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Résumé — A new approach for sub-mesh enrichment of the contact geometry
has been proposed in the framework of the Finite Element Method and the
Node-to-Segment contact discretization. The method is very general and
multipurpose : it allows, for example, to extend the limits of the contact
modeling of thin-walled structures or to account for a change of the contact
geometry due to loading, for example, to simulate a shallow wear.
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1 Introduction

Contact occurs at the interface between bodies. In the Finite Element
Method this interface is discretized by nodes and segments. In the classical
master-slave approach and the Node-to-Segment (NTS) discretization, this
interface is represented by so-called “contact elements”, which consist of
one slave node and one or several master segments. In general, the contact
geometry of such an element is fully described by the interpolation function
of the master segment or by a smoothing function aimed to represent a C1

geometry over several master segments. However the contact geometry can be
enriched independently of the finite element mesh and the related interpolation
functions.

In the second half of the 90s several approaches based on enriching of the
element interpolation functions have been proposed for different problems [2],
[1]. The entire class of enriched or extended finite element methods got the
name XFEM (extended finite element method) [8] or GFEM (generalized finite
element method) or PUM (partition of unity method) [7]. This method is
used for modeling of dislocations, solidification, two-fluid flows, cracks and
cohesive cracks.

We propose to enrich the geometry of the master surface in a rather similar
manner (Fig. 1), as the solution field is enriched within the XFEM, so that
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the master surface ρ within the contact element is described by the following

equation :
ρe = ρ+hen ⇔ ρe( ξ

∼
) = ρ( ξ

∼
)+he( ξ

∼
, Θ
∼

)n( ξ
∼

), (1)

where ρ and ρe are vectors describing the original and enriched master surfaces

respectively, n is a unit normal vector to the original master surface and he( ξ
∼
, Θ
∼

)

is an enriching function which depends on the convective coordinate of the
master segment(s) ξ

∼
and, in general, may depend on the local strain-stress

state and its history. So this approach can be used, for example, to account for
geometry change due to wear, deformation of asperities, dislocation escape,
relaxation, etc. This dependence is taken into account by means of an array of
variables θ

∼
, which can also include time. Remark that the single and double

line underlined quantities are vectors and second-order tensors respectively,
quantities underlined by a wave represent an ordered array of scalar quantities
(e.g., two convective coordinates ξ

∼
= [ξ1, ξ2]T, array of parameters θ

∼
, etc.),

quantities underlined by a double wave represent matrices of scalars (e.g., a
surface metric matrix), the quantities underlined by a line and a wave designate
ordered arrays of vectors (e.g., a set of basis vectors), see [11] and [12].

There are several motivations to enrich the contact geometry : 1) a multiscale
modeling of contact with thin-walled structures with a complex geometry
of the surface as well as modeling of contact with a soft bodies with hard
coatings ; 2) implicit modeling of anisotropic friction ; 3) account of a complex
change of the surface geometry due to loading, etc. The main advantage of
the method is an enrichment of the geometry on the sub-mesh scale without
increasing the computational costs. The main drawback is a challenging
analytical formulation of the geometrical quantities entering in formulae for
the residual vector and the tangent matrix of contact elements.

First of all, a general weak form for contact problems will be presented. Next
some remarks on the derivation of main equations will be given. In conclusion,
some perspectives and applications will be proposed.

F. 1 – Enriched geometry ρe of the master surface ρ.
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2 Weak formulation of the contact problem

The Finite Element Method is based on the integral (weak) form of the
equilibrium equation. A rigorous construction of a weak form for the contact
problems results in a variational inequality [3]. However this formulation is
hard to apply for the case of nonlinear material, large deformation and large
sliding contact. That is why for the general case it is advantageous to use the
approach of variational equalities [9], assuming known in advance the active
contact zone Γc :

∫

Ω

σ
=
··δε
=

dΩ+
∫

Γc

δWc dΓc =

∫

Γ f

σ0 ·δudΓ+
∫

Ω

f v ·δudΩ,

V =

{

δu ∈H1(Ω)
∣

∣

∣ δu = 0 on Γu

}

, (2)

where σ
=

is the Cauchy stress tensor, ε
=

is the Green-Lagrangian strain tensor,Ω is

the interior of contacting bodies in the current configuration, σ0 is a prescribed
traction on the surface Γ f and f v is a vector field of volume force density. The

displacement vector field u belongs to the Hilbert spaceH1(Ω) and fulfills the
Dirichlet boundary conditions u = u0 on the boundary Γu. The form of the term
δWc, which has to be integrated over the contact area Γc of any of contacting
surfaces, depends upon the choice of the resolution method (penalty, Lagrange
multiplier, augmented Lagrangian methods and others) and in general can be
written as a linear function of four variations :

δWc = Aδgn+ B
∼

Tδξ
∼
+Cδλn+ D

∼
Tδλ
∼ t, (3)

where gn is the local normal gap between contacting surfaces (gn > 0 denotes
that there is no contact, gn = 0 means that bodies are in contact and gn < 0
designates a local penetration), ξ

∼
is the convective parameter describing the

projection point of the slave node on the master segment, λn is the Lagrange
multiplier representing the contact pressure and λ

∼ t is a set of Lagrange
multipliers representing the components of the tangential contact stress vector

in the local basis
∂ρ

∂ξ
∼

; A, C are scalar functions of geometrical quantities and

the local stress state and B
∼

, D
∼

are components of vector functions in the local
basis. The linearization of the contact term (3) from Eq. (2) needed in an implicit
resolution scheme, requires the variation of the virtual work term δWc :

∆δWc =
∂δWc

∂gn
∆gn+A∆δgn+

∂δWc

∂ ξ
∼

T

∆ ξ
∼
+ B
∼

T
∆δ ξ
∼
+
∂δWc

∂λn
∆λn+

∂δWc

∂λ
∼ t

T

∆λ
∼ t

(4)

The closed form expressions for variations δgn, δξ
∼
, ∆δgn, ∆δ ξ

∼
for the

continuous geometry independent on discretization were first obtained in [6].

The terms ∂δWc
∂• depend on the resolution method and remain unchangeable

in case of enrichment of the contact geometry. However the variations of the
geometrical quantities have to be recalculated.
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3 Main equations for the enriched contact element

To derive a consistent framework one has to impose two conditions on the
enriching function he( ξ

∼
, Θ
∼

) :

– he( ξ
∼
, Θ
∼

) ∈ C2( ξ
∼

)
⋂

C1(θ
∼

), i.e. he( ξ
∼
, Θ
∼

) is a C2-smooth function by

convective coordinate ξ
∼

and C1-smooth by θ
∼

;

– in order to avoid self-intersection of the enriched surface, we require that
the value of enriching function remains smaller than the minimal local

curvature radius of the surface |he( ξ
∼

)| <min
i

{

1/κi( ξ
∼

)
}

.

If the master geometry is enriched locally (within each master segments), in
order to avoid gaps in the surface these conditions have to be complemented by
a third one : the value of the enriching function has to be zero at the boundary
of the contact element he(∂Ωe) = 0. The latter condition is very restrictive and
renders a mesh dependent method. This difficulty can be overcome if instead
of local enriching, one enriches the smoothing surface constructed over several
master segments, see Fig. 2.

F. 2 – Enriched geometry of the smoothed master surface.

If the enriching function depends only on the surface parameter (i.e. it does
not change in time and does not depend on the deformation state) or if it
changes very slowly, then all the variations of the kinematic quantities remain
the same as in [6] if one replaces all quantities related to the master surface by
enriched ones •e :

ρe = ρ+hen, ne =

∂ρe

∂ξ1
×
∂ρe

∂ξ2
∥

∥

∥

∥

∥

∂ρe

∂ξ1
×
∂ρe

∂ξ2

∥

∥

∥

∥

∥

, δ̄ρe = δρe+
∂ρe

∂ ξ
∼

T

δξ
∼

δρe = δρ+heδn,
∂ρe

∂ ξ
∼

=

∂ρ

∂ξ
∼

+n
∂he

∂ ξ
∼

+he
∂n

∂ ξ
∼

, A
≈ e =

∂ρe

∂ ξ
∼

·
∂ρe

∂ ξ
∼

T

, H
≈ e = ne ·

∂2ρe

∂ ξ
∼

2

∂2ρe

∂ ξ
∼

2
=

∂2ρ

∂ ξ
∼

2
+
∂n

∂ ξ
∼

∂he

∂ ξ
∼

T

+
∂he

∂ ξ
∼

∂n

∂ ξ
∼

T

+he
∂2n

∂ ξ
∼

2
+n
∂2he

∂ ξ
∼

2

The explicit forms of these equations can be found in [11]. However to
incorporate these modified quantities in a Finite Element framework one has
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to derive the equations for the basic variations of the enriched master vector
and its derivatives

δρe, δ
∂ρe

∂ ξ
∼

, δ
∂2ρe

∂ ξ
∼

2
.

If the first expression is easily derivable, however to obtain the two latter, a
significant efforts have to be undertaken [11]. However if one confies himself to
the case of infinitely small gaps gn = 0, as, for example, in [4], the formulation

becomes much simpler, since in this case there is no need to derive δ
∂2ρe

∂ ξ
∼

2 . It

is worth noting that the quantities δ
∂ρe

∂ ξ
∼

and δ
∂2ρe

∂ ξ
∼

2 enters in equations for the

variations of the geometrical quantities as dot products with the normal vector

to the enriched surface ne and its local basis
∂ρe

∂ ξ
∼

, which are in turn can be

expressed by the original normal vector n and the local basis
∂ρ

∂ξ
∼

:

δ
∂ρe

∂ ξ
∼

→ n ·δ
∂ρe

∂ ξ
∼

,
∂ρ

∂ξ
∼

·δ
∂ρe

∂ ξ
∼

T

; δ
∂2ρe

∂ ξ
∼

2
→ n ·δ

∂2ρe

∂ ξ
∼

2
,
∂ρ

∂ξ
∼

·δ
∂2ρe

∂ ξ
∼

2

T

,

the latter quantities are significantly easier to derive than the original ones.
In general case, in order to avoid these complicated derivations and their
programming, one can incorporate in the employed finite element software, an
automatic procedure which derives the needed quantities and constructs the
residual vector and the tangent matrix for contact elements. This approach has
been proposed in [10] and [5], where the AceGen software, based on the package
of symbolic mathematical calculations Mathematica, has been used to construct
the needed quantities for frictional contact in case of smoothed master surface.

It is worth mentioning that the detection procedure has to be also changed.
It is often based on the detection of the normal projection of a slave node on the
master surface. Obviously in case of enriched geometry the projection point
has to be determined on the enriched surface (Fig 3).

As already mentioned, the enriching function he has to be rather smooth
(C2) and its value |he| must remain smaller than the minimal local curvature
radius. Moreover if one uses the normal projection, it is necessary to keep in
mind that Newton’s method, often used for this purpose, allows to determine
only one projection point (closest to the starting point), that is why the function
he has to be chosen properly in order to avoid multiple solutions of minF(rs, ξ∼

)

(Fig. 4 a), where

F(rs, ξ
∼

) =
1

2
(rs−ρ( ξ

∼
)2

is a distance function. Contrary to the normal projection, the shadow projection
proposed in [11] is unique if there is no “shadows” from the master surface on
its own, so one has to pay attention to avoid shadows due to an enrichment of
the master surface (Fig. 4 b).
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F. 3 – The procedure of the normal projection in case of an enriched master
geometry (rs is a slave node position).

As already mentioned, in order to preserve the continuity of the master
surface in case of local enrichment, enriching functions have to be zero at
edges of each master segment he(∂Ωe) = 0 (Fig. 4 c). It has to be also mentioned
that there is a possibility of intersection of enriched geometries of adjacent
master segments, which has to be avoided as well (Fig. 4 d).

F. 4 – Incorrect choices of enriching function he : a – multiple normal projection
within one segment ; b – presence of self-shadows for shadow projection ; c

– discontinuity of enriched master surface ; d – self intersection of enriched
master surface.
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4 Perspectives and applications

The enrichment of the contact geometry by an arbitrary function permits :

1. to take into account a complicated geometry within one contact element ;

2. to account for a change of the local geometry due to loading conditions.

As mentioned, if the enrichment is chosen to be localized within NTS contact
elements, the choice of the enrichment function is limited : its value must
be zero at the edges of the master segments. It implies a strong connection
between the finite element mesh and the enrichment. A possible application of
this approach is the modeling of periodic structures using a regular mesh, Fig. 5.
Enrichment of thin-walled or beam structures by a constant enriching function
seems to be meaningfull, since the predominant deformation of such structures
does not affect the geometry of the surface (Fig. 5,a-b). A possible applications
is a modeling of contact with grid structures, micro contact with fiber, etc.
The proposed approach is also valid for the case, when the deformation of the
surface geometry is small in comparison to the deformation of the bulk material
(Fig. 5,c-d), for instance, hard coating on a soft substrate. An anisotropic friction
can be simulated implicitly by a special enrichment of the master surface
(Fig. 6).

F. 5 – Enriched geometry of the master finite element mesh : a-b – periodic
thin-walled structure, c-d – mesh of a screw with 4 turns, represented by
enrichment of 16 segments with a screw function ρe of the master surface ρ.

F. 6 – a-b – An example of contact geometry enrichment for modeling of
anisotropic friction.
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If one couples the enrichment function with a global smoothing procedure
(Fig. 6, c-d), the mentioned shortcoming of the enrichment approach vanishes.
Since the master surface is globally smooth, it is not anymore required that the
enriching function is zero along the edges of the master segments. However
it becomes a real challenge to obtain the needed variations of the geometrical
quantities for the resulting enriched surface. On the other hand this coupling
makes possible to simulate a shallow wear and to enrich the master geometry
independently on the mesh.

The proposed method presents a new general and multipurpose framework
in computational contact mechanics and requires further developments and
applications.
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