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Résumé— This short note describes the main difficulties encountered in the simulation of interface for
compressible flows and some of the existing solutions to do itcorrectly. We also discuss one multiphase
model.
Mots clés— compressible interface, compressible multiphase problems

We are interested in the numerical simulation of compressible flows when the fluid is made of se-
veral components or phases. Throughout the paper, we consider a fluid with two components or phases
denoted byΣ1 andΣ2. Each phase has its own equation of state (EOS),pi = pi(ρi ,εi) whereρi is the
density ofΣi andεi is its specific internal energy. A priori, each phase has its own temperatureTi, and
εi = εi(Ti ,ρi) for example. Similarly, one can introduce the entropy and ofcourse the EOS are thermo-
dynamically consistent.

Two types of mixture models can be considered and they differby the form of the equation of state.

1. In the first one, we denote then theΣi ’s as components, the mixture obeys the Dalton’s law,p=
p1 + p2. This assumes thatT1 = T2 = T which means that theΣ1 andΣ2 are intimately mixed,
and there are enough collisions between atoms so that one candefine a single temperatureT. This
occurs in combustion problems, hypersonic flows, etc.

2. In the second one, we denote theΣi ’s as phases which means that there is no intimate mixture
betweenΣ1 andΣ2. This situation occurs in multiphase flow situations, such as alloys (seen as
compressible media), bubbly flows, etc. If one introducesα i the volume fraction ofΣi , we have
α1+α2 = 1. The pressure is thenp= α1p1+α2p2.

In this paper we only consider the second case even though many similarities exist between the two
cases. In the second situation, the equation of state ofΣ1 andΣ2 may beverydifferent. The simplest case
occurs whenΣ1 andΣ2 obeys the stiffened gas EOS,

pi =
ρiεi +γi pi,∞

γi −1

which covers the case of standard air (γ= 1.4 andpi,∞ = 0) or more complex gases such as water, copper,
etc, when one neglects the non spherical part of the Cauchy stress tensor. Much more complex case have
to be dealt with, such as the EOS of the Mie-Grüneisen form,

pi = Pi(ρi)+ρiΓ i(εi − εi(ρi) (1)

with highly non linear functions forPi andεi for which it is essential thatρi belongs to the range of
validity of the EOS (which is in general much smaller thanR

+. . . ).
In this paper, we focus on the Eulerian formulation of the flowequations, and assume also that the

two fluids have the same velocity. For the sake of simplicity,we also assume one dimensional problems.
We focus on two different, but related, cases : pure interface problems, multiphase flows. In an interface
problem, the thermodynamic properties of the flow change only at the interface. In other words, there is

1



a curvet 7→ x(t) such that ifx< x(t) then the flow isΣ1 and whenx> x(t) we haveΣ2. In multiphase
flows, any volume may contain bothΣ1 andΣ2. In pure interface problems we haveα i = 0 or 1 at any
point ; in the multiphase case, we can haveα1α2 > 0. Interface problems are in some way embedded
into the set of multiphase flow problems.

1 Pure interface problems

One simple model for this situation is

∂α1

∂t
+u

∂α1

∂x
= 0 (2a)

with

∂(α1ρ1)

∂t
+

∂(α1ρ1u)
∂x

= 0,
∂(α2ρ2)

∂t
+

∂(α2ρ2u)
∂x

= 0

∂(ρu)
∂t

+
∂(ρu2+ p)

∂x
= 0,

∂E
∂t

+
∂[u(E+ p)]

∂x
= 0,

(2b)

E = e+ 1
2ρu2, ρ = α1ρ1+α2ρ2, e= α1e1+α2e2. The EOS of the fluids are such thatei = ρiεi(ρi , pi)

and we assume pressure equilibrium. This is an hyperbolic system, see appendix A. This model has also
a fully conservative version since the first equation can be replaced by

∂(α1ρ)
∂t

+
∂(α1ρu)

∂x
= 0 (2c)

The solution of the Riemann problem shows thatα andY change only across the contact wave across
which the pressure and the velocity remain constant. From a practical point of view, if one extends
directly standard solvers using the conservative formulation (2c)-(2b), it is not possible to respect cor-
rectly the interface conditions. The scheme will converge to the correct solution, but extremely slowly,
see [2, 10]. The problems comes from the fact that numerically speaking, the pressure and the velocity
will not stay constant at interface. Easy counter examples can be found even for supersonic flows (where
most schemes reduce to an upwind scheme), see [1]. The fundamental reason comes from the fact that
the numerical dissipation occuring for each component of (2c)-(2b) is not compatible in general with
the respect of interface condition. As shown in [1], this is ageneral drawback of conservative scheme.
A solution to remedy this problem is to accept to loose full conservation. This has been first done by
Karni [11] then Abgrall [2] for a mixture model, and then by Saurel & Abgrall [17] for interface pro-
blem. In these references, the equation of state is rather simple (mixture of caloricaly perfect gaz for the
mixture models, or stiffened gas EOS for the interface models), so that the solution amounts to find a
discretisation of the evolution equations of the thermodynamic parameters, these equations being ano-
ther interpretation of (2a). However, in the case of more sophisticated EOS, such as Mie Grüneisen EOS,
we cannot apply this method. The explanation is very simple :Pi andεi, the parameters in (1), depend on
ρi which has already be computed from the approximation of (2b). This may lead to inconsistencies. To
overcome this, one can use a “linearized” equivalent stiffened gas EOS as in [18] and further references
by Saurel, or the ghost fluid method [3]. The original ghost fluid method [9] has some thermodynamical
inconsistencies (for example, the entropy is extrapolatedacross an interface). In our opinion, a better
method is presented in Abgrall & Karni [3] in 1D, then in 2D [12], and then improved in [8].

The idea is very simple. We explain it for first order schemes,more information can be found in
[3, 8]. As usual, we consider a partition ofR in cells ]x j−1/2,x j+1/2], j ∈ Z. To make things simpler,
we assume that the cells have the same length∆x, but this assumption is not essential. We definex j =
xj−1/2+xj+1/2

2 the cell center. We replace (2a) by a level set equation

∂ f
∂t

+u
∂ f
∂x

= 0
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pressure velocity density

FIGURE 1 – Density, pressure, and velocity for the Riemann problem defined in table 1. 200 cells. From
[13].

with f 0
i defined as the signed distance between the initial interfaceand the cell centerxi .This PDE is

evolved, for example, by the upwind scheme. The system (2b) is in conservation form, let us denote by
U = (α1ρ1,α2ρ2,ρu,E)T the conserved variable. A purely conservative scheme wouldevolve (2b) with
a conservative scheme

Un+1
j =Un

j −λ
(

Fj+1/2−Fj−1/2
)

, λ =
∆t
∆x

. (3)

The numerical fluxFj+1/2 is a function of the physical variablesW = (α1,ρ1,ρ2,u, p) and the equation
of stateEOSthat one uses in the cellsj and j +1, Fj+1/2 := F(Wn

j ,W
n
j+1;EOSn

j ,EOSn
j+1). If one does

so, there will be pressure oscillations because of the numerical diffusion.
Over one time step, the GFMP algorithm proceeds as follows. Note that the order of the operation is

essential to respect the structure of the contact :

1. Assume(α1,ρ1,ρ2,u, p, f ) are given in each grid cellj.

2. Use the level-set functionf to determine the location of the material interface.

3. Compute the conserved quantities(α1ρ1,α2ρ2,ρu,E) in each cell, using the appropriate EOS as
determined by the sign off (*).

4. If f j · f j+1 > 0 then we have the same EOS in both cells. Compute the inter-cell flux
Fj+ 1

2
(Wj ,Wj+1;EOSj ,EOSj+1) using the EOS.

5. Otherwise compute two inter-cell fluxes atx j+ 1
2
, Fj+ 1

2
(Wj ,Wj+1;EOSj ,EOSj) and

Fj+ 1
2
(Wj ,Wj+1;EOSj+1,EOSj+1)

6. UpdateUn following (3) with the appropriate flux defined as follows : useFj+ 1
2
(Wj ,Wj+1;EOSj ,EOSj)

to updateUn
j andFj+ 1

2
(Wj ,Wj+1;EOSj+1,EOSj+1) to updateUn+1

j .

7. Compute the new primitive variablesW = (α1,ρ1,ρ2,u, p).

8. Compute the level-set functionf .

We make the following observations.
– First, the algorithm is obviously not conservative, sincethe flux out of cell j is different from the

flux into cell j +1. However, using the two-flux update as described above affects only the total
energy balance, through the internal energy contribution.Mass and momentum are still perfectly
conserved, see [3].

– Second, each one of the two flux formulas "sees" onlyonefluid, both in the dataUn
j and in the

solutionUn+1
j . Contact surfaces are therefore correctly recognized, as they do in single fluids. In

particular, as shown in (*) ifu and p are uniform in the data, they will remain uniform in the
solution, provided the numerical flux for "pure" fluids do so.This can be a tricky issue in some
circumstances, see appendix B

– Third, material interfaces, like any other discontinuousfronts, are captured hence are numerically
diffused. However, this does not cause spurious pressure oscillations to arise.
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ρ (Kg/m3) p (Pa) u (m/s) γ p∞ (Pa)
Liquid 1000 109 0 4.4 6 108

Gas 50 105 0 1.4 0

TABLE 1 – Initial conditions for the Riemann problem represented in figure 1.

An example of application of this method, taken from [13, 5] is shown in figure 1 with 200 points.
The conditions are given in table 1. Two and three dimensional applications, with some improvement
are presented in [8] for underflow explosions.

2 Multiphase flows

The system is that of a two compressible phase flowsΣ1 andΣ2 for which α1α2 may be strictly
positive. In that case the system (2) cannot be used since it does not take into account any interaction
between fluids. Imagine for example a shock wave moving in a bubbly media. According to the acoustic
impedance of each phase, the bubble may expand or compress, hence the shock wave modifies the
local form of the volume fractionα. These interactions are generally taken by introducing inter-facial
pressure and inter-facial velocities. A good introductionof these modeling issues can be found in Drew
and Passman [7], Baer and Nunziato model [6]. We follow here the approaches taken in [18], then [4]
where a scheme is derived following [7], and mainly [15]. In this last reference, an asymptotic model is
derived. The inverse of the small parameter can be interpreted as the inter-facial area between phases.
Hence the model tends to describe the situation of a two phaseflow where in any element of volume, the
two phases may coexist without being mixed. This leads to a system of PDEs, satisfied by the smooth
solution, where (2a) is replaced by

∂α1

∂t
+u· ∇α 1 = Kdiv u (4)

and these other variables(α1ρ1,α2ρ2,ρu,E) (with α2 = 1−α1) follow (2b). We assume velocity and
pressure equilibrium. In this model, each fluid has its own equation of state. In these relations,u is the
fluid velocity, e= ε+1/2ρu2, ρε= α1ρ1ε1(p,ρ1)+α2ρ2ε2(p,ρ2), and

K =
ρ1a2

1−ρ2a2
2

ρ1a2
1

α1
+

ρ2a2
2

α2

, (5a)

whereai is the speed of sound of phaseΣi. The system (4)-(2c) is hyperbolic. The eigenvalues areu (3
times) andu±a wherea is the Wallis speed of sound defined by

1
ρa2 =

α1

ρ1a2
1

+
α2

ρ2a2
2

, (5b)

The fields associated tou±a are genuinely non linear, the three other are linearly degenerate.
R. Saurel et al., in [20], have developed a series of shock relations for the system (4)-(2c) that write,

if Y = ρ1α1/ρ,
∆Y = 0, ∆ε1+ p̄∆τ1 = 0, ∆ε2+ p̄∆τ2 = 0,

with p̄= pL+pR
2 and∆ f = fL − fR. These jump relations enable to solve the Riemann problem, note that

they are completed with the standard jump relation on the linear wave.
Computing the solutions of (4)-(2c) even in the case of discontinuous solutions is a very complex

task because of (4). In a sequence of papers, Saurel and co-authors [16, 19, 21] have devised several
methods for computing this, however the methods appear quite complex. The reason of the numerical

4



α p (Pa) u (m/s) ρ1 (Kg/m3) ρ2 (Kg/m3) Fluid p∞ γ
Σ1 0.5954 21011 0 1185 3622 Σ1 5.3109 2.43
Σ2 0.5954 105 0 1185 3622 Σ2 1.41 1011 1.62

TABLE 2 – Conditions for the 5 equations model.
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FIGURE 2 – Solution for the conditions of table 2.

difficulties comes from the fact that one has to accurately represent the thermodynamic path that links
the left and right states of shocks. Up to our knowledge, there isno finite difference/finite volume like
scheme that permit to compute the solution of this system without any parameter tuning. The reason
lies in the numerical dissipation of the schemes which mimica thermodynamic path that is not correct.
For conservative systems, the thermodynamics path is not correct either, but thanks to the Lax Wendroff
theorem, the solution will converge correctly if enough entropy inequalities are satisfied.

To our best knowledge, the only way to possibly compute the correct solutions is to use a method
that is dissipation free. There are two such methods : the Random Choice Method and front tracking.
We apply the RCM method on that system without any modification. The initial conditions and the EOS
parameters are given on table 2. The mesh has 100 grid points,the CFL number is set to 0.5 and the final
time tot = 2910−6 s. The solution is displayed on Figure 2 and is in excellent agreement with the exact
solution, especially for the shock capturing properties.
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A Derivation of the eigenvalues of the interface model.

The simplest is to rewrite the system (2) in term ofα := α1, Y1, ρ, u andp. we have introduced the
mass fractionY :=Y1 = α1ρ1/ρ. The system (2) is transformed into

∂α
∂t

+u
∂α
∂x

= 0,
∂Y
∂t

+u
∂Y
∂x

= 0.
∂ρ
∂t

+u
∂ρ
∂x

+ρ
∂u
∂x

= 0,
∂u
∂t

+u
∂u
∂x

+
1
ρ

∂p
∂x

= 0,
∂e
∂t

+(e+ p)
∂u
∂x

+u
∂e
∂x

= 0

(6)
Then we need to write the derivative ofe in term of these variables. Usinge= α1e1+α2e2, Y1+Y2 = 1
andα1+α2 = 1, and differencing, we get :

de=
(

α1
∂e1

∂p1
+α2

∂e2

∂p2

)

dp+
(

Y1
∂e1

∂ρ1
+Y2

∂e2

∂ρ2

)

dρ+
(

ρ1
∂e1

∂ρ1
−ρ2

∂e2

∂ρ2

)

dY+
(

ρ1
∂e1

∂ρ1
−ρ2

∂e2

∂ρ2
+e1−e2

)

dα

:= Edp+Cdρ+BdY+Adα

Using this and (6), we can eliminate
∂e
∂t

and
∂e
∂x

, and we get

∂α
∂t

+u
∂α
∂x

= 0,
∂Y
∂t

+u
∂Y
∂x

= 0

∂ρ
∂t

+u
∂ρ
∂x

+ρ
∂u
∂x

= 0,
∂u
∂t

+u
∂u
∂x

+
1
ρ

∂p
∂x

= 0

∂p
∂t

+K
∂u
∂x

+u
∂p
∂x

= 0

(7)

with K := ρh−C
E , whereh= (e+ p)/ρ is the specific enthalpy. The eigenvalues of the Jacobian matrix

of (7) areλ = u 3 times ,u±c with

c2 =
h−E

C
.

We can rewrite this in a maybe more familiar way. Introducingκ = 1/E, χ = −C/E, ν = A/E and
µ= A/E, we havedp= κde+χdρ+νdα+µdYand the square of the speed of sound is

c2 = κh+χ.

The parameterκ is identical toγ− 1 for a perfect gas. We note that for a thermally consistent fluid,
∂ei

∂pi
≥ 0 and

∂ei

∂ρi
≥ 0, so thatκ andχ are both positive. We can easily show that the Jacobian matrix

admits a complete set of eigenvectors, namely
– Associated toλ = u : r1 = (1,0,0,0,0)T , r2 = (0,1,0,0,0)T , r3 = (0,0,1,0,0)T

– Associated toλ = u±c : r4 = (0,0,ρ,c,ρc2)T , r5 = (0,0,ρ,−c,ρc2)T

Hence the system is hyperbolic. Any vectorU = (A1,A2,A3,A4,A5)
T can be decomposed on the eigen-

basis,U = ∑i α ir i ,

α1 = A,α2 = B,α3 = A3−
A4

c2 ,α4 =
1
2

( E
ρc2 +

D
c

)

,α5 =
1
2

( E
ρc2 −

D
c

)

.

This shows that in fans,α i andYi remain constant and the standard relations

dp
dρ

= c2,
dp
du

=∓ρc.

The first relation is nothing more thands= 0.
In discontinuities, we consider the model (2c)-(2b). Hence, we get the jump relations, settingv =

u−σ whereσ is the velocity of the discontinuity (H = h+v2/2), [ρiα iv] = 0, [ρv2+ p] = 0, [ρvH] = 0.
The discussion is very standard.
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– Contact : IfvL = vR = 0, then[p] = 0 and the other variables are arbitrary. In particular[ρiα i ] is
arbitrary as well as[Yi ], so that[α i ] is also arbitrary.

– Shock : if[v] 6= 0. We set for any variablew, w= (wL+wR)/2. Then the mass relations give, since
ρiα i =Yiρ,

[ρiα iv] = [ρYiv] = ρv[Yi ]+Yi[ρv] = ρv[Yi ] = 0.

Sinceρv= ρLvl = ρRvR 6= 0, we have[Yi ] = 0. The relation (2c) gives[ρα1v] = ρv[α i ]+α i [ρv] =
ρv[α i ] = 0. Sinceρv 6= 0, we get[α i ] = 0. This shows that we have the standard shock relations
and conservation ofYi andα i .

B Respect contacts in pure fluids.

To illustrate the problem, we consider Godunov’s scheme andfluids with a caloricaly perfect EOS,
with constantγ. One of the properties of the Godunov scheme (which is sharedby the Roe scheme too)
is the following. Assume thatun

i = u andpn
i = p, thenun+1

i = u andpn+1
i = p. This means that a contact

stays numerically a contact. Let us consider the cellCi . We haveun
i−1 = un

i = un
i+1 and pn

i−1 = pn
i =

pn
i+1.We assumeu> 0 for the sake of simplicity. At the interfacesxi±1/2, the solution of the Riemann

problems are just contact discontinuities. Hence the numerical flux Fi−1/2 is Fi−1/2 = (ρn
i−1u,ρn

i−1u2+
p,u(Ei−1+ p))T . From this we get





ρn+1
i

ρn+1
i un+1

i
En+1

i



=





ρn
i

ρn
i un

i
En

i



−λ





u(ρn
i −ρn

i−1)
u2(ρn

i −ρn
i−1)

u(En
i −En

i−1)



 .

From this we see thatun+1
i = un

i and since

En
i −En

i−1 =

(

p
γ−1

+
1
2

ρn
i u2

)

−

(

p
γ−1

+
1
2

ρn
i−1u2

)

+
1
2

u2(ρn
i −ρn

i−1) (8)

By combining (8) with the total energy evolution, we see thatpn+1
i = p.

Remark B.1. This proof uses the structure of the equation of state. Of course, it is possible to define
the solution of the Riemann problem for more general equations of state, see for example [14] for a
very interesting discussion. The definition of the Godunov scheme does not make use of the structure of
the EOS, but is a general technique. It can easily be shown that all the previous properties go through,
except the one on the contact discontinuity. The fundamental reason is the structure of the EOS, see [16].
If in general, we get un+1

i = u, because one only uses the fact that the pressure is uniform, the energy
evolution equation becomes (using un+1

i = u)

e(ρn+1
i , pn+1

i ) = e(ρn
i , p

n
i )−λu

(

e(ρn
i , p

n
i )−e(ρn

i−1, p
n
i−1)

)

,

and we see that there is no reason, in general, that pn+1
i = p. . . This is a big problem since the Godunov

scheme is in a way the best solver because the closer from the true Riemann problem.
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