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Résumé— This short note describes the main difficulties encountéreéhe simulation of interface for
compressible flows and some of the existing solutions to doritectly. We also discuss one multiphase
model.
Mots clés— compressible interface, compressible multiphase pnable

We are interested in the numerical simulation of compréssibws when the fluid is made of se-
veral components or phases. Throughout the paper, we eorssitlid with two components or phases
denoted byz; and,. Each phase has its own equation of state (EQ@S} pi(pi,&) wherep; is the
density ofZ; andg; is its specific internal energy. A priori, each phase hasits temperaturd;, and
& = &(Ti,pi) for example. Similarly, one can introduce the entropy andoefrse the EOS are thermo-
dynamically consistent.

Two types of mixture models can be considered and they diffehe form of the equation of state.

1. In the first one, we denote then thgs as components, the mixture obeys the Dalton’s law,
p1 + p2. This assumes thdh, = T, = T which means that th&; and X, are intimately mixed,
and there are enough collisions between atoms so that oreeéiae a single temperatufe This
occurs in combustion problems, hypersonic flows, etc.

2. In the second one, we denote fyé&s as phases which means that there is no intimate mixture
betweenX; andX,. This situation occurs in multiphase flow situations, sustalioys (seen as
compressible media), bubbly flows, etc. If one introdugeghe volume fraction og;, we have
01+ 0o = 1. The pressure is thegm= a1 p; + a2 po.

In this paper we only consider the second case even thougl anailarities exist between the two
cases. In the second situation, the equation of stafe afdX, may beverydifferent. The simplest case
occurs wherk; andZ, obeys the stiffened gas EOS,

_ Pigi + i Pieo
| w _ 1
which covers the case of standard §i=(1.4 andp; . = 0) or more complex gases such as water, copper,

etc, when one neglects the non spherical part of the Caudgsdensor. Much more complex case have
to be dealt with, such as the EOS of the Mie-Griineisen form,

pi = R(pi) +pili(e —&i(pi) 1)

with highly non linear functions foP, andg; for which it is essential thgp; belongs to the range of
validity of the EOS (which is in general much smaller th&n. . .).

In this paper, we focus on the Eulerian formulation of the feEguations, and assume also that the
two fluids have the same velocity. For the sake of simpligity,also assume one dimensional problems.
We focus on two different, but related, cases : pure interfaoblems, multiphase flows. In an interface
problem, the thermodynamic properties of the flow changg atihe interface. In other words, there is



a curvet — Xx(t) such that ifx < x(t) then the flow isx; and whenx > x(t) we have,. In multiphase
flows, any volume may contain bo¥y andX,. In pure interface problems we hasge= 0 or 1 at any
point ; in the multiphase case, we can hau@, > 0. Interface problems are in some way embedded
into the set of multiphase flow problems.

1 Pure interface problems

One simple model for this situation is

601 001 .
F + UW =0 (Za)
with
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+ - 07 =0
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E=e+ %puz, p = 01p1+ 02p2, €= 0161+ 0262. The EOS of the fluids are such thet= pi&i(pi, pi)
and we assume pressure equilibrium. This is an hyperbdiesy, see appendix A. This model has also
a fully conservative version since the first equation cargpéaced by

0(a1p) n 0(azpu)
ot 0x
The solution of the Riemann problem shows thadndY change only across the contact wave across
which the pressure and the velocity remain constant. Fromaetipal point of view, if one extends
directly standard solvers using the conservative fornara2c)-(2b), it is not possible to respect cor-
rectly the interface conditions. The scheme will conveméhe correct solution, but extremely slowly,
see [2, 10]. The problems comes from the fact that numeyisgkaking, the pressure and the velocity
will not stay constant at interface. Easy counter exam@ese found even for supersonic flows (where
most schemes reduce to an upwind scheme), see [1]. The femda@meason comes from the fact that
the numerical dissipation occuring for each component of-(2b) is not compatible in general with
the respect of interface condition. As shown in [1], this emeral drawback of conservative scheme.
A solution to remedy this problem is to accept to loose futhgervation. This has been first done by
Karni [11] then Abgrall [2] for a mixture model, and then byusal & Abgrall [17] for interface pro-
blem. In these references, the equation of state is ratimgresi(mixture of caloricaly perfect gaz for the
mixture models, or stiffened gas EOS for the interface ng)dsb that the solution amounts to find a
discretisation of the evolution equations of the thermaulyit parameters, these equations being ano-
ther interpretation of (2a). However, in the case of morénsijgated EOS, such as Mie Griineisen EOS,
we cannot apply this method. The explanation is very simplends;, the parameters in (1), depend on
pi which has already be computed from the approximation of.(Rbis may lead to inconsistencies. To
overcome this, one can use a “linearized” equivalent siiftegas EOS as in [18] and further references
by Saurel, or the ghost fluid method [3]. The original ghodtifmethod [9] has some thermodynamical
inconsistencies (for example, the entropy is extrapolam®dss an interface). In our opinion, a better
method is presented in Abgrall & Karni [3] in 1D, then in 2D [1and then improved in [8].
The idea is very simple. We explain it for first order schemmere information can be found in
[3, 8]. As usual, we consider a partition Bf in cells |Xj_1/2,Xj;1/2], | € Z. To make things simpler,
we assume that the cells have the same leAgftbut this assumption is not essential. We define-
wzxj“/z the cell center. We replace (2a) by a level set equation

o1, 01 _
ot ox

=0 (2¢)
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FIGURE 1 — Density, pressure, and velocity for the Riemann problefindd in table 1. 200 cells. From
[13].

with f0 defined as the signed distance between the initial intediacethe cell centex;. This PDE is
evolved, for example, by the upwind scheme. The system §in)Gonservation form, let us denote by
U = (a1p1, d2p2,puU, E)T the conserved variable. A purely conservative scheme wexdtve (2b) with
a conservative scheme
M 3

- AX (
The numerical flusF; 1/, is a function of the physical variablé® = (a1, p1,p2,u, p) and the equation
of stateEOSthat one uses in the celisandj + 1, Fj 1> := F(V\/j”,V\/j’lrl; EOS, EO§‘+1). If one does
so, there will be pressure oscillations because of the rigaietiffusion.

Over one time step, the GFMP algorithm proceeds as followete that the order of the operation is
essential to respect the structure of the contact :

UMt =U=A(Fir2—Fg2), A

1. Assumega,p1,P2,Uu,p, f) are given in each grid ce|l
2. Use the level-set functiohto determine the location of the material interface.

3. Compute the conserved quantities p1, a2p2, pu, E) in each cell, using the appropriate EOS as
determined by the sign df (*).

4. If fj- fj 1 > 0then we have the same EOS in both cells. Compute the initefteoe
Fi,1(Wj,Wj;1;EOS,EOS 1) using the EOS.

5. Otherwise compute two inter-cell fluxesat 1, F 1 (W;,W;1;EOS,EO0S) and
Fj+%(VVj7Wj+1; EOS,1, EOS{+1)

6. UpdatdJ" following (3) with the appropriate flux defined as follows ellt'§+% (W;,W1;EOQS,EQS)
to updatel ! andF;_ 1 (W, Wj;1;EO0S1,E0S 1) to updatel ™.

. Compute the new primitive variabléé = (a1, p1, P2, U, P).

0

. Compute the level-set functidn

We make the following observations.

— First, the algorithm is obviously not conservative, sitieeflux out of cellj is different from the
flux into cell j + 1. However, using the two-flux update as described abovetafaly the total
energy balance, through the internal energy contribufideiss and momentum are still perfectly
conserved, see [3].

— Second, each one of the two flux formulas "sees" amlgfluid, both in the datziann and in the
solutiont””. Contact surfaces are therefore correctly recognizedyegsdo in single fluids. In
particular, as shown in (*) it and p are uniform in the data, they will remain uniform in the
solution, provided the numerical flux for "pure" fluids do 3tis can be a tricky issue in some
circumstances, see appendix B

— Third, material interfaces, like any other discontinuérasits, are captured hence are numerically
diffused. However, this does not cause spurious pressuaikatisns to arise.

3



p(Kg/m®) p(Pa) u(m/s) y pe=(Pa)
Liquid 1000 18 0 44 616
Gas 50 10 0 1.4 0

TABLE 1 — Initial conditions for the Riemann problem representefigure 1.

An example of application of this method, taken from [13,$¥hown in figure 1 with 200 points.
The conditions are given in table 1. Two and three dimensiapglications, with some improvement
are presented in [8] for underflow explosions.

2 Multiphase flows

The system is that of a two compressible phase flaywand >, for which a;a, may be strictly
positive. In that case the system (2) cannot be used sinaeg dot take into account any interaction
between fluids. Imagine for example a shock wave moving indblyumedia. According to the acoustic
impedance of each phase, the bubble may expand or compemss the shock wave modifies the
local form of the volume fractiomi. These interactions are generally taken by introducingrifacial
pressure and inter-facial velocities. A good introductidthese modeling issues can be found in Drew
and Passman [7], Baer and Nunziato model [6]. We follow hieeeajpproaches taken in [18], then [4]
where a scheme is derived following [7], and mainly [15].Histlast reference, an asymptotic model is
derived. The inverse of the small parameter can be intexgras the inter-facial area between phases.
Hence the model tends to describe the situation of a two df@asevhere in any element of volume, the
two phases may coexist without being mixed. This leads testesy of PDESs, satisfied by the smooth

solution, where (2a) is replaced by

%w-l:mivu )
and these other variabléaps,02p2,pu,E) (with a, = 1— aj) follow (2b). We assume velocity and
pressure equilibrium. In this model, each fluid has its owmagign of state. In these relationsjs the

fluid velocity, e = €+ 1/2pu?, pe = a1p1€1(p, P1) + 02P2€2( P, P2), and
p182 — ppaj

2 2
pia; = P2
(o8] (00))

K= (5a)

whereg; is the speed of sound of phakg The system (4)-(2c) is hyperbolic. The eigenvaluesua(&
times) andu=+ a wherea is the Wallis speed of sound defined by

1 a1 (o8]

= 5b
pa? Pla% pza% (50)

The fields associated to+ a are genuinely non linear, the three other are linearly degee.
R. Saurel et al., in [20], have developed a series of shoelkioalk for the system (4)-(2c) that write,
if Y =pi01/p,
AY =0, Aeq + 5AT1 =0, A&y + 5AT2 =0,

with p= % andAf = f_ — fr. These jump relations enable to solve the Riemann problets,that
they are completed with the standard jump relation on thealinvave.

Computing the solutions of (4)-(2c) even in the case of diinoous solutions is a very complex
task because of (4). In a sequence of papers, Saurel andraral6, 19, 21] have devised several
methods for computing this, however the methods appeag goitnplex. The reason of the numerical
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a p(Pa) u(m/s) py(Kg/m3 p, (Kg/m?) || Fluid Poo y
Y, || 05954 21081 0 1185 3622 b 5310° 243
S, || 05954 10 0 1185 3622 5, || 141101 162

TABLE 2 — Conditions for the 5 equations model.

P2 velocity pressure

FIGURE 2 — Solution for the conditions of table 2.

difficulties comes from the fact that one has to accuratgtyagent the thermodynamic path that links
the left and right states of shocks. Up to our knowledge getlieeno finite difference/finite volume like
scheme that permit to compute the solution of this systerhowit any parameter tuning. The reason
lies in the numerical dissipation of the schemes which miantisermodynamic path that is not correct.
For conservative systems, the thermodynamics path is matataeither, but thanks to the Lax Wendroff
theorem, the solution will converge correctly if enoughrepy inequalities are satisfied.

To our best knowledge, the only way to possibly compute thieecb solutions is to use a method
that is dissipation free. There are two such methods : thel&®arnChoice Method and front tracking.
We apply the RCM method on that system without any modificafide initial conditions and the EOS
parameters are given on table 2. The mesh has 100 grid piet€FL number is set ta®and the final
time tot =2910°% s. The solution is displayed on Figure 2 and is in excellent@ment with the exact
solution, especially for the shock capturing properties.
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A Derivation of the eigenvalues of the interface model.

The simplest is to rewrite the system (2) in ternmoof= a1, Y1, p, U and p. we have introduced the
mass fractiorY :=Y; = a1p1/p. The system (2) is transformed into

oa 60(_ oY aY op ap au_ ou ou 1lop _ oe Ju Oe
ot TYax T %% MUk = %% TUax TPax T 06t+uax+p6x_0’6t+(e+p)6 U =0

(6)
Then we need to write the derivative @i term of these variables. Usirg= a6, + 026, Y1+ Yo =1
anday + a, = 1, and differencing, we get :

de= (a1 Z%Jrazggz)dw(Ylg%”zggz)d%(plggl nggz) (plggl ng%erel &)da
‘= Edp+Cdp -+ BdY+ Ada
Using this and (6), we can ehmma%l and oe and we get
%—f+K3”+ gf{’ 0

with K := ph*TC, whereh = (e+ p)/p is the specific enthalpy. The eigenvalues of the Jacobianxmat
of (7) areA = u 3 times u=c with
> h—E
cc=—.
C
We can rewrite this in a maybe more familiar way. Introducing 1/E, x = —C/E, v = A/E and
pn=A/E, we haved p= kde+ xdp + vda + pdY and the square of the speed of sound is

c? =kh+x.

The parametek is identical toy— 1 for a perfect gas. We note that for a thermally consistend,flu
dg
op —
admits a complete set of eigenvectors, nhamely

— Associated td = u:ry = (1,0,0,0,0)", r, = (0,1,0,0,0)T, r3 = (0,0,1,0,0)"

— Associated td = u=+c:ry = (0,0,p,c,pc?)T, rs = (0,0,p, —c,pc?)T
Hence the system is hyperbolic. Any vectbr= (A1, Az, A3,A4,As)T can be decomposed on the eigen-
basisU = 5;air;,

>0 andg— > 0, so thatk andx are both positive. We can easily show that the Jacobian xnatri

Aq 1, E D 1, E D

ar=A02=B,a3=Az— 204 = (pc2+c),0(5 (pcz—z)'

This shows that in fans;; andY; remain constant and the standard relations

dp _ > dp
d_p =C, au_ +pC.
The first relation is nothing more thals= 0.
In discontinuities, we consider the model (2c¢)-(2b). Henwee get the jump relations, setting=
u— o wherea is the velocity of the discontinuityH{ = h+v?/2), [piajv] = 0, [pv? + p] = 0, [pvH] = 0.
The discussion is very standard.



— Contact : Ifv,. = vg =0, then[p] = 0 and the other variables are arbitrary. In particifae;] is
arbitrary as well a$Yi], so that{a;] is also arbitrary.
— Shock : if[v] # 0. We set for any variable, W = (w_+wg)/2. Then the mass relations give, since
pidj = Ylpi -
[piciv] = [pYiv] = pV[Yi] + Yi[pv] = pV[¥i] = O.

Sincepv = pLvi = prVr # 0, we havdY;] = 0. The relation (2c) givepaiVv] = pv[a;] +Ti[pv] =
pv]ai] = 0. Sincepv # 0, we get[a;] = 0. This shows that we have the standard shock relations
and conservation of anda;.

B Respect contacts in pure fluids.

To illustrate the problem, we consider Godunov’s schemeflaidb with a caloricaly perfect EOS,
with constanty. One of the properties of the Godunov scheme (which is sHayékde Roe scheme too)
is the following. Assume that! = uandp! = p, thenu{“rl =uand pin+1 = p. This means that a contact
stays numerically a contact. Let us consider the CelWe haveu! ; = u! = u' ; andp ; = p' =
pl,1-We assume: > O for the sake of simplicity. At the interfaces, ;/,, the solution of the Riemann
problems are just contact discontinuities. Hence the nigaeftux F_1/, is Fi_1/» = (p 1U, pM u? +
p,U(Ei_1+ p))T. From this we get

p{;“ . p! u(pP —p 1)
pit UMt | = | pMul | =N [ w?(pP—p! ) | -
EinJrl E" u(g"-g",)

From this we see thaf"™ = u" and since

1 1 1
== (P o) - (g 90 + 00l @

By combining (8) with the total energy evolution, we see tﬂ};ﬁl =p.

Remark B.1. This proof uses the structure of the equation of state. Ofseuit is possible to define
the solution of the Riemann problem for more general equoatiof state, see for example [14] for a
very interesting discussion. The definition of the Godurtreme does not make use of the structure of
the EOS, but is a general technique. It can easily be showraththe previous properties go through,
except the one on the contact discontinuity. The fundarhesatson is the structure of the EOS, see [16].
If in general, we get {EJ“ = u, because one only uses the fact that the pressure is unitberenergy
evolution equation becomes (usirﬁj*h: u)

e(pL, ) = e(pl, ) - Au(e(pr, o) — (ol 1. pr_1>) ,

and we see that there is no reason, in general, tf{l‘éllp: p...Thisis a big problem since the Godunov
scheme is in a way the best solver because the closer fromuth&iemann problem.



