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Résumé — A multiscale procedure for modeling crystalline nanostructures such as nanowires is pro-
posed. The size effects exhibited by nano objects are captured by taking into account a surface energy,
following the classical Gurtin Murdoch surface elasticity theory. An appropriate variational form and
a finite element approach are provided to model and solve relevant problems numerically. The metho-
dology is completed with a computational procedure based on ab initio calculations to extract elastic
coefficients of general anisotropic surfaces.
Mots clés — Nanomechanics, Surface effects, Multiscale methods.
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1 Introduction

Nanosized objects have at least one dimension in the nanometer range, roughly between 1 to 100 nm.
They are intermediate in size between atomistic/molecular and microscopic/continuum structures. By
assembling nanostructural elements, it is possible to manufacture nanocomposites or nanodevices with
desired properties and functions. Various types of nanostructural elements like nanowires, nanotubes,
nanorods, nanorings, nanobelts or nanocombs have been synthesized and can serve as building blocks
for nanosystems and nanostructures.

Nanowires and in general nanostructures are characterized by non zero surface energy that make
their effective properties size-dependent. Due to a different local environment, atoms near a free surface
or interface have different equilibrium positions than do atoms in the bulk.

Surface free energy is neglected in traditional continuum mechanics because it is associated with
only a few layers of atoms. For objects with dimensions larger than tens of nanometers, the ratio between
volume and surface is extremely small. However, for nano-sizes particles, wires and films, this ratio
becomes significant, and so does the effect of surface free energy. The importance of surface stress has
led to important theoretical modeling advances that has started with the works of Gurtin and Murdoch
[4].

This work provides a complete procedure for modeling size-dependent mechanical effects in na-
nowires. Firstly, a continuum variational framework enriched with surface energy is developed, and a
three-dimensional FEM methodology is presented to solve the problem numerically. Secondly, a new
technique based on ab initio computations is detailed to determine the surface parameters related to the
continuum model.

2 Continuum modelling with surface energy

We consider an open domain Ω ∈R3 with a bounding surface Γ. The latter Γ is composed of two dis-
joint complementary parts Γu and ΓF where the displacements and forces are prescribed, respectively. To
introduce the surface energy and related size effects, the Gurtin-Murdoch model [4] of surface elasticity
is adopted. The equilibrium equations of the problem are then given by

∇ ·σ+b = 0 in Ω, (1)
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∇s ·σs +σn = 0 on Γ (2)

where σ is the Cauchy stress tensor, b is body force and n is the outward unit normal vector to Γ.
Equation (1) refers to the bulk equilibrium equation, while Eq. (2) refers to the surface equilibrium (see
e.g. [1]). Superscript (.)s refers to surface quantities or operators. In Eq. (2), ∇s ·T denotes the surface
divergence of a differentiable second-order tensor T and is defined by :

∇s ·T = ∇T : P. (3)

In the above equation, the symbol " :" denotes double contraction of indices and P(x) = 1−n(x)⊗
n(x) is an orthogonal projection operator describing the projection on the plane tangent to Γ at x ∈ Γ.
The surface strain and stress tensors are defined by :

σs = PσP, εs = PεP, (4)

where ε = 1
2(∇u+∇uT ) is the linearized strain tensor and u is a displacement field. It is worth noting

that the operator P does not involve any basis change : the reader has to keep in mind that Ts denotes
the projection of T on the surface Γ. Thus Ts = PTP does not express the components relative to the
basis of the tangent plane to the surface. This projection tensor nicely allows one to mix bulk and surface
quantities in one equation. The surface stress σs is related to the surface strain by

σs =
∂γs

0(ε
s)

∂εs +
∂γs(εs)

∂εs . (5)

Above, γs(εs
0) and γs(εs) are specified by

γs
0(ε

s) = τs : εs, γs(εs) =
1
2

εs : Cs : εs. (6)

Physically, γs
0(ε

s) is an energy density due to surface residual stress τs, γs(εs) is a surface strain density
function with Cs denoting a surface elastic tensor. We do not assume an isotropic surface, i.e. τs ̸= τsP.
The equations (1-2) are completed with boundary conditions prescribed on the surface Γu and ΓF as{

σn = F̄ on ΓF

u(x) = ū(x) on Γu.
(7)

Finally, it is assumed that the surface adheres to the bulk :

[[u]] = 0 on Γ. (8)

To apply this framework to finite element analysis, we provide in the following the weak form of the
equations. It can be derived straightforwardly by taking the classical weak form and taking into account
a term related to the virtual internal work of the surface [7]. Another way to obtain it is to express the
potential energy of the system and minimize the energy with respect to the displacement field. Thus, the
potential energy of the system is given by :

E =W b(ε)+W s(εs)−W ext . (9)

In the above expression, W b(ε) is the bulk elastic strain energy given by

W b(ε) =
∫

Ω

1
2

ε : Cbulk : εdΩ. (10)

In (9), W s(εs) is the surface elastic energy provided by

W s(εs) =
∫

Γ
[γs

0(ε
s)+ γs(εs)]dΓ. (11)

Finally, the work of external forces is expressed by :

W ext =
∫

ΓF

u · F̄dΓ+
∫

Ω
u ·bdΩ. (12)
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FIGURE 1 – (a) Local basis and FEM model of nanowire with hexagonal cross-section ; (b) ab initio
model of nanowire with n layers.

The equilibrium is found by writing the stationarity condition :

DδuE = 0 (13)

where Dv f is the Gâteaux derivative of the functional f in the direction v. It leads to the weak form
suitable for finite element discretization :

Find u ∈ H1(Ω) and u = ū on Γu such as∫
Ω

ε(u) : Cbulk : ε(δu)dΩ+
∫

Γ
εs(u) : Cs : εs(δu)dΓ

=
∫

ΓF

F̄ ·δudΓ+
∫

Ω
b ·δudΓ−

∫
Γ

τs : δεs(δu)dΓ (14)

for all δu ∈ H1
0 (Ω), H1(Ω) and H1

0 (Ω) being the usual Sobolev spaces.

2.0.1 Discretization with finite elements

In the following the Voigt’s notation is adopted. The vectorial form of the stress tensor is given by
[σ] = {σ11,σ22,σ33,σ23,σ13,σ12} = {σ1,σ2,σ3,σ4,σ5,σ6} and the strain tensor counterpart is given by
[ε] = {ε11,ε22,ε33,2ε23,2ε13,2ε12} = {ε1,ε2,ε3,ε4,ε5,ε6}. The indices 1, 2 and 3 correspond to the x, y
and z directions, respectively (see figure 1). In this work we consider the nanowire which is a monocrystal
with wurtzite structure, as for example AlN, which grows with hexagonal cross-sections (see figure 1)
and whose bulk elastic tensor can be expressed by 5 independent constants C11,C33,C44,C12 and C13.

To solve the problem by FEM, it is necessary to discretize the weak form (14). While the bulk terms
lead to classical matrix and vector forms, terms related to surface energy require a specific treatment.
The domain is first discretized into volume elements, as shown in figure 1.

To discretize the surface terms, surface elements are required. In [7], we proposed a framework
avoiding the explicit mesh of surfaces when considering surface energy by using an XFEM/level-set
approach. In this work however, we adopt the classical FEM framework for the sake of simplicity. Let
(e1,e2) a local orthonormal basis related to the surface such that e1 = t and e2 = z, with z and t = z×n
unit vectors along the main direction of the nanowire and tangent to the surface Γ (see figure 1).

The surface residual stress can be expressed by :

τs = τs
1e1 ⊗ e1 + τs

3e2 ⊗ e2 = τs
1t⊗ t+ τs

3z⊗ z. (15)

Due to the symmetry of the hexagonal nanowire, the six facets are identical and correspond to
the

(
101̄0

)
surfaces. Then the surface stress can be related to surface strain through four independent

constants Cs
11, Cs

13, Cs
33 and Cs

55 and two residual stress components τs
1 and τs

3 : σs
1

σs
3

σs
5

=

 Cs
11 Cs

13 0
Cs

13 Cs
33 0

0 0 Cs
55

 εs
1

εs
3

2εs
5

+

 τs
1

τs
3

0

 . (16)
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The elastic tensor is expressed in the local basis as :

Cs =Cs
11t⊗ t⊗ t⊗ t+Cs

33z⊗ z⊗ z⊗ z

+Cs
13 (t⊗ t⊗ z⊗ z+ z⊗ z⊗ t⊗ t)+Cs

55(t⊗ z⊗ t⊗ z+ z⊗ t⊗ z⊗ t). (17)

On substituting the FEM discretization into the weak form (14), and using the arbitrariness of nodal
variations δu, the following discrete system of linear equations is obtained :

(K+Ks)q = F−Fs (18)

with q being the vector of unknown displacements,

K =
∫

Ω
BT CbulkBdΩ (19)

being the bulk rigidity matrix and

Ks =
∫

Γ
BT MT

p CsMpBdΓ (20)

being the surface rigidity matrix. In (20) Cs is the matrix form of the tensor (17) such as [σs] = Cs[εs],
with [σs] =

{
σs

11,σ
s
22,σ

s
33,σ

s
23,σ

s
13,σ

s
12

}
and [εs] =

{
εs

11,ε
s
22,ε

s
33,2εs

23,2εs
13,2εs

12

}
. Note that [σs] is dif-

ferent from the left-hand term in (16) which express the surface stress in the local basis (tangent to the
surface) while [σs] is expressed in the cartesian basis. As Cs is symmetric (see Eq. (17)), the matrix Ks

is also symmetric. The matrix Mp relates the surface strains to the bulk strains through [εs] = Mp[ε]. Its
expression in 3D is specified by

Mp =



P2
11 P2

12 P2
13

P2
12 P2

22 P2
23

P2
13 P2

23 P2
33

2P12P13 2P22P23 2P23P33
2P11P13 2P12P23 2P13P33
2P11P12 2P12P22 2P13P23

P12P13 P11P13 P11P12
P22P23 P12P23 P12P22
P23P33 P13P33 P13P23

(P2
23 +P22P33) (P23P13 +P12P33) (P22P13 +P12P23)

(P13P23 +P12P33) (P2
13 +P11P33) (P12P13 +P11P23)

(P13P22 +P12P23) (P11P23 +P13P12) (P11P22 +P2
12)

 . (21)

We finally obtain the following approximation for Ks :

Ks ≃ ∑
e∈S Γ

BT (xe
Ω)M

T
p (x

e
Γ)C

s(xe
Γ)Mp(xe

Γ)B(x
e
Ω) |Γe| (22)

where |Γe| denotes the area of the triangular element Γe, xe
Ω is an integration point in the element and

xe
Γ is an integration point on the external surface of the element (see more details in [8]). Remark that

integration points being located inside triangular facets, the unit normal vector n and tangent projector P
are well defined. In this work we exclude the surface energies of both ends surfaces where displacement
and external forces are prescribed. The generalized force vectors are obtained by

F =

∫
ΓF

NT F̄dΓ+

∫
Ω

NT bdΩ (23)

Fs =
∫

Γ
BT MT

p τsdΓ, (24)

where N is a classical FEM shape functions matrix. In the following, body forces are neglected.
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FIGURE 2 – Slab models with number of layers n.

3 Extracting coefficients using Quantum Mechanics calculations

In the present work, bulk and surface elastic parameters are extracted through atomistic ab initio
calculations. In the present work we used the CRYSTAL code [2] for all ab initio calculations. B3LYP
KS-DFT method with extra large space integration grid, was used. Basis set was 86-21G* for Al [6], and
6-31Gd1G for N[3]. We have chosen the hybrid B3LYP functional because it is known to provide quite
accurate energetic properties. As we are interested in elastic behavior, which is evaluated through energy
derivatives, this choice seems appropriate.

3.1 Surface coefficients

To compute surface elastic parameters, a surface (slab) model shown in figure 2 is used, consisting of
n layers of atoms in the direction normal to the surface. Periodic conditions are applied along both other
directions.

The possible strains for the slab system are εs
1, εs

3 and εs
5 which are prescribed along the z-(3) and t-(1)

directions. The upper and lower surfaces normal to n are free to relax. The total energy of the system is
the sum of two components, the surface energy and the bulk energy. The surface energy has to be isolated
from the total energy. We assume the following model :

Eslab(w) = wEs +(1−w)Eslab(w → 0) , w =
2
n

(25)

where w is the relative weight of the surface for a n-layer slab, as the model depicted in figure 2 contains
two external atomic layers. Defining the elastic constants as derivatives of the energy with respect to
strains, we obtain

Cslab
i j (w) = wCs

i j +(1−w)Cslab
i j (w → 0) (26)

where Cs
i j are the surface elastic properties and Cslab

i j (w → 0) are the limit values which can be obtained
from bulk term by fully relaxing ε2 for fixed ε1 and ε3 and optimizing the energy of the system.

Eq. (26) can be re-arranged as

Ci j(w) = w(Cs
i j −Cslab

i j (w → 0))+Cslab
i j (w → 0). (27)

The procedure consists into computing values of Ci j for different values of w (by increasing the number of
layers n) and fitting the obtained curve with a linear function to identify the slope r =Cs

i j −Cslab
i j (w → 0)

and thus Cs
i j. For the residual stress we have :

τi(w) = wτs
i . (28)

In that case τs
i are directly obtained from the slope of the linear fit (see an illustration in [5]). We

define per-area elastic constants as

Cslab
i j =

1
S

∂2Eslab

∂εi∂ε j
(29)
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FIGURE 3 – (a) Effective Young modulus of the nanowire : comparison between continuum FEM mo-
del and ab initio model (prescribed stress) ; (b) Nanowire Bulk radial strain in relaxation : comparison
between continuum FEM model and ab initio model

where S = ac is the unit cell area. The total surface energy Eslab is determined using the DFT method
described above for several values of strains ε1, ε2 and ε5. As for bulk computations, a polynomial fitting
was used to extract the derivatives. The resulting surface parameters were provided for the (101̄0) AlN
wurtzite surfaces in [5, 8] (parameters A).

4 Numerical examples

4.1 Validation of the model : nanowire in traction

The aim of this first example is to validate the mechanical continuum model by comparing it with
ab initio calculations. Different atomistic models fully solved with an ab initio method are constructed
with increasing diameters. We classify the nanowires according to the number of atomic layers n in
the nanowires (see figure 1 b). The biggest calculated nanowire corresponds to n = 7 and contains 588
atoms in the unit cell. As both periodic conditions along z-axis and hexagonal symmetries are taken into
account, a reduced model containing 98 atoms is employed.

We compute two quantities for both models : the Young modulus Ēzz and the axial strain of the
nanowire in absence of loading due to surface residual stress τs and (c) the bulk radial residual strain ε̄0

rr
(see more results in [8]).

Results are presented in figures 3 (a)-(b). A mesh containing 8905 nodes was used to plot the conti-
nuous curves.

We can observe from figure 3 that the agreement between the continuum and ab initio models is good
in regards to Young’s modulus and axial relaxation strain, when employing the coefficients obtained from
the slab procedure without any modification. The use of optimized coefficients [8] gives rise to a slight
improvement.

From the above results, we conclude that the model has a good accuracy regarding the effective
properties of the nanowire. In what follows, we examine the local fields. A continuous displacement
field is constructed from the ab initio discrete atomic displacements.

We can notice from figure 4 that in the bulk region both displacement fields are in very good agree-
ment, especially when the set of optimized surface coefficients B is used. However, near the surface, the
local fields are poorly reproduced. This can be partly explained by the fact that both Al and N atoms
have very different kinematics [8]. On the surface layer, Al atoms possess a relatively large inward radial
displacement as compared to the Al atoms in the next interior layer and with opposite sign to the N atoms
which have an outward displacement on the surface. This highly heterogeneous field cannot be captured
accurately by the proposed continuum model.
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4.2 Bending of a nanowire

In this example, the constructed continuum model is employed to study size effects in bending ana-
lysis of a nanowire. This problem is not tractable via ab initio calculations, as no periodicity can be
considered. This test is of practical importance, as this type of loading can be prescribed for example
using an atomic force microscope (AFM). The nanowire is clamped at its both ends and subjected to a
force distribution F = σyey ⊗ eyn, σy = 1e− 8 MPa on a width l = L/20. As in previous example, the
length of the nanowire is taken as L = 4d.

To evaluate the influence of surface effects, we compute the transverse stiffness as a function of the
nanowire diameter. The results are presented in figure 6. The size effects can be clearly observed.
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