated

while the imaginary part ofGH
xy is underestimated. However, the overestimation of one parameter may

be the result of the underestimation of the other, by compensation. The imaginary parts ofGH
xz andGH

yz
are assigned zero values by the estimation process. This underestimation is due to the fact that only a
marginal part of the total energy-loss per cycle is dissipated through the mechanical couplings described
by GH

xz andGH
yz. As a consequence, modal dampings factors are not very sensitive to the loss factors

described by their imaginary parts.

7 Sensitivity analysis

The sensitivities of the modal frequenciesfn or dampingsαn to the coefficients{EH
x ,νH

xyE
H
y ,G

H
xz,

GH
yz,G

H
xy} (for the modal frequencies) and to the corresponding loss factorsηH

... (for the modal dampings)
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Figure 3: Sensitivities of the modal frequencies to the real parts of the rigidities given by Eqs. 8. Each
column is the sum of the sensitivities toDx, Dνxy, Dy, andDxy (left frame) and toDxzandDyz (right frame).
The total may exceed 0.5 since some sensitivities are negative. the different involved parameters.

Figure 4: Sensitivities of the modal dampings to the dissipative parameters of the fictious material of the
equivalent homogenised plateηH

x , ηH
νxy

, ηH
y , andηH

xy.

are defined asSβn
(X) =

∂βn

∂X

(

βn

X

)−1

: if the X parameter is increased by 1%, then-th modal valueβn is

increased bySβn
(X)%. The sensitivities reflect the information contained in a modal value relatively to

a given material parameter.
Results on modal frequencies with regard to the rigiditiesDx, Dνxy, Dy, Dxy (which depend on the

elastic parameters as given by Eqs. 8) are presented in the left frame of Fig. 3 whereas the sensitivities to
the out-of-plane rigiditiesDxz andDyz are presented in the right frame. Since the modal frequencies are
very little sensitive to the Poisson coefficients, the corresponding sensitivities have not been represented.
As expected, it turns out that modes of the form(0, i) or ( j,0) convey a lot of information relatively to
Ex andEy respectively (left part of Fig. 3). Since the thick-plate model differs from the thin-plate model
in the high-frequencies only, it is normal that there is almost 10 times more information relative toGxz

and toGyz in the higher modes than in the lower ones (right part of Fig. 3). The lower sensitivity of the
modal frequencies toGxz than toGyz is simply due to the aspect ratio of the plate (lx < ly).

Results on the sensitivities of modal dampings to the dissipative parameters of the fictious mate-
rial of the equivalent homogenised plate (ηH

x , ηH
νxy

, ηH
y , andηH

xy) are given in Fig. 4. Modal dampings

are sensitive to all in-plane parameters whereas out-of-plane parameters ηH
xz andηH

yz were found to be
irrelevant.

8 Conclusion

An easy-to-implement method to measure all relevant elastic and dissipative properties of the con-
stituents of a sandwich structure has been described. Its experimetnal implementation has been presented
elsewhere [2]. For the sake of numerical validation, a finite-element modelreplaces the experimental
modal analysis. The sensitivity analysis shows that, within the homogenisation hypotheses, only half of
all elastic and dissipative parameters are relevant for the vibration of thickplates. The method appears
as reliable for their determination. The method does not give access to the other parameters but on the
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other hand, they are of little practical importance as far as the vibration of sandwich plates is concerned.
Compared to the method by De Visscheret al. [8], it gives access to much higher frequencies and thus,
to out-of-plane parameters. It is much simpler to implement and faster to perform than the method by
Pagnaccoet al. [11] and to that of Matteret al. [12], based on measurements of the vibration on the
whole panel.
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