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Abstract

The air density on earth decays as a function of altitude z approximately according to an
exp(−w z/θ)-law, where w denotes the weight of a nitrogen molecule and θ = kBT where kB
is a constant and T the thermodynamic temperature. To derive this law one usually invokes
the Boltzmann factor, itself derived from statistical considerations. We show that this
(barometric) law may be derived solely from the democritian concept of corpuscles moving
in vacuum. We employ a principle of simplicity, namely that this law is independent of the
law of corpuscle motion. This view-point puts aside restrictive assumptions that are source
of confusion. Similar observations apply to the ideal-gas law. In the absence of gravity,
when a cylinder terminated by a piston, containing a single corpuscle and with height h has
temperature θ, the average force that the corpuscle exerts on the piston is: 〈F 〉 = θ/h. This
law is valid at any temperature, except at very low temperatures when quantum effects are
significant and at very high temperatures because the corpuscle may then split into smaller
parts. It is usually derived under the assumption that the temperature is proportional to the
corpuscle kinetic energy, or else, from a form of the quantum theory. In contradistinction,
we show that it follows solely from the postulate this it is independent of the law of corpuscle
motion. On the physical side we employ only the concept of potential energy. A consistent
picture is offered leading to the barometric law when w h ≫ θ, and to the usual ideal-gas
law when w h ≪ θ. The mathematics is elementary. The present paper should accordingly
facilitate the understanding of the physical meaning of the barometric and ideal-gas laws.
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1 Introduction

The purpose of this paper is to show that the barometric law and the ideal-gas law may be
obtained on the sole basis of the democritian model according to which nature consists of cor-
puscles moving in a vacuum, plus a principle of simplicity: namely that these fundamental laws
are independent of the law of corpuscle motion (non-relativistic, relativistic, or otherwise: see ap-
pendix D). The temperature θ enters into the ideal-gas law and the expression of the gas internal
energy solely for dimensional reasons. We show from the general expressions of the gas internal
energy and of the force (or pressure) that the heat delivered by the gas is θ dS, an expression of
the entropy S being given. This result enables us to prove that the formally-introduced tempera-
ture θ coincides, to within some arbitrary constant factor, with the thermodynamic temperature
T . Indeed, we recover for ideal gases the general Carnot result asserting that the maximum
efficiency of thermal engines is: 1 − θl/θh, where θl denotes the cold bath temperature and θh
the hot bath temperature. The reader may feel that our statement that the above invariance
principle implies the barometric and ideal-gas laws, without anything else, is quite surprising.
Yet, we hope that we can convince him/her that this is indeed the case.

Let us emphasize that our goal is to derive the barometric and ideal-gas laws from first
principles, only conservation of potential energy being assumed. We do not use the concept of
kinetic energy, nor do we postulate any law of corpuscle motion. Accordingly, a given potential
φ(z) = w z for a weight w does not imply any specific law of motion z(t).

Concepts relating to heat since the antiquity: Democritus, who lived about 300 years
B.C., described nature as a collection of corpuscles that cannot be split, moving in vacuum.
These corpuscles differ from one-another in form, position and weight. In the case of a gas,
interaction between corpuscles may often be neglected, but they collide with the container’s
walls. Platon [1] ascribed heat to corpuscular motion: “Heat and fire are generated by impact
and friction, but that’s motion”. Much later, Francis Bacon (1561-1626) wrote: “The very nature
of heat is motion, and nothing else”. This view-point is more explicit in Daniel Bernoulli writing
(1738): “Gas atoms are moving randomly, and pressure is nothing else but the impact of the
atoms on their container walls”. Lastly, Carnot introduced energy considerations circa 1830:
“Heat is nothing but motive power, or rather another form of motion. When motive power is
destroyed, heat is generated precisely in proportion of the motive power destroyed. Likewise,
when heat is destroyed, motive power is generated ”. We will employ the law of conservation of
potential energy, well known since the antiquity from cords and pulleys experiments.

Experimental results relating to air: The first accurate experiments relating to gases are
tied up to the invention of the thermometer by Galileo and the barometer by his assistant
Torricelli. Then, to Pascal experiments on atmospheric pressure. Pascal ascribed the diminution
of the height of a mercury column as a function of altitude to the reduction of the weight of the
air above the barometer. It was later shown that the pressure decays exponentially.

Let us recall the crucial experiments performed in the seventeenth century concerning the
properties of air. Air, consisting mostly of di-atomic nitrogen, may be viewed as an ideal gas.
When a tight box contains some amount of air, the volume-pressure product is a constant at room
temperature, a law enunciated for the first time by Boyle in 1660: “Pressure and expansion are in
reciprocal proportions”. Boyle employed a J-shaped glass tube, with the sealed small side full of
air, and the other full of mercury. The left-side height was a measure of volume and the right-side
height a measure of pressure. Subsequent experiments have shown that this law is applicable
at any constant temperature, for example at various liquid boiling temperatures, within some
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experimental range. We call “generalized Boyle law” the expression: V(P, θ) = f(θ)/P, where P

represents pressure, V volume, and f(θ) some temperature measure.
From an experimental standpoint we could define temperature as the pressure relating to some

given amount of matter contained within some fixed volume. As the temperature gets higher
the pressure increases. This pressure may be used to define θ. Of course, different temperature
scales would be obtained for different substances, but such thermometers may be calibrated one
against another because temperatures tend to equalize in equilibrium. Rarefied helium may be
described with great accuracy as a collection of independent corpuscles, except perhaps at very
low temperatures when quantum effects become significant and at very high temperatures when
the helium atoms may get ionized. The theory presented in this paper shows on the basis of the
corpuscular model that θ, initially introduced formally from dimensional considerations, coincides
with the thermodynamic temperature. This is the temperature that enters in the expression of
thermal-engine efficiencies.

Gay-Lussac has shown in 1802 that, at atmospheric pressure, the volume increment of various
gases from freezing to boiling water temperatures is 37.5% [2]. Appropriate gas thermometers
enabled experimentalists to establish the proportionality of volume and temperature at constant
pressure. This measurement was subsequently made at various pressures, for exemple at various
altitudes. The generalized Gay-Lussac law may be enunciated as follows: The two-variable
function V(P, θ) = θ g(P), where g(P) is some unknown function of pressure. Comparison of
the generalized Boyle and Gay-Lussac laws shows that: PV = θ h(N), where h(N) defines the
amount of gas considered.

Let us emphasize that the empirical Gay-Lussac law makes sense only if one specifies which
thermometer is employed. One may employ a gas thermometer from a selected gas such as
helium in two ways. One method consists of defining the temperature as the cylinder height (or
volume) at a fixed pressure, for example at the standard atmospheric pressure. In the following,
we assume that a second method is being employed instead: the temperature is defined as the
force that must be exerted on the piston to maintain the height at a fixed value, for example
one meter, as said above. If the Gay-Lussac experiment were applied to a gas identical to the
gas employed in the thermometer (helium in our example) the fact that pressure is proportional
to temperature would be obvious. The importance of the Gay-Lussac experiment is that the
proportionality law is found to be valid for any gas.

However, it was subsequently discovered that the Gay-Lussac proportionality law is reason-
ably accurate only at very small pressures. The theoretical reason that explains this observation
is that, at low pressures, the gas molecules of the tested gas and those of the thermometer gas
may both be considered as independent non-interacting corpuscles (see below).

In 1803, Dalton, on the basis of his studies of chemical compounds and gaseous mixtures
suggested that matter consists of atoms of different masses that combine in simple ratios. He
discovered the partial-pressure law according to which the total pressure exerted by a gas mixture
is equal to the sum of the pressure that each one of the gases would exert if it occupied the full
volume alone. Finally, in 1811, Avogadro concluded that equal volumes of gases at the same
temperature and pressure contain the same number of molecules (or corpuscles). This entails that
PV/θ is proportional to N , now interpreted as the number of corpuscles. One calls “Avogadro
number”, NA, the number of corpuscles contained in 0.0224 cubic meters of gas in standard
conditions. In 1865, Loschmidt established from a measurement of the air viscosity that NA is
on the order of 1023. Many other methods have been employed since then for that purpose, such
as Brownian motion.

On empirical grounds, the ideal-gas law may therefore be written as:

PV = N θ (1)
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where V denotes the volume, P the pressure, N the number of corpuscules, and θ ≡ kBT the
temperature.

The ideal-gas law has been partly explained on the basis of a kinetic theory by Waterston [3]
in 1843, the kinetic theory being based itself on non-relativistic mechanics. The next important
theoretical discovery is due to Boltzmann, see Section 2. In subsequent sections we recall the
basic assumptions on which rest the usual proofs of the barometric and ideal-gas laws. Then we
present our model.

2 Usual kinetic and statistical theories

A recent reference [4] lists the assumptions on which the gas kinetic theory rests. Some of them
express the democritian hypothesis and are indeed essential. The usefulness of the others, listed
below, however, may be questioned:

1. Gases consist in corpuscles having non-zero mass.

2. The corpuscles are quickly moving.

3. They are perfectly spherical and elastic.

4. The average kinetic energy depends only on the system temperature.

5. Relativistic effects are negligible.

6. Motion laws are time reversible.

7. The number of molecules is so large that a statistical treatment is appropriate.

Comment: As we shall show, none of the above assumptions are needed. It suffices that the
(perhaps unique) corpuscle be in thermal contact with the ground.

We sketch in the present section the most usual derivations of the barometric and ideal-gas
laws to remind the readers of the underlying assumptions. Note that the barometric law may
be obtained from the ideal-gas law, and conversely, if one postulates that weightless plates may
be introduced or removed at will in the gas at various altitudes. But this postulate is at best
plausible. In an interesting paper, Norton [5] derived the ideal-gas law from the barometric
equation. However, the latter involves the Boltzmann factor, which requires other physical
considerations (see below), while in the present paper this factor comes in naturally, that is, for
purely mathematical reasons.

The barometric law is usually viewed as a straightforward consequence of the Boltzmann
factor: the probability that a corpuscle has energy E is proportional to: exp(−E/θ) where
θ = kBT and the energy E = w z, where w denotes the corpuscle weight (e.g., the weight of a
di-atomic nitrogen molecule) and z the altitude. Hence the exponential decay.

The derivation of the Boltzmann factor itself is based on a quantization of the energy1, and
the postulated equi-probability of the micro-states. Let the discrete (non-degenerate) energy
levels be denoted by ε1, ε2, .... If distinguishable corpuscles are distributed among the energy
levels, with n1 corpuscles in level 1, n2 corpuscles in level 2, and so on, the number of ways of
doing that is inversely proportional to: n1!n2!.... It is postulated that this number reaches its
maximum value at equilibrium under the constraint that n1 + n2 + ... = N , the total number of

1This concept was introduced by Boltzmann who, however, considered only the limit in which the difference
between successive energies is arbitrarily small.
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corpuscles, and n1ε1 + n2ε2 + ... = E, the total energy. In the limit of large N values, one finds
that: ni ∝ exp(−εi/θ), for some θ-value that depends on N and E. Even though physicists are
now-a-day very familiar with that procedure, it is not so easy to explain it to students. Besides,
it rests on a number of assumptions.

The traditional derivation of the ideal-gas law, on the other hand, is based on non-relativistic
mechanics [6]. For a one-dimensional model, one considers a corpuscle moving back and forth
between two plates separated by a distance h, one of them playing the role of a piston. If v
denotes the speed of a corpuscle, an impact on a plate delivers to it an impulse 2mv where
m denotes the corpuscle mass, and this occurs every 2h/v time units. It is concluded that the
force F exerted on the piston is: 2mv/(2h/v) = mv2/h, that is: F h = 2K, where K = 1

2mv2

denotes the kinetic energy. It is recognised that there may be a distribution of kinetic energies [6].
Postulating that the temperature θ is proportional to the average kinetic energy one obtains for
the average force the ideal-gas law: 〈F 〉h ∝ θ. Alternatively, one may quantize the corpuscle
wave-function and employ the Bolzmann factor [7].

The procedure described above has been generalized to relativistic motion (kBT ∼ mc2). The
same ideal-gas law is valid at any temperature (within the corpuscular model). Our thesis is
that the ideal-gas law has simply nothing to do with the law of corpuscle motion, and that it
is therefore not surprising that it holds for both the Galileo and Einstein laws of motion. The
assumption that temperature is proportional to the average kinetic energy cannot possibly be
derived from first principles since it is only an approximation acceptable when kBT ≪ mc2.
These are some of the reasons why we feel that the traditional proofs are unsatisfactory. An
alternative is offered below.

3 The barometric law

We are considering an unit-area cylinder with vertical axis in uniform gravity, resting on the
ground (z = 0) at some temperature. We consider only motion along the vertical z-axis, denoted
in general by z = z(t;E), where t denotes time. The corpuscle energy is defined as: E ≡ w zm
where w is the corpuscle weight and zm the maximum altitude. In the following, some regularity
of the z(t)-function is assumed, but no specific law is presumed, except in examples. We set for
convenience t = 0 at the top of the trajectory, that is: z(0) = zm, z′(0) = 0, where a prime
denotes a derivative with respect to t.

Consider a single period of corpuscle motion as shown in Fig. 1. Let the corpuscle distance
from the top of its trajectory be denoted Z ≡ zm − z ≥ 0, at times t1 and t2 ≥ t1. We call2:
“time interval” τ(Z) ≡ t2 − t1. Because gravity is static and uniform (that is, independent
of altitude and time) this τ -function depends only on Z. As an example, for non-relativistic
motion: Z(t) = 1

2g t
2, with w ≡ mg where m denotes the corpuscle mass and g the gravitational

acceleration. In that example: τ(Z) = 2
√

2Z/g ∝
√
Z, g being a constant.

The period of motion of a corpuscle bouncing off the ground (z = 0) without any loss of
energy (rigid walls and negligible gas friction), and having energy E ≡ w zm, is according to the
above definitions: τ(zm). On the other hand, the time spent by the corpuscle above some z-level
is obviously zero if z > zm, and equal to: τ(Z) ≡ τ(zm − z) if z ≤ zm. In the latter case, the

2We do not assume that z(t) = z(−t) or t2 + t1 = 0. Asymmetric laws of motion occur if one employs clock
synchronisation rules different from the one proposed by Einstein. For example, if a light pulse emitted from
z = 0 at t = 0 propagating upward is employed to synchronise clocks located at different altitudes, the apparent
upward speed of light is, by this convention, infinite. The downward speed of light is then c/2 if c denotes the
Einstein speed of light, so that the two-way speed of light remains equal to c, in agreement with very precise
experiments. The present anisotropy refers to a change of formalism, not of physics. It is of some importance
that the laws discussed in this paper do not depend on such conventional changes.
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Figure 1: The curve represents the motion z = z(t) of a corpuscle of weight unity submitted to
static uniform gravity. Note that the results presented in this paper do not depend on the law
of motion, which needs not be an even function of time. (The particular curve shown refers to
a relativistic law of motion based on a clock synchronisation different from the usual (Einstein)
one. Namely, we suppose that clocks at various altitudes z are synchronized by a light pulse
emitted from z = 0 at t = 0. Then the apparent speed of light is infinite upward and equal to
c/2 downward. The asymptote is ζ ≡ z − zm = −1/2t. We give these details because the reader
may be puzzled by the curve represented on this figure. However, almost any other curve would
serve our purposes as well). The maximum height zm reached above the ground level z = 0 is the
corpuscle energy E. τ(zm) represents the motion period. A reflecting plane (piston) is shown at
the height z = h as a dotted line, the corpuscle bouncing alternately off the two planes. From a
simple inspection of the figure on sees that the period becomes in that case: τ(zm)− τ(zm − h).

fraction of time during which the corpuscle is above z is therefore: τ(zm−z)/τ(zm), as suggested
on the figure 1.

We now suppose that the ground on which the corpuscle is bouncing off has been heated to
some temperature (the concept of temperature will be precisely defined later on). This means
that the ground level (z=0) is not perfectly static as assumed above, but instead is quivering.
Concretely, the groung level could be moving up and down according to some zero-mean fluctu-
ation of small amplitude so that, upon impacting on the ground, the corpuscle may loose energy
(when the ground level is moving downward), or gain energy (when the ground level is moving
upward). We will not need the explicit form of this fluctuation. We only assume that the am-
plitude of that fluctuation is so small that the corpuscle energy does not vary significantly over
many periods. Yet it may evolve slowly. The energy distribution ω(E) refers to averages over
arbitrarily long times, and is presently unknown; it will be determined by enforcing the condition
that the law of interest (presently the barometric law) does not depend on the corpuscle law of
motion.

The fractional time during which the corpuscle is above some z-level is, according to the
previous considerations and remembering that zm = E/w where w is a constant:

A(z) =

∫

∞

wz
dE ω(E) τ(E/w − z)/τ(E/w)

∫

∞

0
dE ω(E)

. (2)

The lower limit of the integral in the numerator is wz since the fractional time is equal to zero
when E ≤ wz.
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We now argue that ω(E) must be: exp(−E/θ)τ(E/w), where θ is a constant having the di-
mension of energy as is required by the fact that the argument of an exponential is dimensionless.
First, let us introduce this distribution law in (2). We obtain:

A(z) =

∫

∞

wz dE exp(−E/θ)τ(E/w − z)
∫

∞

0 dE exp(−E/θ)τ(E/w)

=
exp(−w z/θ)

∫

∞

wz dE exp(−(E − wz)/θ)τ(E/w − z)
∫

∞

0
dE exp(−E/θ)τ(E/w)

=
exp(−w z/θ)

∫

∞

0
dE′ exp(−E′/θ)τ(E′/w)

∫

∞

0
dE exp(−E/θ)τ(E/w)

= exp(−w z/θ). (3)

On the third line, we have used as an integration variable E′ ≡ E − wz instead of E. The last
line follows from the fact that E,E′ are dummy variables, so that we may replace E′ by E. Note
that, even though we have introduced integral signs, no integral has been performed.

The distribution ω(E) introduced above is the one that leads to a result (last line of (3))
independent of the particular form of the τ(Z)-function, and therefore of the law of motion. For
a purely mathematical reason, the term: τ(E/w) must be there to cancel a similar term in the
denominator of the expression of the fractional time. On the other hand, the only function of
u ≡ E/θ that may cause the integral in the numerator to go from 0 to infinity and cancel out
with the integral in the denominator is: exp(−u), the argument being defined only to within a
constant factor. In order to obtain the energy distribution ω(E), one would need to know the
function τ(Z). But, remarkably, the energy distribution is not needed explicitly.

From a physical standpoint, the energy distribution may be written as exp(−E(f)/θ), where
f denotes the action, equal to the z(t) motion area for one period, and df/dE = τ(E/w). In
quantum mechanics the action f is set equal to an integer (1,2..., ignoring a small constant) times
the reduced Planck constant ~. The term exp(−E/θ), usually referred to as the “Boltzmann
factor”, enters here solely by mathematical necessity [7].

The gas density, defined as the probability that the corpuscle be located between z and z+dz,
divided by dz, is: ρ(z) = −dA(z)/dz = (w/θ) exp(−wz/θ). This is the barometric law. Since
w and θ are constant, the density decays exponentially as a function of altitude z. In the earth
atmosphere the density of di-atomic oxygen decays faster than the density of di-atomic nitrogen
because the weight of an oxygen atom exceeds that of a nitrogen atom in the ratio ≈ 16/14.

We have supposed above that the weight w is independent of altitude. A more general
formulation is given in appendix.

4 Potential energy

We will only need the gas internal energy U . However, it is of some pedagogical interest to
separate out from U a term that may be called the potential energy. This term is directly
calculated in the present section. The potential energy of a corpuscle of weight w located at
altitude z is defined as w z. The gas potential energy, according to the above expression of the
density, is therefore: P = w

∫

∞

0
dz z ρ(z) = w

∫

∞

0
dzA(z) = θ, using (3).

When the corpuscle motion is restricted to: 0 < z ≤ h one can show that the density ρ(z)
is unaffected in that range of z, as is discussed in an appendix. It must be normalized, though,
so that the integral of ρ(z) from 0 to h be unity. A simple integration of w z ρ(z) from z = 0 to
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z = h then gives the potential energy for any h-value:

P = θ − w h

exp(w h/θ)− 1
. (4)

According to that expression P tends to θ monotonically if wh → ∞. It tends to 0 when w h
tends to 0, that is in the absence of gravity. This is what is usually assumed when one refers to
the ideal-gas law. In that case, as shown below, the internal energy depends only on temperature.

5 Internal energy

The gas internal energy U is the average value of E, if only motion along the z-axis is considered
(note that the gravitational energy is accounted for in U). It can be evaluated by the above
method and is found to be given by the sum of the potential energy in (4) and a term that
depends on θ but not on h.

The explicit expression of U ≡ 〈E〉 is, omitting details that are similar to those in section 3:

U =

∫ wh

0 dE E exp(−E/θ)τ(E/w) +
∫

∞

wh dE E exp(−E/θ)
(

τ(E/w) − τ(E/w − h)
)

∫ wh

0
dE exp(−E/θ)τ(E/w) +

∫

∞

wh
dE exp(−E/θ)

(

τ(E/w) − τ(E/w − h)
)

= P +K, (5)

where the potential energy P is given in (4) and:

K =

∫

∞

0 dE E exp(−E/θ)τ(E/w)
∫

∞

0
dE exp(−E/θ)τ(E/w)

− θ (6)

depends only on temperature.
The explicit form of K requires the knowledge of the τ(Z)-function and therefore of the

corpuscle law of motion. In the special case of non-relativistic motion, for example, we have
τ(Z) ∝

√
Z, see Section 3. At that point, Integration is needed. It gives: K = θ/2, or more

precisely: K = kBT/2, a well-known result. In Physics text-books K is called the average kinetic
energy. This interpretation, however, is not needed here: K is simply the term that remains
when the potential energy is subtracted from the internal energy.

6 Force exerted on the piston by a corpuscle of energy E

We now treat the ideal-gas law by similar methods. We are considering again a unit-area cylinder
with vertical axis in uniform gravity, resting on the ground (z = 0) at some temperature. A tight
piston can move in the vertical z direction. The cylinder height is denoted by h and contains a
single corpuscle of weight w. In our one-dimensional model, the pressure P corresponds to the
average force 〈F 〉, the volume V to the height h, and N = 1. Our result provides the ideal-gas
law in a generalized form, taking into account gravity. In that case, the pressure varies as a
function of altitude. More precisely, the force exerted by the corpuscle on the lower end of the
cylinder exceeds the force exerted on the upper end (or piston) by the corpuscle weight. But in
the absence of gravity, the forces exerted on both ends are the same.

We are introducing (static and uniform) gravity, not so much for the sake of generality, but
because this helps clarify the concept of corpuscle energy: the corpuscle energy is defined as the
maximum altitude that the corpuscle would reach in the absence of the piston, multiplied by the
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corpuscle weight. Precisely, the maximum height reached by a corpuscle of weight w and energy
E in the absence of a piston is: zm ≡ E/w, the corpuscle bouncing elastically from the ground,
that is, without any loss or gain of energy.

Consider first the case where h is infinite, that is, in the absence of a piston. The time period
is denoted as before τ(Z) with Z = zm. The average force exerted on the ground, equal to the
corpuscle weight w, is the product of the impulse i and the number of impulses per unit time.
Thus w = i/τ(zm) −→ i = w τ(zm). In other words, the impulse transmitted to a plane when
the corpuscle impacts on it is the product of the corpuscle weight and the motion period.

If the plate is located at z = h, we have Z = z − zm and the impulse is: ih = w τ(zm − h).
When the corpuscle is moving back and forth beween the planes at z = 0 and z = h (instead of
being located above h) the impulse is just opposite to ih. It is therefore in absolute value equal
to w τ(zm − h).

Next, we introduce a rigid plane at z = h, viewed as a piston, and consider a corpuscle
bouncing on the z = 0 and z = h planes alternately. The time period becomes: τ(zm)−τ(zm −h),
as one can see from inspection of the figure. We call F the force exerted on the z = h rigid plane,
averaged over a time period. It follows from the previous expressions that:

F = 0 zm ≤ h

F =
ih

τ(zm)− τ(zm − h)
= w

τ(zm − h)

τ(zm)− τ(zm − h)
zm > h. (7)

7 Average force

As a consequence of the slight quivering of the cylinder lower end (thermal motion), the corpuscle
energy E slowly varies in the course of time. The force F just defined must be weighed by some
energy distribution ω(E) in such a way that the average force 〈F 〉 be independent of the corpuscle
equation of motion, and thus of the τ(.)-function. In the limit where w h ≪ θ, a condition that
amounts to ignoring gravity, we obtain the ideal-gas law in the form: 〈F 〉 = θ/h, where θ is a
quantity having the dimension of an energy. We later on prove that θ is the thermodynamic
temperature.

The above condition obtains from (7) if and only if one selects the following energy distribu-
tion:

ω(E) = exp(−E/θ)τ(E/w) E ≤ wh

ω(E) = exp(−E/θ)
(

τ(E/w) − τ(E/w − h)
)

E > wh, (8)

where θ has the dimension of an energy. Indeed, the average force becomes, using (7) and (8):

〈F 〉 = w

∫

∞

wh dE exp(−E/θ)τ(E/w − h)
∫ wh

0
dE exp(−E/θ)τ(E/w) +

∫

∞

wh
dE exp(−E/θ)

(

τ(E/w) − τ(E/w − h)
)

=
w

exp(w h/θ)− 1
. (9)

In the above integrals going from w h to∞we have replaced exp(−E/θ) by exp(−wh/θ) exp(−(E−
w h)/θ) and introduced the variable E′ ≡ E−wh, so that all the integrals go from zero to infinity
and cancel out. Note that, as in Section 3, no integration has been actually performed.

The corpuscles being independent, for an arbitrary collection of N corpuscles having the
same weight the force is multiplied by N . In the case of zero gravity w=0 or more precisely:
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w h ≪ θ. The above expression then gives: 〈F 〉h = θ. Thus we have obtained the ideal-gas law:
〈F 〉h = N θ.

The expressions given earlier for the average force 〈F 〉 in (9) and the internal energy U in
(5) may be written, setting β ≡ 1/θ, as:

〈F 〉 = ∂ ln(Z)

β ∂h
≡ −∂A

∂h
U = −∂ ln(Z)

∂β
≡ A− θ

∂A

∂θ

Z(β, h) =
(

exp(−β w h)− 1
)

∫

∞

0

dE exp(−β E)τ(E/w). (10)

Z is essentially the quantity called in thermodynamics the partition function. It becomes dimen-
sionless if it is divided by the reduced Planck constant ~, which however plays here no physical
role. The continuous energy E in the integral may be replaced by closely-spaced discrete energies
εi, i = 1, 2..., the spacing between adjacent energies accounting for the τ -function. This proce-
dure is the one employed in the numerical evaluation of integrals; it does not in itself implies
quantization. The factor preceding the integral in (10) entails that the energies εi, i = 1, 2... are
multiplied by some function of h. In the second expressions of 〈F 〉 and U given in (10) we have
introduced for brevity the so-called “free energy” A(θ, h) ≡ −θ ln(Z(θ, h)).

To be sure, the present paper does not provide explicit expressions of gases internal energy if
the law of corpuscle motion remains unknown. It does provide, however, a first-principle proof of
the ideal-gas law, including a possible effect of uniform gravity, and the barometric equation. We
have recovered the usual thermodynamical and semi-classical statistical-mechanical expressions
for the special case of ideal gases.

8 The energy θ is the thermodynamic temperature

We now prove that θ, introduced in the previous sections on dimensional grounds only, is the
thermodynamic temperature. We do this by showing that the maximum efficiency of a thermal
cycle employing ideal gases is: 1 − θl/θh, where θl is the cold-bath temperature and θh the hot
bath temperature.

From (10) we obtain:

〈F 〉 = −∂A

∂h
U = A− θ

∂A

∂θ

−δQ ≡ dU + 〈F 〉 dh = dA− ∂A

∂θ
dθ − ∂A

∂h
dh+ θ dS = θ dS S ≡ −∂A

∂θ
, (11)

where δQ represents the heat released by the gas, from the law of conservation of energy. For any
function f(θ, h) such as U, A, S: df ≡ ∂f

∂θ dθ+
∂f
∂hdh. If the gas is in contact with a thermal bath

(θ= constant), δQ is the heat gained by the bath. The quantity S defined above is called the “en-
tropy”. In particular, if heat cannot go through the gas container wall (adiabatic transformation)
we have δQ = 0 that is, according to the above result: dS = 0. Thus adiabatic transformations
are isentropic. Note that introduction of A and S is only a matter of mathematical convenience.

A Carnot cycle consists of two isothermal transformations at temperatures θl and θh, and two
intermediate adiabatic transformations (dS = 0). After a complete cycle, the entropy recovers
its original value and therefore dSl+dSh = 0. According to (11): −δQl = θl dSl, −δQh = θh dSh

and therefore δQl/θl + δQh/θh = 0. Energy conservation gives the work performed over a cycle
from: W + δQl + δQh = 0. The cycle efficiency is defined as the ratio of W and the heating
−δQh supplied by the hot bath. We have therefore: η ≡ W

−δQh

= δQh+δQl

δQh

= 1− θl
θh
, from which

we conclude that θ is the “thermodynamic temperature”.

9



This temperature is defined only to within a multiplicative factor, which is fixed by agreeing
that the water triple-point temperature is 273.16 kelvins. One thus sets: θ ≡ kBT . One generally
considers an amount of gas called a “mole” occupying a volume of 0.0224 cubic meters at standard
pressure and temperature (approximately one atmosphere or 100 000 pascals, and 300 kelvins).
We then write: PV = RT , with the ideal-gas constant: R ≈ 8.314... joules per kelvin.

9 Conclusion

Let us briefly recall the concepts introduced in the present paper. One can imagine that after
having introduced the corpuscular concept, Democritus observed the elastic bounces of a unit
weight on a balance and defined the weight “impulse” from the motion period. Not knowing
the nature of the motion (parabolic? hyperbolic?), he may have thought of introducing a weight
factor such that the average force 〈F 〉 does not depend on the law of motion. This, as we have
seen, may be done. This weight factor involves for dimensional reasons a quantity θ having the
dimension of energy. Considering a thermal engine operating between two baths at temperatures
θl, θh one finds on the basis of the principles just stated that the maximum efficiency is: 1−θl/θh.
This allows us to call θ the thermodynamic temperature.

William of Ockham (1287-1347) set as a matter of principle that one should not employ more
concepts than those that are strictly necessary to explain the observed phenomenas. (Some au-
thors consider that the Ockham philosophy predates the advent of modern science by insisting on
facts and the kind of reasoning employed rather than on speculations about essences). Accord-
ingly, it seems important to elucidate the assumptions on which rest, in particular, the barometric
and ideal-gas laws that play an essential role in theoretical physics and many applications. Our
thesis is that these laws may be obtain on the sole basis of the Democritus model of corpuscles
and vacuum. It is indeed unnecessary to specify the laws of motion. One can also show that the
ideal-gas internal energy depends only on temperature (in the absence of gravity). To evaluate
explicitly this energy it is, however, necessary to know the law of motion. From a pedagogical
standpoint and in application of Ockham’s concept one should not postulate principles which,
without being erroneous, are unnecessary.

A A simple but incomplete proof of the ideal gas law

We present in this paragraph a simple proof leading to the ideal-gas law. Initially, we only
suppose that the gas corpuscles are independent, so that the force exerted on the piston by N
corpuscles is N times the force exerted by a single corpuscle, the other conditions (temperature
and cylinder height) being the same. We also postulate that the force exerted by a corpuscle
of any kind (e.g., nitrogen or helium) on the piston depends only on temperature and height
(or volume). At the end of the argument, we additionally postulate that intermediate pistons
may be removed without affecting the system equilibrium. This latter assumption would be
untenable if the corpuscles were attracting each others, as is the case for non-ideal gases. The
present proof is incomplete because we postulate, rather than demonstrate, that plates may be
added or removed at various altitudes without resulting into any physical effects.

Let us consider a cylinder of unit area, with a tight piston that can move freely along the axis.
This cylinder of height h contains N corpuscles and is raised at some temperature θ. The cylinder
may, for exemple, be filled with nitrogen at standard temperature and pressure. Because the
corpuscles are independent, N corpuscles exert N times as much pressure as a single corpuscle,
θ and h being unchanged. We can therefore set in general: F = N f(θ, h), where f(., .) is an

10



unknown two-variables function. We can (at least in principle) define θ as the force that a single
helium atom exerts on the piston when the cylinder height h = 1. Then: F = f(θ, 1).

If we now superpose h such cylinders, possibly containing corpuscles of various kinds, the
total height becomes h and the number of corpuscles becomes h also. The force F exerted on
the upper piston gets transmitted unchanged to each of the cylinders, if we neglect the gas and
cylinder weight. This amounts to saying that each cylinder remains in the same conditions as
before. But the system presently considered has height h, contains h corpuscles, and the force
is: F = θ. Substituting these values of h, N and F in the general expression: F = N f(θ, h), we
get: θ = h f(θ, h). Thus f(θ, h) = θ/h, and the general formula becomes: F = N θ/h, which is
the ideal gas law.

We have implicitly assumes above that one can remove the intermediate pistons without
modifying the system equilibrium; this is plausible if the corpuscles do not interact. A proof is
given in Appendix B.

B Barometric equation with a plate

We consider the case where the corpuscle of weight w is bouncing between the ground z = 0 and
a fixed plate at z = h. We are seeking the density: ρ(zo), where 0 < zo < h. In Section 4, we have
supposed that this density is the same as if the plate were not there (except for a normalization
factor). Even though this assumption is plausible, it is useful to verify it to prove our formalism
consistency. As in the main text we denote by zm the maximum height that the corpuscle would
attain if the plate were not there, as a consequence of its energy. We set w = 1, θ = 1 for brevity.

To evaluate the probability p that the corpuscle be below zo, one must distinguish three cases:

0 < zm < zo : p = 1

zo < zm < h : p =
τ(zm)− τ(zm − zo)

τ(zm)

zm > h : p =
τ(zm)− τ(zm − zo)

τ(zm)− τ(zm − h)
(12)

On the other hand, the weighting factors relating to zm given in (8) are:

zm < h : exp(−zm)τ(zm)

zm > h : exp(−zm)(τ(zm)− τ(zm − h)) (13)

The probability that the corpuscle be below zo is therefore:

∫ zo

0

dzm exp(−zm)τ(zm) +

∫ h

zo

dzm exp(−zm)(τ(zm)− τ(zm − zo)) (14)

+

∫

∞

h

dzm exp(−zm)(τ(zm)− τ(zm − zo)) = (1− exp(−zo))

∫

∞

0

dzm exp(−zm)τ(zm). (15)

After normalization, we see that the probability that the corpuscle be below zo is: 1 −
exp(−zo), which is the expected result if the density is the same as in the absence of the plate
at z = h, namely: exp(−zo).

11



C Non-uniform gravity

In the present appendix we show how non-uniform weights w(z) ≡ mg(z), or continuous po-
tentials: φ(z) ≡

∫ z

0
dz w(z), could be handled. On earth, weights decay in proportion to the

reciprocal of the square of the distance from the earth center. It is only for small changes in
altitude that weights may be considered constant. Another example is a cylinder rotating about
its axis at some constant angular rate. In that case g is proportional to the distance from axis.

We only treat the case of two weight values: w1, 0 < z ≤ h and w2, z > h, and evaluate
the ratio of the average times spent by the corpuscle below and above the h altitude. Besides
energy conservation we only suppose that corpuscle speeds are continuous. As in the main text,
the corpuscles considered are bouncing off the ground at z = 0, at some temperature θ.

Let us denote by τi(Z) the time-interval corresponding to a distance Z from the top of the
trajectory when the weight is a constant wi, with τi(0) = 0. These functions are of course
different for different weight values. Considering two weight-values corresponding to subscripts
1,2, continuity of the corpuscle speed entails that: τ2(Z) = (w1/w2)τ1(w2 Z/w1), as one can see
by taking the derivative of this relation with respect to Z. This relation is readily verified for
the special case of Galilean motion in which case: τ1(Z) = C

√

Z/w1, τ2(Z) = C
√

Z/w2 for a
constant C. As in the main text we will let E denote the corpuscle energy.

When E ≤ w1 h the corpuscle stays below the h-plane. When E > w1h, the time spent
by the corpuscle above the h-plane is: τ2(

E−w1 h
w2

) because the corpuscle weight is w2 and its
energy with respect of the h-plane is E−w1 h. The time spent below the h-plane is in that case:
τ1(

E
w1

)− τ1(
E
w1

−h). Thus the average times spent below and above the h-plane are respectively:

average time below =

∫ w1h

0

dE ω(E) τ1(
E

w1
) +

∫

∞

w1h

dE ω(E)
(

τ1(
E

w1
)− τ1(

E

w1
− h)

)

=

∫

∞

0

dE ω(E) τ1(
E

w1
)−

∫

∞

w1h

dE ω(E) τ1(
E

w1
− h)

average time above =

∫

∞

w1h

dE ω(E) τ2(
E − w1 h

w2
) =

∫

∞

w1h

dE ω(E)
w1

w2
τ1(

E

w1
− h). (16)

If ω(E) denotes the energy distribution, the ratio of the average times spent by the corpuscle
below and above h is therefore:

T =

∫

∞

0 dE ω(E)τ1(E/w1)−
∫

∞

w1 h dE ω(E)τ1(E/w1 − h)

(w1/w2)
∫

∞

w1 h
dE ω(E)τ1(E/w1 − h)

(17)

The only way to remove the τ -functions is to choose: ω(E) = exp(−E/θ), where θ has the
dimension of an energy. Proceeding as in the main text, we obtain from the above expression
the result:

T =
w2

w1

(

exp(
w1h

θ
)− 1

)

. (18)

We have therefore obtained a result applicable to non-linear potentials. A possible generalization
would consist of considering arbitrary static potentials. This, however, will not be done here.

The expression in (18) is usually obtained by postulating a gas density: ρ(z) ∝ exp
(

−φ(z)/θ
)

,
where φ(z) is the potential at z. T is now viewed as the ratio of the integral of ρ(z) from 0 to
h and its integral from h to ∞. We have: φ(z) = w1 z, z ≤ h and φ(z) = w1 h + w2(z − h) =
w2 z + (w1 − w2)h, z > h.
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Thus: ρ(z) = C exp
(

− w1 z
θ

)

, z ≤ h, and ρ(z) = C exp
(

− w2 z+(w1−w2)h
θ

)

, z > h, where C
is a constant. Integration gives

TBoltzmann =

∫ h

0
dz exp(−w1 z/θ)

exp
(

(w2 − w1)h/θ
) ∫

∞

h dz exp(−w2 z/θ)

=
w2

w1

(

exp(
w1h

θ
)− 1

)

(19)

which coincides with (18). The interest of our method is of course that the Boltzmann factor
needs not be postulated.

D General equations of motion

The Hamilton equations of motion in one space dimension (z) derive from a hamiltonian function:

H(p, z), with v(t) ≡ dz(t)
dt = ∂H(p,z)

∂p , dp(t)
dt = −∂H(p,z)

∂z . In the situations considered in this paper

we may set H(p, z) = F (p)+φ(z), where F (.) is a (nearly) arbitrary function of p, and φ(.) is the
potential function. In a static (time-independent) force of constant magnitude w directed along
the negative z-axis, we have φ(z) = w z. Thus, a general equation of motion is: dz = f(p) dt,

where f(p) ≡ dF (p)
dp , and p = −w (t− to), where to is an integration constant.

In particular, for a slow corpuscle of mass m we have: f(p) = p/m. Since w = mg, where g
is the acceleration, it follows that z = − 1

2g t
2, if to = 0, according to Galileo. For a corpuscle at

any speed we have: f(p) = p/m√
1+(p/mc)2

where c is the speed of light, according to Einstein. Still

other forms, which are dimensionally correct but unlikely to be in general physically significant,
would be: f(p) = c g(p/mc) for some function g(.). No particular g(.) function is presumed in
this paper.
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