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Introduction

Sandwich structures are often used in the industry because they can be made light and stiff. However, mechanical properties of sandwich plates may be difficult to predict accurately, particularly if damping is considered. Measurements on isolated samples of the constituents or of whole panels are often needed.

The problem of the estimation of solely the elasticity parameters of a homogeneous material using plate vibrations has been widely addressed using a thick-plate (see for example [START_REF] Soares | Identification of material properties of composite plate specimens[END_REF][START_REF] Ayorinde | Elastic constants of thick orthotropic composite plates[END_REF][START_REF] Frederiksen | Experimental procedure and results for the identification of elastic constants of thick orthotropic plates[END_REF][START_REF] Cugnoni | Identification by modal analysis of composite structures modelled with FSDT and HSDT laminated shell finite elements[END_REF]) and provides in-plane and out-of-plane information about the materials. The problem of estimating the elasticity and damping parameters by using point measurements [START_REF] Mcintyre | On measuring the elastic and damping constants of orthotropic sheet materials[END_REF][START_REF] Devisscher | Identification of the damping properties of orthotropic composite materials using a mixed numerical experimental method[END_REF][START_REF] Talbot | The vibration damping of laminated plates[END_REF][START_REF] Qian | A vibration method for measuring mechanical properties of composite, theory and experiment[END_REF] has retained some attention, but in a thinplate context only. In a thick-plate context, only methods involving full-field measurements are currently available [START_REF] Pagnacco | Inverse strategies for the identification of elastic and viscoelastic material parameters using full-field measurements[END_REF][START_REF] Matter | Numerical-experimental identification of the elastic and damping properties in composite plates[END_REF][START_REF] Giraudeau | An alternative to modal analysis for material stiffness and damping identification from vibrating plates[END_REF]: they are very time-consuming or need sophisticated equipment.

In this paper, a previously presented method for estimating some complex moduli of elasticity of the constituents of sandwich structures [START_REF] Rébillat | Identification of elastic and damping properties of sandwich structures based on high resolution modal analysis of point measurements[END_REF][START_REF] Rébillat | Measurement of elastic and damping material properties in sandwich structures[END_REF] is numerically validated. The proposed procedure yielding in-plane and out-of-plane elasticity and dissipation parameters of the constituents of the sandwich is schematically presented in Fig. 1. The analytical model of the sandwich panel is presented in Sec. [START_REF] Rébillat | Identification of elastic and damping properties of sandwich structures based on high resolution modal analysis of point measurements[END_REF]. Based on this model, the numerical modal frequencies f Num n and dampings α Num n are derived by means of an extended Rayleigh-Ritz procedure (Sec. 3). In the validation procedure, the modal frequencies f FEM n and dampings α FEM n replace the experimental values; they are given by a finite-element model analysis of a known virtual plate (Sec. 4). Given the numerical and virtual experimental data, the optimisation procedure that estimates the elasticity and damping parameters of the constituents of the sandwich material is detailed in Sec. 5. The estimation results and a sensitivity analysis are shown in Sec. 6 and 7 respectively.

Mechanical model of sandwich panels

The sandwich panel consists in two identical skins and a core (Fig. 1). In the following, "panel" designates the physical structure whereas "plate" refers to the idealised structure made out of an equivalent homogeneous material. Parameters pertaining to the core, the skin, and the homogeneous material constitutive of the equivalent plate are respectively denoted with c, s, and H indexes. The thicknesses of the core, skins, and panel are h c , h s , and h = h c + 2h s respectively. The skin and core materials are considered as homogeneous, orthotropic in the x and y directions, and viscoelastic. The standard hysteretic model (which is frequency-independent) has been retained for describing the viscoelastic behaviour, with complex moduli E = E(1+ jη). The stress-strain relationship σ γ (ǫ γ ) in each γ-material (γ =s, c, or H) involves 7 complex numbers and can be written, to first order in η γ as:

σ γ =       E γ x (1 + jη γ x ) ν γ yx E γ x [1 + j(η γ ν yx + η γ x )] 0 0 0 ν γ xy E γ y [1 + j(η γ ν xy + η γ y )] E γ y (1 + jη γ y ) 0 0 0 0 0 G γ xz (1 + jη γ xz ) 0 0 0 0 0 G γ yz (1 + jη γ yz ) 0 0 0 0 0 G γ xy (1 + jη γ xy )       ǫ γ
(1) The symmetry of the strain/stress relation implies

ν γ xy E γ y = ν γ yx E γ x and η γ ν = η γ ν xy + η γ y = η γ ν yx + η γ
x , leaving 12 independent real parameters to be identified for each material (24 altogether).

The following hypotheses are made on the sandwich panel:

-The sandwich panel is symmetric with respect to its mid-plane.

-Compared to the core, skins are thin enough to ensure that shear stress in the skin can be ignored:

h s G s xz,yz ≪ h c G c xz,yz . -The core is much softer than the skins (E c x ≪ E s x , E c y ≪ E s y , G c xy ≪ G s xy ).
Given the generic expression of the moduli of the homogeneous equivalent material

E H = h c h 3 E c + 1 - h c h 3 E s ,
this ensures that all in-plane stress in the plate are entirely due to those in the skins. According to these hypotheses, there is no stress associated with E c,s,H

z , ν c,s,H xz , ν c,s,H yz , G s xz , G s yz , E c x , E c y , G c
xy , ν c xy , ν c yx which are ignored in what follows. Under the hypothesis given in section 2, the sandwich panel behaves in the low frequency range like a homogeneous thick-plate [START_REF] Nilsson | Prediction and measurement of some dynamic properties of sandwich structures with honeycomb and foam cores[END_REF]. The thickness of the plate is chosen to be h. Its mechanical properties are given in Eq. (2) as functions of the mechanical and geometrical properties of the skins and the core.

               E H x (1 + jη H x ) = E s x (1 + jη s x ) 1 - h c h 3 E H y (1 + jη H y ) = E s y (1 + jη s y ) 1 - h c h 3 ν H xy (1 + jη H ν xy ) = ν s xy (1 + jη s ν xy ) G H xy (1 + jη H xy ) = G s xy (1 + jη s xy ) 1 - h c h 3 G H xz (1 + jη H xz ) = G c xz (1 + jη c xz ) G H yz (1 + jη H yz ) = G c yz (1 + jη c yz ) (2) 
The 12 independent real parameters

{E H x , η H x , E H y , η H y , G H xy , η H xy , G H xz , η H xz , G H yz , η H yz , ν H xy , η H ν }
are to be estimated. Their knowledge yields the elastic and dissipative properties of each layer of the sandwich panel provided that the system of 12 real equations formed by Eqs. ( 2) is invertible. Given the previous hypotheses, a sufficient condition is:

η c x E c x E s x ≪ η s x η c y E c y E s y ≪ η s y η c xy G c xy G s xy ≪ η s xy ( 3 
)
This condition is not satisfied only if the η c -coefficients are several orders of magnitude larger than the η s -ones.

3 An extended Rayleigh-Ritz procedure for obtaining modal dampings

Modal representation

In the present study, it is assumed that structural damping is dominant over damping due to acoustical radiation and boundary conditions. The honeycomb sandwich panel is considered here as a system with N degrees of freedom q = {q m }, where q is any set of generalised displacements. The equation of its free motion is [START_REF] Geradin | Mechanical Vibrations: Theory and Applications to Structural Dynamics[END_REF]:

M q + C q + Kq = 0 (4)
where M , C, and K are the mass, damping, and stiffness matrices. The link between C and the dissipative model presented previously will be made further. The associated conservative system (corresponding to C = 0) has N normal modes with modal shapes ξ n and normal frequencies f n . If the complete, nonconservative, system is lightly damped, it can be shown [START_REF] Geradin | Mechanical Vibrations: Theory and Applications to Structural Dynamics[END_REF] that, to first order, its so-called natural modes have the same modal shapes ξ n and natural frequencies are f n + jα n .

Potential, kinetic and dissipated energies in the equivalent thick-plate

Let U n be the potential energy associated with the n th natural mode of the dissipative plate for a maximum vibrational amplitude of 1 on the plate. It varies in time as exp(-2α n t). Since the conservative and non-conservative systems have the same modal shapes, the same potential energy is associated with their n th mode, equal to the kinetic energy T n of the n th normal mode of the conservative system. The energy lost by this mode during one cycle ∆U n is therefore:

∆U n = -2 α n f n U n = -2 α n f n T n (5)
Within the frame of the first order Reissner-Mindlin theory [START_REF] Cremer | Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies[END_REF]Chap. 3], the displacements {u, v, w} in the {x, y, z}-directions respectively can be written within a good approximation (see below) as: u(x, y, z,t) = -zΦ x (x, y,t) v(x, y, z,t) = -zΦ y (x, y,t) w(x, y, z,t) = w 0 (x, y,t) (

The potential energy of the plate is: 

U = 1 2 S D x ∂Φ x ∂x 2 + D ν
D x = E H x h 3 12(1 -ν xy ν yx ) D ν xy = ν xy E H y h 3 6(1 -ν xy ν yx ) D y = E H y h 3 12(1 -ν xy ν yx ) D xz = 2κ 2 xz hG H xz D yz = 2κ 2 yz hG H yz D xy = G H xy h 3 6 (8)
The shear correction factors κ 2 yz and κ 2 xz account for the fact that Eq. ( 6) is an approximation: the (functional) angles Φ x and Φ y depend lightly on z and sections of the plate do not remain plane in the flexural deformation. The values κ yz = κ xz = 1 have been chosen according to the recommendations of [START_REF] Birman | On the choice of shear correction factor in sandwich structures[END_REF] for sandwich panels.

By definition and based on the material model (Sec 2), the fraction of energy ∆U lost during one cycle T is: The kinetic energy T of the system is:

∆U = -T V (σ H ) T ∂ǫ H ∂t dτ dt = -π S η H x D x ∂Φ x ∂x 2 + η H ν D ν
T = ρ H ω 2 2 (V ) u 2 + v 2 + w 2 dτ = ρ H ω 2 2 (S ) h 3 12 (Φ 2 x + Φ 2 y ) + hw 2 0 dxdy ( 10 
)
where ρ H is the density of the equivalent homogeneous thick plate: hρ H = h c ρ c + 2h s ρ s .

Derivation of the modal dampings α Num n

In order to derive the modal dampings α n from Eqs. 5, 9, and 10, analytical expressions of the Φ x -, Φ y -, and w 0 -modal fields are needed. This is achieved by a Rayleigh-Ritz procedure for the normal modes of the associated conservative system since they are the same as those of the natural modes.

The generalised-displacement fields Φ x (x, y), Φ y (x, y), and w 0 (x, y) are projected on the elements of an orthonormal polynomial basis of order Q satisfying partially the free-free boundary conditions [START_REF] Bhat | Natural frequencies of rectangular-plates using characteristic orthogonal polynomials in Rayleigh-Ritz method[END_REF]:

Φ x (x, y) = ∑ i, j L i j p i (x)p j (y) Φ y (x, y) = ∑ i, j M i j p i (x)p j (y) w 0 (x, y) = ∑ i, j N i j p i (x)p j (y) (11) 
This procedure generates a new set of N = 3 Q 2 generalised displacements L i j , M i j and N i j . The next step consists in writing the kinetic and potential energies T and U. The Hamilton principle reads as:

∀(i, j) ∈ [0, Q -1] 2 : ∂(T -U) ∂L i j = 0 ∂(T -U) ∂M i j = 0 ∂(T -U) ∂N i j = 0 ( 12 
)
The above system of 3Q 2 linear equations can be re-written as [K -4π 2 f 2 M ]q = 0. The expressions of the partial derivatives of U with respect to L i j , M i j , N i j yield K while the partial derivatives of T with respect to L i j , M i j , N i j yield M . The resolution of this eigenvalue problem gives a straightforward access to the modal frequencies f n and modal shapes ξ n .

Introducing the modal coefficients ξ n (expressed in the {L i j , M i j , N i j } system of coordinates) into Eqs. 11 yields the desired analytical expressions for the Φ x , Φ y , and w 0 modal fields and also for their x-and y-derivatives. For each of the N modes, the potential, lost, and kinetic energies can be written by introducing these expressions into Eqs. 7, 9, and 10:

∀n ∈ [1, N] : T n = 4π 2 f 2 n t n U n = 6 ∑ k=1 D k u n k ∆U n = -π 6 ∑ k=1 η k D k u n k ( 13 
)
where the subscripts {1, 2, 3, 4, 5, 6} stand for {x, ν, y, xz, yz, xy} respectively. The coefficients t n and u n k depend on the geometry and mass parameters of the plate, and are quadratic in modal shapes ξ Num n . The expression [START_REF] Rébillat | Measurement of elastic and damping material properties in sandwich structures[END_REF] of the modal dampings α Num n can be deduced from the Eq. ( 5) and the last two expressions of (13): 

α Num n = - f n ∆U NC n 2T C n = 1 8π f Num n t n 6 ∑ k=1 η k D k u n k (14) l x (m) l y (m) h (m) ρ (

Modal frequencies and dampings of a virtual plate

Finite-element modelling and the associated computations have been performed using Cast3M [START_REF]Cast3M[END_REF], a free software developed by the French Centre for Atomic Energy (CEA). The model consists of 8node quadratic 2D-thick-shell elements and assumes the Reissner-Mindlin hypothesis. Each node has 6 degrees of freedom. Elements are placed on a regular mesh of N = 60 elements per side of the plates. The chosen sandwich plate is made of 3 homogeneous layers and is symmetrical with respect to its mid-plane. Geometrical, mechanical and mass parameters of the plate are given in Tab. 1 and in Fig. 2 (numbers).

Modal frequencies and dampings of the virtual plates are computed in two steps. At first, the modal frequencies of the conservative system f C n are computed by solving the eigenvalue problem M q + Kq = 0. In the second step, the non-conservative system is described according to the constitutive model of the material (section 2) which implies that K is a complex matrix K * = K + jK ′ . The dynamic equation of the dissipative system becomes M q + C q + Kq = 0 with C = K ′ /ω. The "light damping hypothesis" has been retained. The damping α n is obtained as the real part of the n-th eigenvalue of this new problem where C is taken as K ′ /(2 π f n ). Unlike in the usual modal analysis, the eigenvalue problem must be re-written (and solved) with a new parameter (C) as many times as the number of complex eigenvalues to be found.

For the 3-layer virtual sandwich plate virtual plate, increasing the number of elements above 60 elements per side results in less than a 1 % relative variation of the 35 first modal frequencies (conservative and non conservative cases) and in less than 0.4 % of the 35 first modal dampings. Thus, 60 elements per side are enough to ensure the desired precision on the analysis of the first 35 modes of the two plates.

Optimisation procedure

This section describes how to derive, in two steps, the complex moduli of elasticity of the homogenised equivalent material of the sandwich plate 

{E H x , η H x , E H y , η H y , G H xy , η H xy , G H xz , η H xz , G H yz , η H yz ,
C f = N ∑ n=1 f FEM n -f Num n f FEM n 2 (15) 
A simplex search method [START_REF] Lagarias | Convergence properties of the nelder-mead simplex method in low dimensions[END_REF] (function "fminsearch" in Matlab TM ) based on the rigidities {D x , D ν xy , D y , D xz , D yz , D xy } has been chosen. Estimation results obtained by this methods are known to be dependent on the initial values of the parameters. To minimise the influence of the starting point, the following initialisation strategy for the rigidities has been chosen:

1. The initial values of in-plane rigidities D x , D ν xy , D y and D xy are the most influential; they were derived from the three lowest modal frequencies of the panel, as proposed in [START_REF] Mcintyre | On measuring the elastic and damping constants of orthotropic sheet materials[END_REF]. As can be seen in Eq. ( 14), modal dampings depend linearly on the loss factors

{η H x , η H y , η H xy , η H xz , η H
yz , η H ν } once the rigidities have been found. The estimation of the loss factors is therefore much easier than that of the elasticity parameters. A simple least-square optimisation procedure is sufficient to estimate the loss factors from the modal dampings. A cost-function similar to (15) has been chosen. The optimisation procedure is not iterative and needs no particular initialisation.

Estimation results for the 3-layer virtual sandwich-plate

The 3-layer virtual sandwich-plate has been used to validate the estimation procedure described in Fig. 1. Based on the first 35 modal frequencies given by the FEM and using a Rayleigh-Ritz order q = 16, the estimated values of the elasticity parameters are compared to the original values given to the FEM. The loss factors have been estimated with 28 modes and a model order q = 18. The estimated mechanical parameters are presented in Fig. 2 for each layer of the sandwich.

The residual mismatch between the results of estimation and the original values is discussed here.

The mean absolute value ∆ f n f n of the relative difference between experimental and numerical modal frequencies is 2.6 %. For the dampings, the residual mismatch ∆α n α n is 21.6 % in average but widely different between coefficients. These orders of magnitude suggest that the assumption that a 3layer sandwich plate can be modelled as a simple homogeneous thick plate is correct in the frequency range under study.

It can be seen in Fig. 2 that the agreement between estimated and original parameters is globally very good. In-plane elasticity parameters of the skins and out-of-plane elasticity parameters of the core are estimated with a mean absolute relative error of 10.2 %. Principal in-plane loss-factors η x and η y are estimated with a comparable accuracy of 7.5 %. The imaginary part of ν H xy is largely overestimated while the imaginary part of G H xy is underestimated. However, the overestimation of one parameter may be the result of the underestimation of the other, by compensation. The imaginary parts of G H xz and G H yz are assigned zero values by the estimation process. This underestimation is due to the fact that only a marginal part of the total energy-loss per cycle is dissipated through the mechanical couplings described by G H xz and G H yz . As a consequence, modal dampings factors are not very sensitive to the loss factors described by their imaginary parts.

Sensitivity analysis

The sensitivities of the modal frequencies f n or dampingsα n to the coefficients {E H

x , ν : if the X parameter is increased by 1%, the n-th modal value β n is increased by S β n (X)%. The sensitivities reflect the information contained in a modal value relatively to a given material parameter.

Results on modal frequencies with regard to the rigidities D x , D ν xy , D y , D xy (which depend on the elastic parameters as given by Eqs. 8) are presented in the left frame of Fig. 3 whereas the sensitivities to the out-of-plane rigidities D xz and D yz are presented in the right frame. Since the modal frequencies are very little sensitive to the Poisson coefficients, the corresponding sensitivities have not been represented. As expected, it turns out that modes of the form (0, i) or ( j, 0) convey a lot of information relatively to E x and E y respectively (left part of Fig. 3). Since the thick-plate model differs from the thin-plate model in the high-frequencies only, it is normal that there is almost 10 times more information relative to G xz and to G yz in the higher modes than in the lower ones (right part of Fig. 3). The lower sensitivity of the modal frequencies to G xz than to G yz is simply due to the aspect ratio of the plate (l x < l y ).

Results on the sensitivities of modal dampings to the dissipative parameters of the fictious material of the equivalent homogenised plate (η H

x , η H ν xy , η H y , and η H xy ) are given in Fig. 4. Modal dampings are sensitive to all in-plane parameters whereas out-of-plane parameters η H xz and η H yz were found to be irrelevant.

Conclusion

An easy-to-implement method to measure all relevant elastic and dissipative properties of the constituents of a sandwich structure has been described. Its experimetnal implementation has been presented elsewhere [START_REF] Rébillat | Identification of elastic and damping properties of sandwich structures based on high resolution modal analysis of point measurements[END_REF]. For the sake of numerical validation, a finite-element model replaces the experimental modal analysis. The sensitivity analysis shows that, within the homogenisation hypotheses, only half of all elastic and dissipative parameters are relevant for the vibration of thick plates. The method appears as reliable for their determination. The method does not give access to the other parameters but on the other hand, they are of little practical importance as far as the vibration of sandwich plates is concerned. Compared to the method by De Visscher et al. [START_REF] Devisscher | Identification of the damping properties of orthotropic composite materials using a mixed numerical experimental method[END_REF], it gives access to much higher frequencies and thus, to out-of-plane parameters. It is much simpler to implement and faster to perform than the method by Pagnacco et al. [START_REF] Pagnacco | Inverse strategies for the identification of elastic and viscoelastic material parameters using full-field measurements[END_REF] and to that of Matter et al. [START_REF] Matter | Numerical-experimental identification of the elastic and damping properties in composite plates[END_REF], based on measurements of the vibration on the whole panel.
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 1 Figure 1: Left: geometry of the sandwich plate. Right: exeprimental and FEM-validation procedures.

Figure 2 :

 2 Figure 2: Comparison between the values of the mechanical parameters used in the FEM analysis ("FEM input data"), and their estimated values ("Estimation results") for each constituent (Skins, Core) of the virtual sandwich plate.

Figure 3 :

 3 Figure 3: Sensitivities of the modal frequencies to the real parts of the rigidities given by Eqs. 8. Each column is the sum of the sensitivities to D x , D ν xy , D y , and D xy (left frame) and to D xz and D yz (right frame). The total may exceed 0.5 since some sensitivities are negative. the different involved parameters.
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 4 Figure 4: Sensitivities of the modal dampings to the dissipative parameters of the fictious material of the equivalent homogenised plate η H x , η H ν xy , η H y , and η H xy .

Table 1 :

 1 Geometry and constituent densities of the virtual sandwich-plate.

	kg/m 3 )

  ν H xy , η H ν } from the virtual and numerical values of the modal frequencies and dampings f FEM H xy } is done by comparing the experimental and numerical modal frequencies. The estimation problem to solve is non-linear and several orders of magnitude are involved in the properties values. The following cost-function was used:

	α Num n The estimation of the elasticity parameters {E H . x , E H y , G H xy , G H xz , G H yz , ν	n	, f Num n	, α FEM n	, and

The initial values of out-of-plane rigidities D xz and D yz are less critical; homogenisation theory proposed by Gibson[START_REF] Gibson | Cellular Solids: Structure and Properties[END_REF] for honeycomb core sandwich panels is used. This theory requires a value for the elasticity moduli of the material composing the honeycomb core. The first estimation was based on static tests.