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Long term behaviour of singularly perturbed parabolic degenerated equation

In this paper we consider models built in [3] for short-term, mean-term and long-term morphodynamics of dunes and megariples. We give an existence and uniqueness result for long term dynamics of dunes. This result is based on a time-space periodic solution existence result for degenerated parabolic equation that we set out. Finally the mean-term and long-term models are homogenized.

Introduction and results

In Faye, Frénod and Seck [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF], based on works of Bagnold [START_REF] Bagnold | The movement of desert sand[END_REF], Gadd, Lavelle and Swift [START_REF] Gadd | Estimates of sand transport on the New York shelf using near-bottom current meter observations[END_REF], Idier [START_REF] Idier | Dunes et bancs de sables du plateau continental: observations in-situ et modélisation numérique[END_REF], Astruc and Hulcher [START_REF] Idier | Influence of bed roughness on dune and megaripple generation[END_REF], Meyer-Peter and Muller [START_REF] Meyer-Peter | Formulas for bed-load transport[END_REF] and Van Rijn [START_REF] Van Rijn | Handbook on sediment transport by current and waves[END_REF], we set out that a relevant model for short term dynamics of dunes, i.e. for their dynamics over several months, is

∂z ǫ ∂t - a ǫ ∇ • (1 -bǫm)g a (|u|)∇z ǫ = c ǫ ∇ • (1 -bǫm)g c (|u|) u |u| , (1.1) 
where z ǫ = z ǫ (x, t), is the dimensionless seabed altitude at t and in x. For a given constant T, t ∈ [0, T ), stands for the dimensionless time and x = (x 1 , x 2 ) ∈ T 2 , T 2 being the two dimensional torus R 2 / Z 2 , is the dimensionless position variable. Operators ∇ and ∇• refer to gradient and divergence. Functions g a and g c are regular on R + and satisfy

               g a ≥ g c ≥ 0, g c (0) = g ′ c (0) = 0, ∃d ≥ 0, sup u∈R + |g a (u)| + sup u∈R + |g ′ a (u)| ≤ d, sup u∈R + |g c (u)| + sup u∈R + |g ′ c (u)| ≤ d, ∃U thr ≥ 0, ∃G thr > 0, such that u ≥ U thr =⇒ g a (u) ≥ G thr . (1.2)
Fields u and m are dimensionless water velocity and height. They are given by

u(t, x) = U(t, t ǫ , x), m(t, x) = M(t, t ǫ , x), (1.3) 
where 

                             U = U(t,
∀(t, θ, x) ∈ R + × R × T 2 , |U(t, θ, x)| ≤ U thr =⇒ ∂U ∂t = 0, ∂M ∂t = 0
, ∇M(t, θ, x) = 0 and ∇U(t, θ, x) = 0,

∃θ α < θ ω ∈ [0, 1] such that ∀ θ ∈ [θ α , θ ω ] =⇒ |U(t, θ, x)| ≥ U thr . (1.4) 
A relevant model for mean term, i.e. when dune dynamics is observed over a few years, is

∂z ǫ ∂t - a ǫ ∇ • (1 -b √ ǫm)g a (|u|)∇z ǫ = c ǫ ∇ • (1 -b √ ǫm)g c (|u|) u |u| , (1.5) 
with condition (1.2) on g a and g c and with u and m given by

u(t, x) = U(t, t √ ǫ , t ǫ , x), m(t, x) = M(t, t √ ǫ , t ǫ , x), (1.6) 
For mathematical reasons, we assumed

U(t, τ, θ, x) = U(t, θ, x) + √ ǫ U 1 (t, τ, θ, x), (1.7) 
where U = U(t, θ, x) and U 1 = U 1 (t, τ, θ, x) are regular. We also assumed that M = M(t, τ, θ, x) is regular and 

                                           θ -→ (U, U 1 , M) is periodic of period 1, τ -→ (U 1 , M) is periodic
∀(t, τ, θ, x) ∈ R + × R × R × T 2 , | U(t, τ, θ, x)| ≤ U thr =⇒ ∂ U ∂t (t, τ, θ, x) = 0, ∂ U ∂τ (t, τ, θ, x) = 0, ∇ U (t, τ, θ, x) = 0, ∂M ∂t
(t, τ, θ, x) = 0, ∂M ∂τ (t, τ, θ, x) = 0 and ∇M(t, τ, θ, x) = 0,

∃θ α < θ ω ∈ [0, 1] such that ∀ θ ∈ [θ α , θ ω ] =⇒ | U(t, τ, θ, x)| ≥ U thr .
(1.8)

A relevant model for long-term dune dynamics is the following equation

∂z ǫ ∂t - a ǫ 2 ∇ • ((1 -bǫm)g a (|u|)∇z ǫ ) = c ǫ 2 ∇ • (1 -bǫm)g c (|u|) u |u| , (1.9) 
where a, b and c are constants, where g a and g c satisfy assumption (1.2), and where z ǫ is defined on the same space as before. It is also relevant to assume

u(x, t) = U(t, t ǫ , x) = U 0 ( t ǫ ) + ǫU 1 ( t ǫ , x) + ǫ 2 U 2 (t, t ǫ , x), m(t, x) = M( t ǫ , x) + ǫ 2 M 2 (t, t ǫ , x), (1.10) 
where

U 0 = U 0 (θ), U 1 = U 1 (θ, x), U 2 = U 2 (t, θ, x), M = M(θ, x) and M 2 = M 2 (t, θ, x) are regular and                                          θ -→ (U 0 , U 1 , U 2 , M, M 2 ) is periodic of period 1, |U 0 |, | ∂U 0 ∂θ |, |U 1 |, | ∂U 1 ∂θ |, |∇U 1 |, |U 2 |, | ∂U 2 ∂t |, | ∂U 2 ∂θ |, |∇U 2 |, |M|, | ∂M ∂θ |, |∇M|, |M 2 |, | ∂M 2 ∂t |, | ∂M 2 ∂θ |, |∇M 2 | are bounded by d, ∀(t, θ, x) ∈ R + × R × T 2 , |U 0 (θ) + ǫU 1 (θ, x) + ǫ 2 U 2 (t, θ, x)| ≤ U thr =⇒ ∂U 2 ∂t (t, θ, x) = 0, ∇U 1 (θ, x) = 0, ∇U 2 (t, θ, x) = 0, ∂M 2 ∂t (t, θ, x) = 0, ∇M(θ, x) = 0, ∇M 2 (t, θ, x) = 0, ∃θ α < θ ω ∈ [0, 1] such that ∀ θ ∈ R, θ ∈ [θ α , θ ω ] =⇒ |U 0 (θ) + U 1 (θ, x) + ǫ 2 U 2 (t, θ, x)| ≥ U thr .
(1.11)

Equations (1.1), (1.5) or (1.9) need to be provided with an initial condition

z ǫ |t=0 = z 0 , (1.12) 
giving the shape of the seabed at the initial time.

In [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF], we then gave an existence and uniqueness result for short-term model (1.1) if hypotheses (1.2), (1.3) and (1.4) are satisfied and for the mean term one (1.5), if hypotheses (1.2), (1.6), (1.7) and (1.8) are satisfied. This result was built on a time-space periodic solution existence result for degenerated parabolic equation. Under the same assumptions, the asymptotic behaviour of z ǫ , as ǫ → 0, solution of short term model (1.1) is also given by homogenization methods. Futhermore if moreover U thr = 0, a corrector result was set out, which gives a rigorous version of asymptotic expansion of the sequence z ǫ :

z ǫ (t, x) = U (t, t ǫ , x) + ǫU 1 (t, t ǫ , x) + . . . , (1.13) 
where U and U 1 are solutions to

∂U ∂θ -∇ • A∇U = ∇ • C, (1.14) ∂U 1 ∂θ -∇ • A∇U 1 = ∇ • C 1 + ∂U ∂t + ∇ • ( A 1 ∇U ), (1.15) 
where A and C are given by

A = a g a (|U(t, θ, x)|) and C = c g c (|U(t, θ, x)|) U(t, θ, x) |U(t, θ, x)| , (1.16) 
and A 1 and C 1 are given by

A 1 (t, θ, x) = -abM(t, θ, x) g a (|U(t, θ, x)|),
and

C 1 (t, θ, x) = -cbM(t, θ, x) g c (|U(t, θ, x)|) U(t, θ, x) |U (t, θ, x)| . (1.17) 
In [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF], we did not state neither any existence result for long term model (1.9) nor any asymptotic behaviour result for mean term and long term models. Stating those results is the subject of the present paper. We will now state those main results. The first one concerns existence and uniqueness for the long-term model.

Theorem 1.1 For any T > 0, any a > 0, any real constants b and c and any ǫ > 0, under assumptions (1.2), ( 1) and (1.11), if

z 0 ∈ L 2 (T 2 ), (1.18) 
there exists a unique function z ǫ ∈ L ∞ ([0, T ), L 2 (T 2 )), solution to equation (1.9) provided with initial condition (1.12). Moreover, for any t ∈ [0, T ], z ǫ satisfies

z ǫ L ∞ ([0,T ),L 2 (T 2 )) ≤ γ, (1.19) 
for a constant γ not depending on ǫ and

d T 2 z ǫ (t, x) dx dt = 0. (1.20)
The proof of this theorem is done in section 2, except equality (1.20) which is directly gotten by integrating (1.9) with respect to x over T 2 .

We now give a result concerning the asymptotic behaviour as ǫ → 0 of the long term model. We notice that, since U and M + ǫ 2 M 2 do not depend on t and x when U ≤ U thr , we have the following property:

∀θ ∈ [0, 1], ∃(t, x) ∈ [0, T ) × T 2 such that U(t, θ, x) = 0 or M(θ, x) + ǫ 2 M 2 (t, θ, x) = 0 =⇒ ∀(t, x) ∈ [0, T ) × T 2 , U(t, θ, x) = 0 and M(θ, x) + ǫ 2 M 2 (t, θ, x) = 0 , (1.21) and {θ ∈ [0, 1], U(•, θ, •) = 0 and M(θ, •) + ǫ 2 M 2 (•, θ, •) = 0}
is an union of several intervals.

(1.22)

Moreover we denote

Θ = [0, T ) × {θ ∈ R, U(•, θ, •) = 0 and M(θ, •) + ǫ 2 M 2 (•, θ, •) = 0} × T 2 , (1.23) and Θ thr = {(t, θ, x) ∈ [0, T ) × R × T 2 , U(t, θ, x) < U thr }. (1.24)
Theorem 1.2 For any T > 0, under the same assumptions as in theorem 1.1, the sequence of solutions (z ǫ ) to equation (1.9) given by theorem 1.1 two-scale converges to a profile

U ∈ L ∞ ([0, T ], L ∞ # (R, L 2 (T 2 ))) which is the unique solution to -∇ • ( A∇U ) = ∇ • C on [0, T ) × R × T 2 \Θ, (1.25) 
∂U ∂θ = 0 on Θ thr , (1.26)

and 1 0 T 2 U dθ dx = T 2 z 0 dx, (1.27) 
where A and C are given by

A = a g a (|U(t, θ, x)|) and C = c g c (|U(t, θ, x)|) U(t, θ, x) |U(t, θ, x)| . (1.28)
Above and in the sequel, for all p ≥ 1 and q ≥ 1, we denote by

L p # (R, L q (T 2 )) = f : R -→ L q (T 2 ) mesurable and periodic of period 1 in θ such that θ → f (θ) L q (T 2 ) ∈ L p ([0, 1]) . Remark 1.1 Notice that [0, T ) × R × T 2 \Θ ∩ Θ thr is not empty. On this set 0 < U < U thr .
This contributes to make of (1.25),(1.26) a well posed problem. Now we turn to mean term model for which we set out asymptotic behaviours.

Theorem 1.3 Under assumptions (1.2), (1.6), (1.7) and (1.8), for any T, not depending on ǫ, the sequence (z ǫ ) of solutions to (1.5) built in [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF] provided with initial condition (1.12) two-scale converges to the profile 

U ∈ L ∞ ([0, T ] × R, L ∞ # (R, L 2 (T 2 ))) solution to ∂U ∂θ -∇ • ( A∇U ) = ∇ • C, ( 1 
U thr = 0, considering function z ǫ ∈ L ∞ ([0, T ), L 2 (T 2
)), solution to (1.5) with initial condition (1.12) and function

U ǫ ∈ L ∞ ([0, T ), L 2 (T 2 )) defined by U ǫ (t, x) = U (t, t √ ǫ , t ǫ , x), (1.31)
where U is the solution to (1.29), the following estimate is satisfied:

z ǫ -U ǫ √ ǫ L ∞ ([0,T ),L 2 (T 2 )) ≤ α, (1.32) 
where α is a constant not depending on ǫ. Furthermore,

z ǫ -U ǫ √ ǫ two-scale converges to a profile U 1 2 ∈ L ∞ ([0, T ] × R, L ∞ # (R, L 2 (T 2 ))), (1.33)
which is the unique solution to

∂U 1 2 ∂θ -∇ • A∇U 1 2 = ∇ • C 1 + ∇ • A 1 ∇U - ∂U ∂τ (1.34)
where A and C are given by (1.30) and where A 1 and C 1 are given by

A 1 (t, τ, θ, x) = -abM(t, τ, θ, x) g a (|U(t, θ, τ, x)|),
and

C 1 (t, τ, θ, x) = -cbM(t, τ, θ, x) g c (|U(t, τ, θ, x)|) U(t, τ, θ, x) |U (t, τ, θ, x)| . (1.35)
2 Existence and estimates, proof of theorem 1.1

Setting:

A ǫ (t, x) = A ǫ (t, t ǫ , x), (2.1) 
and

C ǫ (t, x) = C ǫ (t, t ǫ , x), (2.2) 
where

A ǫ (t, θ, x) = a(1 -bǫM(t, θ, x)) g a (|U(t, θ, x)|), (2.3) 
and

C ǫ (t, θ, x) = c(1 -bǫM(t, θ, x)) g c (|U(t, θ, x)|) U(t, θ, x) |U(t, θ, x)| , (2.4) 
equation (1.9) with initial condition (1.12) can be set in the form

   ∂z ǫ ∂t - 1 ǫ 2 ∇ • (A ǫ ∇z ǫ ) = 1 ǫ 2 ∇ • C ǫ , z ǫ |t=0 = z 0 .
(2.5)

Because of hyptothesis (1.9) and under assumptions (1.2) and (1.11), A ǫ and C ǫ given by (2.3) and (2.4) satisfy the following hypotheses:

                       θ -→ ( A ǫ , C ǫ ) is periodic of period 1, x -→ ( A ǫ , C ǫ ) is defined on T 2 , | A ǫ | ≤ γ, | C ǫ | ≤ γ, ∂ A ǫ ∂t ≤ ǫ 2 γ, ∂ C ǫ ∂t ≤ ǫ 2 γ, ∂∇ A ǫ ∂t ≤ ǫ 2 γ, ∂ A ǫ ∂θ ≤ γ, ∂ C ǫ ∂θ ≤ γ, |∇ A ǫ | ≤ ǫγ, |∇ • C ǫ | ≤ ǫγ, ∂∇ • C ǫ ∂t ≤ ǫ 2 γ, (2.6) 
             ∃ G thr , θ α < θ ω ∈ [0, 1] such that ∀ θ ∈ [θ α , θ ω ] =⇒ A ǫ (t, θ, x) ≥ G thr , A ǫ (t, θ, x) ≤ G thr =⇒        ∂ A ǫ ∂t (t, θ, x) = 0, ∇ A ǫ (t, θ, x) = 0, ∂ C ǫ ∂t (t, θ, x) = 0, ∇ • C ǫ (t, θ, x) = 0, (2.7) 
and

       | C ǫ | ≤ γ| A ǫ |, | C ǫ | 2 ≤ γ| A ǫ |, |∇ A ǫ | ≤ ǫγ| A ǫ |, ∂ A ǫ ∂t ≤ ǫ 2 γ| A ǫ |, ∂(∇ A ǫ ) ∂t 2 ≤ ǫ 2 γ| A ǫ |, ∇ • C ǫ ≤ ǫγ| A ǫ |, ∂ C ǫ ∂t ≤ ǫ 2 γ| A ǫ |, ∂ C ǫ ∂t 2 ≤ ǫ 2 γ 2 | A ǫ |.
(2.8)

In this section we focus on existence and uniqueness of time-space periodic parabolic equations. From this, we then get existence of solution to equation (2.5). Existence of z ǫ over a time interval depending on ǫ, is a traightforward consequence of adaptations of results from LadyzensKaja, Solonnikov and Ural' Ceva [START_REF] Ladyzenskaja | Linear and quasi-linear equations of parabolic type[END_REF] or Lions [START_REF] Lions | Remarques sur les équations différentielles ordinaires[END_REF]. Our aim is to proove that z ǫ solution to (2.5) is bounded indepently of ǫ. We are going to introduce the following regularized equations. We recall that the method used is similar to the one used in [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF].

∂S ν ∂θ - 1 ǫ ∇ • Ãǫ (t, •, •) + ν ∇S ν = 1 ǫ ∇ • Cǫ (t, •, •), (2.9) 
and

µS ν µ + ∂S ν µ ∂θ - 1 ǫ ∇ • Ãǫ (t, •, •) + ν ∇S ν µ = 1 ǫ ∇ • Cǫ (t, •, •), (2.10) 
where µ and ν are positive parameters. We first prove existence of solutions S ν µ of (2.10) and we give estimates of S ν µ .

Theorem 2.1 Under assumptions (2.6), (2.7) and (2.8), for any µ > 0 and any ν > 0, there exists a unique

S ν µ = S ν µ (t, θ, x) ∈ C 0 ∩ L 2 (R × T 2
), periodic of period 1 with respect to θ, solution to (2.10) and regular with respect to the parameter t. Moreover, the following estimates are satisfied

sup θ∈R T 2 S ν µ (θ, x)dx = 0, (2.11) ∇S ν µ L 2 # (R,L 2 (T 2 )) ≤ γ ν , (2.12 
)

∆S ν µ L 2 # (R,L 2 (T 2 )) ≤ √ 2 ǫγ ν γ 2 ν 2 + 1, (2.13) ∂S ν µ ∂θ L 2 # (R,L 2 (T 2 )) ≤ γ √ ǫν ( γ 2ν + 1), (2.14) ∇S ν µ L ∞ # (R,L 2 (T 2 )) ≤ γ 2 ν 2 + 2ǫγ 2 ν ( γ 2 ν 2 + 1), (2.15) S ν µ L ∞ # (R,L 2 (T 2 )) ≤ γ 2 ν 2 + 2ǫγ 2 ν ( γ 2 ν 2 + 1), (2.16) ∂S ν µ ∂t L ∞ # (R,L 2 (T 2 )) ≤ ǫ 3 γ ν (1 + γ ν ).
(2.17)

Proof . (of Theorem 2.1). The proof of this theorem is very similar to the one of Theorem 3.3 of Faye, Frénod and Seck [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF]. The big difference is the presence of 1 ǫ -factors in (2.10). Hence we only sketch the most similar arguments and focus on the management of those 1 ǫ -factors. Integrating equation (2.10) over T 2 gives µ

T 2 S ν µ dx + T 2 ∂S ν µ ∂θ dx - 1 ǫ T 2 ∇ • ( Ãǫ + ν)∇S ν µ dx = 1 ǫ T 2 ∇ • Cǫ dx, (2.18) then µ T 2 S ν µ dx + d( T 2 S ν µ dx) ∂θ = 0, which gives T 2 S ν µ (θ, x)dx = T 2 S ν µ ( θ, x)e -µ(θ-θ) dx.
Since S ν µ is periodic of period 1 with respect to θ, T 2 S ν µ (θ, x)dx is also periodic of period 1. Then (2.11) is true. Multiplying equation (2.10) by S ν µ , integrating over T 2 and from 0 to 1 with respect to θ gives

µ S ν µ 2 L 2 # (R,L 2 (T 2 )) + 1 2 1 0 d S ν µ 2 2 dθ dθ + 1 ǫ 1 0 T 2 ( Ãǫ + ν)|∇S ν µ | 2 dxdθ ≤ γ ǫ 1 0 T 2 |∇S ν µ |dxdθ.
Since Ãǫ + ν ≥ ν and taking into account that the above first term is positive and the second one equals zero, we have ν ǫ

1 0 T 2 |∇S ν µ | 2 dxdθ ≤ γ ǫ ∇S ν µ L 2 # (R,L 2 (T 2 )) , then ∇S ν µ 2 L 2 # (R,L 2 (T 2 )) ≤ γ ν ∇S ν µ L 2 # (R,L 2 (T 2
)) , which gives (2.12). Multiplying (2.10) by ∂S ν µ ∂θ , integrating over T 2 and integrating from 0 to 1 with respect to θ gives 

∂S ν µ ∂θ 2 L 2 # (R,L 2 (T 2 )) = 1 2ǫ 1 0 T 2 ∂ Ãǫ ∂θ |∇S ν µ | 2 dxdθ + 1 ǫ 1 0 T 2 ∂ Cǫ ∂θ ∇S ν µ dxdθ (2.19) ≤ γ ǫ 1 2 ∇S ν µ 2 L 2 # (R,L 2 (T 2 )) + ∇S ν µ L 2 # (R,L 2 (T 2 )) , (2.20 
|∇S ν µ | 2 dx + T 2 ∇S ν µ • ∇ ∂S ν µ ∂θ dx + 1 ǫ T 2 ∇ Ãǫ • ∇S ν µ ∆S ν µ dx+ 1 ǫ T 2 ( Ãǫ + ν)|∆S ν µ | 2 dx = - 1 ǫ T 2 ∇ • Cǫ ∆S ν µ dx, or µ ∇S ν µ 2 2 + 1 2 d ∇S ν µ 2 2 dθ + 1 ǫ T 2 ( Ãǫ + ν)|∆S ν µ | 2 dx = - 1 ǫ T 2 ∇ Ãǫ • ∇S ν µ ∆S ν µ dx - 1 ǫ T 2 ∇ • Cǫ ∆S ν µ dx.
Since for any real number U and V

|U V | ≤ Ãǫ + ν 4ǫ U 2 + ǫ Ãǫ + ν V 2 , (2.21) using this formula with U = ∆S ν µ , V = ∇ Ãǫ•∇S ν µ ǫ , we have 1 ǫ T 2 ∇ Ãǫ • ∇S ν µ ∆S ν µ dx ≤ T 2 Ãǫ + ν 4ǫ |∆S ν µ | 2 dx + T 2 1 ǫ( Ãǫ + ν) |∇ Ãǫ • ∇S ν µ | 2 dx.
Taking U = ∆S ν µ , V = ∇• Cǫ ǫ and using again (2.21) we obtain

1 ǫ T 2 ∇ • Cǫ ∆S ν µ ≤ T 2 Ãǫ + ν 4ǫ |∆S ν µ | 2 dx + T 2 1 ǫ( Ãǫ + ν) |∇ • Cǫ | 2 dx.
These two results give

µ ∇S ν µ 2 2 + 1 2 d ∇S ν µ 2 2 dθ + 1 ǫ T 2 ( Ãǫ + ν)|∆S ν µ | 2 dx ≤ T 2 Ãǫ + ν 2ǫ |∆S ν µ | 2 dx + 1 ǫ T 2 1 ǫ( Ãǫ + ν) |∇ Ãǫ • ∇S ν µ | 2 + |∇ • Cǫ | 2 dx, (2.22) 
or, using (2.6),

µ ∇S ν µ 2 2 + 1 2 d ∇S ν µ 2 2 dθ + T 2 ( Ãǫ + ν) 2ǫ |∆S ν µ | 2 dx ≤ ǫ 2 γ 2 νǫ T 2 |∇S ν µ | 2 dx + 1 , (2.23) 
and integrating from 0 to 1 with respect to θ, we have

µ ∇S ν µ L 2 # (R,L 2 (T 2 )) + 1 0 T 2 ( Ãǫ + ν) 2ǫ |∆S ν µ | 2 dxdθ ≤ ǫγ 2 ν 1 0 T 2 |∇S ν µ | 2 dxdθ + 1 .
From this last inequality, we deduce

ν 2ǫ ∆S ν µ 2 L 2 # (R,L 2 (T 2 )) ≤ ǫγ 2 ν γ 2 ν 2 + 1 , then ∆S ν µ 2 L 2 # (R,L 2 (T 2 )) ≤ 2ǫ 2 γ 2 ν 2 γ 2 ν 2 + 1 , which gives (2.13). As ∇S ν µ L 2 # (R,L 2 (T 2 )) is bounded by γ ν (see (2.
12)), we can deduce that there exists a

θ 0 ∈ [0, 1] such that ∇S ν µ (θ 0 , •) 2 ≤ γ ν . (2.24) From (2.23) we have d ∇S ν µ 2 2 dθ ≤ 2ǫγ 2 ν T 2 |∇S ν µ | 2 dx + 1 . (2.25) Integrating (2.25) from θ 0 to an other θ 1 ∈ [0, 1] gives ∇S ν µ (θ 1 , •) 2 2 -∇S ν µ (θ 0 , •) 2 2 ≤ 2ǫγ 2 ν θ1 θ0 T 2 |∇S ν µ | 2 dx + 1 dθ ≤ 2ǫγ 2 ν ∇S ν µ 2 L 2 # (R,L 2 (T 2 )) + 1 , (2.26) 
giving the sought bound on

∇S ν µ (θ 1 , •) L ∞ # (R,L 2 (T 2
)) for any θ 1 or, in other words (2.15). Using Fourier expansion argument, because of (2.11), we have

S ν µ (θ, •) 2 2 ≤ ∇S ν µ (θ, •) 2 2 ≤ γ 2 ν 2 + 2 ǫγ 2 ν ( γ 2 ν 2 + 1), (2.27) 
and then (2.16).

We have that

∂S ν µ ∂t is solution to µ ∂S ν µ ∂t + ∂ ∂S ν µ ∂t ∂θ - 1 ǫ ∇ • Ãǫ + ν ∇ ∂S ν µ ∂t = 1 ǫ ∇ • ∂ Cǫ ∂t + 1 ǫ ∇ • ∂ Ãǫ ∂t ∇S ν µ , (2.28) 
from which we deduce

µ ∂S ν µ ∂t 2 2 + 1 2 d ∂S ν µ ∂t 2 2 dθ + 1 ǫ T 2 Ãǫ + ν ∇ ∂S ν µ ∂t 2 dx = - 1 ǫ T 2 Čǫ • ∇ ∂S ν µ ∂t dx, (2.29) 
where

Čǫ = ∂ Cǫ ∂t + ∂ Ãǫ ∂t ∇S ν µ , ∇ • Čǫ = ∇ • ∂ Cǫ ∂t + ∂ Ãǫ ∂t ∇S ν µ .
(2.30) From (2.6), (2.12) and (2.13), we have

Čǫ 2 L 2 # (R,L 2 (T 2 )) ≤ ǫ 2 γ(1 + γ ν ), ∇ • Čǫ L 2 # (R,L 2 (T 2 )) ≤ ǫ 2 γ 1 + γ ν + ǫ √ ǫ γ ν γ ν + 1 . (2.31)
Integrating (2.29) from 0 to 1 with respect to the variable θ, we obtain

ν ǫ ∇ ∂S ν µ ∂t 2 L 2 # (R,L 2 (T 2 )) ≤ ǫ 2 γ(1 + γ ν ) ∇ ∂S ν µ ∂t L 2 # (R,L 2 (T 2 )) , then ∇ ∂S ν µ ∂t L 2 # (R,L 2 (T 2 )) ≤ ǫ 3 γ ν (1 + γ ν ).
Using the Fourier expansion of S ν µ , we have for a given θ 0

∇ ∂S ν µ ∂t (θ 0 , •) 2 ≤ ǫ 3 γ ν (1 + γ ν ).
Thus, as previously, we get

∇ ∂S ν µ ∂t L ∞ # (R,L 2 (T 2 )) ≤ ǫ 3 γ ν (1 + γ ν ), ∂S ν µ ∂t L ∞ # (R,L 2 (T 2 )) ≤ ǫ 3 γ ν (1 + γ ν ).
Since the estimates of theorem 2.1 do not depend on µ, making the process µ → 0 allows us to deduce the following theorem.

Theorem 2.2 Under assumptions (2.6),(2.7) and (2.8), for any ν > 0, there exists a unique S ν = S ν (t, θ, x) ∈ L 2 (R × T 2 ), periodic of period 1 with respect to θ solution to (2.9) and submitted to the constraint sup θ∈R T 2

S ν (θ, x)dx = 0.

(2.32)

Moreover, the following estimates are satisfied

∂S ν ∂θ L 2 # (R,L 2 (T 2 )) ≤ γ √ ǫν ( γ 2ν + 1), ∇S ν L ∞ # (R,L 2 (T 2 )) ≤ γ 2 ν 2 + 2ǫγ 2 ν ( γ 2 ν 2 + 1), (2.33) S ν L ∞ # (R,L 2 (T 2 )) ≤ γ 2 ν 2 + 2ǫγ 2 ν ( γ 2 ν 2 + 1), ∂S ν ∂t L ∞ # (R,L 2 (T 2 )) ≤ ǫ 3 γ ν (1 + γ ν ).
(2.34)

Proof . (of Theorem 2.2). As estimates of Theorem 2.1 do not depend on µ, to proof existence of S ν , it suffices to make µ tend to 0 in (2.10). Uniqueness is insured by (2.32), once noticed that, if S ν and S ν are two solutions of (2.9), with constraint (2.32), S ν -S ν is solution to

∂(S ν -S ν ) ∂θ - 1 ǫ ∇ • (( A ǫ + ν)∇(S ν -S ν )) = 0, (2.35) 
from which we can deduce that

ν ∇(S ν -S ν ) 2 L 2 # (R,L 2 (T 2 )) = 0, (2.36)
and because of (2.32), and its consequence:

S ν -S ν L 2 # (R,L 2 (T 2 )) ≤ ∇(S ν -S ν ) L 2 # (R,L 2 (T 2 )) , (2.37) 
that S ν = S ν .

(2.38)

Now we get estimates on S ν which do not depend on ν.

Theorem 2.3 Under the assumptions (2.6),(2.7) and (2.8), the solution S ν , of (2.9) given by theorem 2.2 satisfies the following properties

A ǫ |∇S ν | L 2 # (R,L 2 (T 2 )) ≤ γ, (2.39) θω θα T 2 |∇S ν | 2 dxdθ 1/2 ≤ γ G thr , (2.40) ∇S ν (θ 0 , •) 2 ≤ γ G thr , for a given θ 0 ∈ [θ α , θ ω ], (2.41) 
S ν 2 L ∞ # (R,L 2 (T 2 )) ≤ γ Gthr + 2ǫγ 3 , (2.42) 
∂S ν ∂t 2 L ∞ # (R,L 2 (T 2 )) ≤ ǫ γ + ǫγ 3 G thr + (γ 2 + ǫ 2 γ 4 ) . (2.43)
Proof . (of Theorem 2.3). Multiplying (2.9) by S ν and integrating over T 2 yields 1 2

d dθ T 2 |S ν | 2 dx + 1 ǫ T 2 ( A ǫ + ν)|∇S ν | 2 dx = - 1 ǫ T 2 C ǫ • ∇S ν dx. (2.44) Integrating (2.44) in θ over [0, 1] gives 1 ǫ 1 0 T 2 ( A ǫ + ν)|∇S ν | 2 dx ≤ γ ǫ 1 0 T 2 A ǫ |∇S ν |dx, (2.45) 
then we obtain (2.39). Assuming (2.7), we have

G thr θω θα T 2 |∇S ν | 2 dxdθ 1/2 ≤ θω θα T 2 A ǫ |∇S ν | 2 dxdθ 1 2 ≤ A ǫ |∇S ν | L 2 # (R,L 2 (T 2 ))
.

(2.46) From (2.39) and this last inequality we get (2.40). Then, there exists a θ 0 ∈ [θ α , θ ω ] such that S ν satisfies (2.41).

Using the Fourier expansion of S ν and the relation (2.32) we get

S ν (θ 0 , •) 2 ≤ ∇S ν (θ 0 , •) 2 ≤ γ Gthr .
(2.47) Multiplying (2.9) by S ν , integrating over T 2 we obtain

1 2 d S ν (θ, •) 2 2 dθ + 1 ǫ T 2 ( A ǫ + ν)|∇S ν (θ, •)| 2 dx = 1 ǫ T 2 |∇ • C ǫ S ν (θ, •)|dx Applying formula (2.21) with V = |∇• Cǫ| ǫ and U = |S ν |, we get 1 2 d S ν (θ, •) 2 2 dθ + 1 ǫ T 2 ( A ǫ + ν)|∇S ν (θ, •)| 2 dx ≤ T 2 ( A ǫ + ν) 4ǫ |S ν (θ, •)| 2 + 1 ǫ( A ǫ + ν) |∇ • C ǫ | 2 dx, which gives 1 2 d S ν (θ, •) 2 2 dθ + 1 ǫ T 2 ( A ǫ + ν) |∇S ν (θ, •)| 2 - |S ν (θ, •)| 2 4 dx ≤ T 2 1 ǫ( A ǫ + ν) |∇ • C ǫ | 2 dx. (2.48)
Using Fourier expansion of S ν (θ, •), one can prove that the second term of the left hand side of (2.48) is positive, then we have

d S ν (θ, •) 2 2 dθ ≤ 2 T 2 1 ǫ( A ǫ + ν) |∇ • C ǫ | 2 dx. (2.49) 
Using (2.6), (2.8) and integrating (2.49) from θ 0 to θ ∈ [0, 1], we obtain

S ν (θ, •) 2 2 ≤ S ν (θ 0 , •) 2 2 + 2ǫγ 3 , (2.50) 
then inequality (2.42) is satisfied. Using inequality (2.39) and from hypothesis (2.8) we get

∂(∇ A ǫ ) ∂t ∇S ν L 2 # (R,L 2 (T 2 )) ≤ ǫ 2 γ A ǫ ∇S ν L 2 # (R,L 2 (T 2 )) ≤ ǫ 2 γ 2 .
(2.51) Multiplying (2.9) by -∆S ν and integrating in x ∈ T 2 we get 1 2

d dθ ∇S ν 2 2 + 1 ǫ T 2 A ǫ + ν |∆S ν | 2 dx + 1 ǫ T 2 ∇ A ǫ • ∇S ν ∆S ν dx = - 1 ǫ T 2 ∇ • C ǫ • ∆S ν dx. (2.52) Using (2.21) with U = |∆S ν | and V = ∇ Aǫ•∇S ν ǫ and with U = |∆S ν | and V = ∇• Cǫ ǫ , the equality (2.52) becomes 1 2 d dθ ∇S ν 2 2 + 1 2ǫ T 2 ( A ǫ + ν)|∆S ν | 2 dx ≤ 1 ǫ T 2 |∇ A ǫ | 2 A ǫ + ν |∇S ν | 2 + |∇ C ǫ | 2 A ǫ + ν dx, (2.53) 
which, integrating from 0 to 1 yields

1 0 T 2 A ǫ |∆S ν | 2 dxdθ ≤ 2ǫγ 2 1 0 T 2 | A ǫ ||∇S ν | 2 dxdθ + γ ≤ 2ǫγ 2 (γ 2 + γ). (2.54) As ∂ A ǫ ∂t ≤ ǫ 2 γ| A ǫ |, (2.55) 
we obtain

∂ A ǫ ∂t ∆S ν L 2 # (R,L 2 (T 2 )) ≤ ǫ √ 2ǫγ 2 1 + γ. (2.56)
Now we set out the equation to which ∂S ν ∂t is solution. We have 

∂ ∂θ ∂S ν ∂t = ∂ ∂t ∂S ν ∂θ = 1 ǫ ∇ • ∂ A ǫ ∂t ∇S ν + ( A ǫ + ν)∇ ∂S ν ∂t + 1 ǫ ∇ • ∂ A ǫ ∂t , then ∂S ν ∂t is solution to ∂ ∂θ ∂S ν ∂t - 1 ǫ ∇ • ( A ǫ + ν)∇ ∂S ν ∂t = 1 ǫ ∇ • ∂ A ǫ ∂t ∇S ν + 1 ǫ ∇ • ∂ C ǫ ∂t . ( 2 
+ 1 ǫ T 2 ( A ǫ + ν) ∇ ∂S ν ∂t 2 dx ≤ 1 ǫ T 2 ∂ A ǫ ∂t |∇S ν | ∇ ∂S ν ∂t dx + 1 ǫ T 2 ∂ C ǫ ∂t ∇ ∂S ν ∂t dx.
(2.58)

Using the fact that ∂ Cǫ ∂t 2 ≤ ǫ 2 γ 2 A ǫ , the second term of the right hand side of (2.58) satisfies

T 2 ∂ C ǫ ∂t ∇ ∂S ν ∂t dx ≤ ǫγ T 2 A ǫ ∇ ∂S ν ∂t dx ≤ ǫγ A ǫ ∇ ∂S ν ∂t 2 .
(2.59)

In the same way, using (2.8) we deduce the following estimate for the first term of the right hand side of (2.58) 

T 2 ∂ A ǫ ∂t |∇S ν | ∇ ∂S ν ∂t dx ≤ ∂ A ǫ ∂t |∇S ν | 2 ∂ A ǫ ∂t ∇ ∂S ν ∂t 2 ≤ ǫ 2 γ 2 A ǫ |∇S ν | 2 A ǫ ∇ ∂S ν ∂t 2 . ( 2 
( A ǫ + ν) ∇ ∂S ν ∂t 2 L 2 # (R,L 2 (T 2 )) ≤ ǫγ A ǫ ∇ ∂S ν ∂t L 2 # (R,L 2 (T 2 )) +ǫ 2 γ 3 A ǫ ∇ ∂S ν ∂t L 2 # (R,L 2 (T 2 ))
.

(2.61)

From this last inequality, we deduce 

A ǫ ∇ ∂S ν ∂t L 2 # (R,L 2 (T 2 )) ≤ ǫ(γ + ǫγ 3 ), ( 2 
∇ ∂S ν ∂t (θ 0 , •) 2 ≤ ǫ γ + ǫγ 3 G thr , (2.64)
and, since the mean value of ∂S ν ∂t (θ 0 , •) is zero,

∂S ν ∂t (θ 0 , •) 2 ≤ ǫ γ + ǫγ 3 G thr . (2.65)
To end the proof of the theorem it remains to show that 

∂S ν ∂t is bounded independently of ν in L ∞ # (R, L 2 (T 2 )).
∂ ∂S ν ∂t 2 2 ∂θ + T 2 A ǫ + ν 2ǫ ∇ ∂S ν ∂t 2 dx ≤ T 2 ∂ C ǫ ∂t 2 ǫ( A ǫ + ν) dx + T 2 ∂ A ǫ ∂t 2 |∇S ν | 2 ǫ( A ǫ + ν) dx ≤ ǫγ 2 + ǫ 3 γ 2 T 2 A ǫ |∇S ν | 2 dx, (2.66) 
where we used hypothesis (2.8) to get the last inequality. Integrating this last formula in θ over [θ 0 , σ] for any σ > θ 0 , we obtain, always remembering (2.39),

∂S ν ∂t (σ, •) 2 2 ≤ ∂S ν ∂t (θ 0 , •) 2 2
+ ǫ(γ 2 + ǫ 2 γ 4 ).

(2.67)

From inequality (2.67) we obtain directly the inequality of (2.43), using the periodicity of S ν .

Estimates (2.42) and (2.43) given in theorem 2.3 do not depend on ν. Making ν → 0, allows us to deduce that, up to a subsequence S ν -→ S ∈ L ∞ # (R, L 2 (T 2 )) weak - * . Concerning the limit S we have the following theorem.

Theorem 2.4 Under assumptions (2.6), (2.7), (2.8), there exists a unique function

S = S(t, θ, x) ∈ L ∞ # (R, L 2 (T 2
)), periodic of period 1 with respect to θ, solution to

∂S ∂θ - 1 ǫ ∇ • ( A ǫ (t, •, •)∇S) = 1 ǫ ∇ • C ǫ (t, •, •), (2.68)
and satisfying, for any

t, θ ∈ R + × R T 2 S(t, θ, x)dx = 0. (2.69) Moreover it satisfies: S 2 L ∞ # (R,L 2 (T 2 )) ≤ γ G thr + 2ǫγ 3 , (2.70) ∂S ∂t 2 L ∞ # (R,L 2 (T 2 )) ≤ ǫ γ + ǫγ 3 G thr + (γ 2 + ǫ 2 γ 4 ) . (2.71)
Proof . (of Theorem 2.4). Uniqueness of S is not gotten via the above evoked process ν -→ 0, but directly comes from (2.68). Assuming that there are two solutions S 1 and S 2 to (2.68), we easily deduce that 

d S 1 -S 2 2 2 dθ + 1 ǫ T 2 A ǫ |∇(S 1 -S 2 )| 2 dx = 0, ( 2 
A ǫ |∇(S 1 -S 2 )| 2 ≡ 0, (2.74) or, for any θ ∈ R, S 1 (θ + 1, •) -S 2 (θ + 1, •) 2 2 < S 1 (θ, •) -S 2 (θ, •) 2 2 . 
(2.75)

As (2.75) is not possible because of the periodicity of S 1 and S 2 , we deduce that (2.74) is true. Using this last information, we deduce, for instance

∇(S 1 -S 2 )(θ ω , •) ≡ 0, (2.76) 
yielding, because of property (2.69),

(S 1 -S 2 )(θ ω , •) 2 2 ≤ ∇(S 1 -S 2 )(θ ω , •) 2 2 . 
(2.77)

Injecting (2.74) in (2.72) yields d S 1 -S 2 2 2 dθ = 0, (2.78) 
and then (S 1 -S 2 )(θ, •)

2 2 = 0, (2.79) 
for any θ ≥ θ ω and consequently or any θ ∈ R. This ends the proof of theorem 2.4.

With this theorem on hand we can get the following result concerning z ǫ solution of equation (2.5).

Theorem 2.5 Under properties (2.6), (2.7), (2.8), for any T, not depending on ǫ, equation (2.5), with coefficients given by (2.1) coupled with (2.3) and (2.2) coupled with (2.4) has a unique solution

z ǫ ∈ L ∞ ([0, T ]; L 2 (T 2 )
). This solution satisfies:

z ǫ L ∞ ([0,T ],L 2 (T 2 )) ≤ γ (2.80)
where γ is a constant which do not depend on ǫ.

Proof (of Theorem 1.1). Theorem 1.1 is a direct consequence of theorem 2.5.

Proof . (of Theorem 2.5). To prove uniqueness, we consider z ǫ 1 and z ǫ 2 two solutions of (2.5). Their difference is then solution to

   ∂(z ǫ 1 -z ǫ 2 ) ∂t - 1 ǫ 2 ∇ • A ǫ ∇(z ǫ 1 -z ǫ 2 ) = 0, (z ǫ 1 -z ǫ 2 ) |t=0 = 0, (2.81) 
and multiplying the first equation of (2.81) by (z ǫ 1 -z ǫ 2 ) and integrating with respect to x gives

d z ǫ 1 -z ǫ 2 2 2 dt ≤ 0, (2.82) yielding z ǫ 1 -z ǫ 2 2 = 0, for any t, (2.83) 
and giving uniqueness.

Existence of z ǫ is a straightforward of adaptations of results of Ladyzenskaja, Sollonnikov and Ural' Ceva [START_REF] Ladyzenskaja | Linear and quasi-linear equations of parabolic type[END_REF] or Lions [START_REF] Lions | Remarques sur les équations différentielles ordinaires[END_REF] on a time interval of length ǫ. Then, let us consider the function

Z ǫ = Z ǫ (t, x) = S(t, t ǫ , x)
where S is solution to (2.69). We obtain

∂Z ǫ ∂t = ∂S ∂t (t, t ǫ , x) + 1 ǫ ∂S ∂θ (t, t ǫ , x) (2.84) 
Using equation (2.68) we deduce that Z ǫ is solution to

∂Z ǫ ∂t - 1 ǫ 2 ∇ • Ãǫ ∇Z ǫ = 1 ǫ 2 ∇ • Cǫ + ∂S ∂t (2.85) 
then we deduce that

   ∂(z ǫ -Z ǫ ) ∂t - 1 ǫ 2 ∇ • Ãǫ ∇(z ǫ -Z ǫ ) = ∂S ∂t (z ǫ -Z ǫ ) |t=0 = z 0 -S(0, 0, x).
(2.86) Multiplying (2.86) by z ǫ -Z ǫ and integrating over T 2 , we have

d z ǫ -Z ǫ 2 2 dt + 1 ǫ 2 T 2 Ãǫ |∇(z ǫ -Z ǫ | 2 dx = T 2 ∂S ∂t (z ǫ -Z ǫ )dx (2.87) which gives d z ǫ -Z ǫ 2 2 dt ≤ ǫ γ + ǫγ 3 G thr + (γ 2 + ǫ 2 γ 4 ) z ǫ -Z ǫ 2 .
(2.88)

Then we have

z ǫ (t, •) -Z ǫ (t, •) 2 2 ≤ z 0 -S(0, 0, x) 2 ǫ γ + ǫγ 3 G thr + (γ 2 + ǫ 2 γ 4 ) T. (2.89) As S L ∞ # (R,L 2 (T 2 )) ≤ γ √ G thr
when ǫ → 0, then (2.80) is true.

3 Homogenization for long term dynamics of dunes, proof of theorem 1.2

We consider equation (2.5) where A ǫ and C ǫ are defined by formulas (2.1) coupled with (2.3) and (2.2) coupled with (2.4). Our aim consists in deducing the equations satisfied by the limit of z ǫ solution to (2.5) as ǫ -→ 0.

It is obvious that

A ǫ (t, x) two-scale converges to A(t, θ, x) ∈ L ∞ ([0, T ], L ∞ # (R, L 2 (T 2 ))) and C ǫ (t, x) two-scale converges to C(t, θ, x), (3.1) 
with

A(t, θ, x) = a g a (|U(t, θ, x)|) and C(t, θ, x) = c g c (|U(t, θ, x)|) U(t, θ, x) |U(t, θ, x)| . (3.2) 
Assumptions (1.23) and (1.24) have the following equivalence here:

Θ = [0, T ) × {θ ∈ R : A(•, θ, •) = 0} × T 2 , (3.3) 
and

Θ thr = {(t, θ, x) ∈ [0, T ) × R × T 2 such that A(t, θ, x) < G thr }. (3.4) 
Moreover, we notice that because of ( 1) and ( 1)

A(t, θ, x) = 0 if and only if (t, θ, x) ∈ Θ. (3.5) 
We have the following theorem. 

∈ L ∞ ([0, T ], L ∞ # (R, L 2 (T 2 ))) solution to -∇ • ( A∇U ) = ∇ • C on [0, T ) × R × T 2 \Θ, (3.6 
)

∂U ∂θ = 0 on Θ thr , (3.7 
)

1 0 T 2 U dθ dx = T 2 z 0 dx, (3.8) 
where A and C are given by (3.2); Θ and Θ thr are given by (3.3) and (3.4).

Proof . (of Theorem 1.2). Theorem 1.2 is a direct consequence of theorem 3.1 Proof . (of Theorem 3.1). Multiplying (2.5) by ψ ǫ (t, x) = ψ(t, t ǫ , x) regular with compact support in [0, T ) × T 2 and 1-periodic in θ, we obtain 

- T 2 z 0 (x)ψ(0, 0, x)dx - T 2 T 0 ∂ψ ǫ ∂t z ǫ dt dx+ 1 ǫ 2 T 2 T 0 A ǫ ∇z ǫ ∇ψ ǫ dt dx = 1 ǫ 2 T 2 T 0 ∇ • C ǫ ψ ǫ dx. ( 3 
we obtain

T 2 T 0 ∂ψ ∂t ǫ + 1 ǫ ∂ψ ∂θ z ǫ dt dx + 1 ǫ 2 T 2 T 0 z ǫ ∇ • A ǫ ∇ψ ǫ dt dx + 1 ǫ 2 T 2 T 0 ∇ • C ǫ ψ ǫ dt dx = - T 2 z 0 (x)ψ(0, 0, x)dx (3.12)
Multiplying by ǫ 2 and using the two-scale convergence due to Nguetseng [START_REF] Nguetseng | A general convergence result for a functional related to the theory of homogenization[END_REF], Allaire [START_REF] Allaire | Homogenization and two-scale convergence[END_REF], Frénod, Raviart and Sonnendrucker [START_REF] Frénod | Asymptotic expansion of the Vlasov equation in a large external magnetic field[END_REF], as z ǫ is bounded in L ∞ (0, T, L 2 (T 2 )), there exists a profile U (t, θ, x), periodic of period 1 with respect to θ, such that for all ψ(t, θ, x), regular with compact support with respect to (t, x) and periodic of period 1 with respect to θ, we have

- T 2 T 0 1 0 U ∇ • Ã∇ψ dθ dt dx = T 2 T 0 1 0 ∇ • C ψ dθ dt dx, (3.13) 
then

-∇ • Ã∇U = ∇ • C, (3.14) 
with à and C given by (3.2).

Since A and C vanish on Θ, we deduce (3.6) from (3.14). Moreover, because of (2.7), in points where A(t, θ, x) < G thr , ∇ • C = 0 and A does not depend on t and x. Hence U depends only on θ. In other words, U (t, θ, x) = U (θ) on Θ thr .

(3.15)

Taking now test functions ψ not depending on x in (3), the two last terms of the left hand side of (3.12) vanish. Then passing to the limit, we obtain the weak formulation of

∂ T 2 U (t, θ, x)dx ∂θ = 0 (3.16)
which yields because of (3.15) ∂U ∂θ = 0 on Θ thr .

(3.17)

Finally, taking test function ψ depending only on t we obtain

1 0 T 2 U (t, θ, x)dθ dx = T 2 z 0 (x)dx, (3.18) 
ending the proof of the theorem.

4 Homogenization and corrector result for mean-term dynamics of dunes, proof of theorem 1.3 and 1.4

Making the same as in the begining of section 2, setting:

A ǫ (t, x) = A ǫ (t, t √ ǫ , t ǫ , x), (4.1) 
and

C ǫ (t, x) = C ǫ (t, t √ ǫ , t ǫ , x), (4.2) 
where

A ǫ (t, τ, θ, x) = a(1 -b √ ǫM(t, τ, θ, x)) g a (|U(t, τ, θ, x)|), (4.3) 
and

C ǫ (t, τ, θ, x) = c(1 -b √ ǫM(t, τ, θ, x)) g c (|U(t, τ, θ, x)|) U(t, τ, θ, x) |U(t, τ, θ, x)| , (4.4) 
equation (1.5) with initial condition (1.12) can be set in the form

   ∂z ǫ ∂t - 1 ǫ ∇ • (A ǫ ∇z ǫ ) = 1 ǫ ∇ • C ǫ , z ǫ |t=0 = z 0 . (4.5) 
Under assumptions (1.2) and (1.8), A ǫ and C ǫ given by (4.3) and (4.4) satisfy the following hypotheses:

                             τ -→ ( A ǫ , C ǫ ) is periodic of period 1, θ -→ ( A ǫ , C ǫ ) is periodic of period 1, x -→ ( A ǫ , C ǫ ) defined on T 2 , | A ǫ | ≤ γ, | C ǫ | ≤ γ, ∂ A ǫ ∂t ≤ γ, ∂ C ǫ ∂t ≤ γ, ∂∇ A ǫ ∂t ≤ γ. ∂ A ǫ ∂θ ≤ γ, ∂ C ǫ ∂θ ≤ γ, |∇ A ǫ | ≤ γ, |∇ • C ǫ | ≤ γ, ∂∇ • C ǫ ∂t ≤ γ, (4.6) 
             ∃ G thr , θ α < θ ω ∈ [0, 1] such that ∀ θ ∈ [θ α , θ ω ] =⇒ A ǫ (t, τ, θ, x) ≥ G thr , A ǫ (t, τ, θ, x) ≤ G thr =⇒        ∂ A ǫ ∂t (t, τ, θ, x) = ∂ A ǫ ∂τ (t, τ, θ, x) = 0, ∇ A ǫ (t, τ, θ, x) = 0, ∂ C ǫ ∂t (t, τ, θ, x) = ∂ C ǫ ∂τ (t, τ, θ, x) = 0, ∇ • C ǫ (t, τ, θ, x) = 0, (4.7) 
             | C ǫ | ≤ γ| A ǫ |, | C ǫ | 2 ≤ γ| A ǫ |, |∇ A ǫ | ≤ γ| A ǫ |, ∂ A ǫ ∂t ≤ γ| A ǫ |, ∂(∇ A ǫ ) ∂t 2 ≤ γ| A ǫ |, ∇ • C ǫ ≤ γ| A ǫ |, ∂ C ǫ ∂t ≤ γ| A ǫ |, ∂ C ǫ ∂t 2 ≤ γ 2 | A ǫ | ∂ A ǫ ∂τ 2 ≤ ǫγ| A ǫ |, ∂∇ A ǫ ∂τ 2 ≤ ǫγ| A ǫ |. (4.8) 
For (4.5), if hypotheses (4.6), (4.7) and (4.8) are satisfied, an existence and uniqueness result is given in [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF].

Homogenization

Let us consider equation (4.5) with A ǫ and C ǫ given by (4.1) and (4.2); θ -→ A, C is periodic of period 1, τ -→ A, C is periodic of period 1, (4.9) 

A ǫ (t, x) 3-scale converges to A(t, τ, θ, x) ∈ L ∞ ([0, T ] × R, L ∞ # (R, L 2 (T 2 ))) and C ǫ (t, x) 3-scale converges to C(t, τ, θ, x), ( 4 
∈ L ∞ ([0, T ]×R, L ∞ # (R, L 2 (T 2 ))) solution to ∂U ∂θ -∇ • ( A∇U ) = ∇ • C, (4.12) 
where A and C are given by (4.11).

Proof . (of Theorem 1.3 z 0 (x)ψ(0, 0, 0, x)dx -

T 2 T 0 ∂ψ ǫ ∂t z ǫ dt dx - 1 ǫ T 2 T 0 z ǫ ∇ • A ǫ ∇ψ ǫ dt dx = 1 ǫ T 2 T 0 ∇ • C ǫ ψ ǫ dt dx.
Replacing ∂ψ ǫ ∂t by the relation (4.13), we have

T 2 T 0 z ǫ ∂ψ ∂t ǫ + 1 √ ǫ ∂ψ ∂τ ǫ + 1 ǫ ∂ψ ∂θ ǫ dt dx + 1 ǫ T 2 T 0 z ǫ ∇ • A ǫ ∇ψ ǫ dt dx + 1 ǫ T 2 T 0 ∇ • C ǫ ψ ǫ dt dx = - T 2
z 0 (x)ψ(0, 0, 0, x)dx.

Multiplying by ǫ we have

T 2 T 0 z ǫ ǫ ∂ψ ∂t ǫ + √ ǫ ∂ψ ∂τ ǫ + ∂ψ ∂θ ǫ + ∇ • A ǫ ∇ψ ǫ dt dx+ T 2 T 0 ∇ • C ǫ ψ ǫ dt dx = -ǫ T 2
z 0 (x)ψ(0, 0, 0, x)dx.

The functions ∂ψ ∂t ǫ , ∂ψ ∂τ ǫ and ∂ψ ∂θ ǫ are periodic with respect to the two variables τ, θ. Here we use the 3-scales convergence see [START_REF] Lions | Reiterated homogenization of monotone operators[END_REF].

Taking the limit as ǫ → 0, using the 3-scales convergence, we have There is indeed existence and uniqueness of the equation (4.15) according to the application of the theorem 3.15 of [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF]; thus (4.15) is the homogenized equation. In (4.15), τ and t are only parameters. ))) defined by U ǫ (t, x) = U (t, t √ ǫ , t ǫ , x), where U is the solution to (4.12), the following estimate is satisfied:

A corrector result

z ǫ -U ǫ √ ǫ L ∞ ([0,T ),L 2 (T 2 )) ≤ α, (4.21) 
where α is a constant not depending on ǫ. Furthermore 

∂z ǫ ∂t - 1 ǫ ∇ • A ǫ ∇z ǫ = 1 ǫ ∇ • C ǫ + √ ǫ∇ • C 1 + ǫ∇ • C 2 + √ ǫ∇ • A ǫ 1 ∇z ǫ + ǫ∇ • A ǫ 2 ∇z ǫ . (4.24)
As U is solution to (4.12) and taking into account that

∂U ǫ ∂t = ∂U ∂t ǫ + 1 √ ǫ ∂U ∂τ ǫ + 1 ǫ ∂U ∂θ ǫ , (4.25) 
we obtain the following equation

∂U ǫ ∂t - 1 ǫ ∇ • A ǫ ∇U ǫ = 1 ǫ ∇ • C ǫ + √ ǫ ∂U ∂τ ǫ + ǫ ∂U ∂t ǫ . (4.26) 
Considering equation (4.24) and (4.26), z ǫ -U ǫ is solution to

∂( z ǫ -U ǫ √ ǫ ) ∂t - 1 ǫ ∇• A ǫ + √ ǫ A ǫ 1 +ǫ A ǫ 2 ∇( z ǫ -U ǫ √ ǫ ) = 1 ǫ ∇• C ǫ 1 + √ ǫ∇• C ǫ 2 +∇• A ǫ 1 ∇U ǫ + √ ǫ∇• A ǫ 2 ∇U ǫ - √ ǫ ∂U ∂t ǫ - ∂U ∂τ . ( 4 

.27)

Using the fact that U solution to (4.12) belongs to L ∞ ([0, T ] × R, L ∞ # (R, L 2 (T 2 ))), U ǫ is solution to (4.26) and a results of Ladyzenskaja, Solonnikov and Ural'Ceva [START_REF] Ladyzenskaja | Linear and quasi-linear equations of parabolic type[END_REF], all the terms ∂U ∂τ , ∂U ∂t are bounded. The terms A ǫ 1 , A ǫ 2 , C ǫ 1 and C ǫ 2 are also bounded by hypotheses and then so are ∇• C ǫ 1 , ∇• C ǫ 2 and ∇ • A 1 ∇U ǫ , ∇ • A 2 ∇U ǫ . Using the same arguments as in the proof of Theorem 1.1 in [START_REF] Faye | Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment[END_REF] we obtain that z ǫ -U ǫ √ ǫ converges to a profile

U 1 2 ∈ L ∞ ([0, T ] × R, L ∞ # (R, L 2 (T 2 ))) solution to ∂U 1 2 ∂θ -∇ • A∇U 1 2 = ∇ • C 1 + ∇ • A 1 ∇U - ∂U ∂τ .
(4.28)

2 C

 2 • ∇ψ dτ dθ dt dx.Then, the limit U of z ǫ solution to (2.5) satisfies the following equation∂U ∂θ -∇ • Ã∇U = ∇ • C. (4.15)

Theorem 4 . 2

 42 Under assumptions (4.6), (4.7), (4.8),(4.1), (4.10) and (4.11), considering functionz ǫ ∈ L ∞ ([0, T ), L 2 (T 2 )), solution to (2.5) and function U ǫ ∈ L ∞ ([0, T ], L ∞ # (R, L 2 (T 2

z ǫ -U ǫ √ ǫ 3 - 2 =

 32 scale converges to a profile U 1 2 ∈ L ∞ ([0, T ] × R, L ∞ # (R, L 2 (T 2 )∇ • C 1 + ∇ • A 1 ∇U -∂U ∂τ . (4.23) Proof . (of Theorem1.4). Theorem 1.4 is a direct consequence of theorem 4.2. Proof . (of Theorem 4.2). Using the relations (4.18), (4.19) and (4.20), equation (4.5) becomes

  of period 1,

	|U|, |	∂U ∂t	|, |	∂U ∂θ	|, |∇U|, |U 1 |, | |M|, | ∂M ∂U 1 ∂t ∂t |, | |, | ∂M ∂U 1 ∂τ ∂θ |, | |, | ∂M ∂U 1 ∂θ ∂τ |, |∇M| are bounded by d, |, |∇U 1 |,

  For this we will estimate the right hand side of (2.58) by applying formula (2.21) with V = 1 ǫ | ∂ Cǫ ∂t | and U = |∇ ∂S ν ∂t | to treat the second term of the right hand side of (2.58) and with V = 1 ǫ | ∂ Aǫ ∂t ||∇S ν | and U = |∇ ∂S ν

∂t | to treat the first. It gives: 1 2

  regular with compact support on [0, T ) × T 2 and periodic of period 1 with respect to τ and θ.

								∂ψ ǫ ∂t	=	∂ψ ∂t	ǫ +	1 √ ǫ	∂ψ ∂τ	ǫ +	1 ǫ	∂ψ ∂θ	ǫ ,				(4.13)
	where																							
	∂ψ ∂t	ǫ (t, x) =	∂ψ ∂t	(t,	t √ ǫ	,	t ǫ	, x),		∂ψ ∂τ	ǫ =	∂ψ ∂τ	(t,	t √ ǫ	,	t ǫ	, x),	∂ψ ∂θ	ǫ =	∂ψ ∂θ	(t,	t √ ǫ	,	t ǫ	, x).
																									(4.14)
	Multiplying (4.5) by ψ ǫ (t, t √ ǫ , t																

). Theorem 1.3 is a direct consequence of theorem 4.1. Proof . (of Theorem 4.1). Considering test functions ψ ǫ (t, x) = ψ(t, t √ ǫ , t ǫ , x) for all ψ(t, τ, θ, x) ǫ , x) and integrating on [0, T ) × T 2 , we get

-T 2

  Because of hypotheses (4.6), (4.7) and (4.8), A, A 1 , A 2 , A ǫ , A ǫ 1 , A ǫ 2 , C, C 1 , C 2 , C ǫ , C ǫ 1 and C ǫ

						√	ǫ C ǫ 1 (t, x) + ǫ C ǫ 2 (t, x)				(4.17)
	where	A ǫ (t, x) = A(t,	t √ ǫ	,	t ǫ	, x),	C ǫ (t, x) = C(t,	t √ ǫ	,	t ǫ	, x)	(4.18)
		A ǫ 1 (t, x) = A 1 (t,	t √ ǫ	,	t ǫ	, x),	C ǫ 1 (t, x) = C 1 (t,	t √ ǫ	,	t ǫ	, x)	(4.19)
		A ǫ 2 (t, x) = A 2 (t,	t √ ǫ	,	t ǫ	, x),	C ǫ 2 (t, x) = C 2 (t,	t √ ǫ	,	t ǫ	, x)	(4.20)

Considering equation (4.5) with coefficients (4.1) and (4.2) and hypothesis (4.10) leads to

A ǫ (t, x) = A ǫ (t, x) + √ ǫ A ǫ 1 (t, x) + ǫ A ǫ 2 (t, x),

(4.16)

C ǫ (t, x) = C ǫ (t, x) + 2 are regular and bounded coefficients.
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