
HAL Id: hal-00592701
https://hal.science/hal-00592701

Submitted on 3 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupling of finite element and boundary integral
methods: Motion of ellipsoidal capsules in simple shear

flow
Anne-Virginie Salsac, Johann Walter, Dominique Barthès-Biesel

To cite this version:
Anne-Virginie Salsac, Johann Walter, Dominique Barthès-Biesel. Coupling of finite element and
boundary integral methods: Motion of ellipsoidal capsules in simple shear flow. 10e colloque national
en calcul des structures, May 2011, Giens, France. pp.Clé USB. �hal-00592701�

https://hal.science/hal-00592701
https://hal.archives-ouvertes.fr


CSMA 2011
10e Colloque National en Calcul des Structures

9-13 Mai 2011, Presqu’île de Giens (Var)

Coupling of finite element and boundary integral methods:
Motion of ellipsoidal capsules in simple shear flow

A.V. Salsac1, J. Walter1,2, D. Barthès-Biesel1

1 Biomécanique et Bioingénierie (UMR CNRS 6600), Universitéde Technologie de Compiègne, email: a.salsac@utc.fr
2 Present address: Chemical Engineering, University of California, Santa Barbara, USA

Résumé— We introduce a novel numerical method to model the fluid-structure interaction between
a microcapsule and an external flow. An explicit finite element method is used to model the large de-
formation of the capsule wall, which is treated as a bidimensional hyperelastic membrane. It is coupled
with a boundary integral method to solve for the internal andexternal Stokes flows. The study aims at
characterizing the motion and large deformation of an initially-ellipsoidal capsule subjected to a simple
shear flow. Both oblate and prolate spheroids are considered. Two regimes are found depending on the
value of the capillary number, ratio of the viscous to elastic forces. At low capillary number, the capsule
tumbles, behaving mostly like a solid particle. At higher capillary numbers, the capsule has a fluid-like
behavior. It oscillates in the shear plane, while its membrane continuously rotates around its deformed
shape. During the tumbling-to-swinging transition, the capsule transits through an almost circular pro-
file in the shear plane, for which a long axis can no longer be defined. Qualitatively, oblate and prolate
capsules are found to behave similarly, particularly at large capillary numbers, when the influence of the
initial state fades out. However, the capillary number at which the transition occurs is significantly lower
for oblate spheroids.
Mots clés— fluid-structure interaction, finite element method, boundary integral method.

1 Introduction

Bioartificial capsules, which consist of an internal liquidprotected by a thin hyperelastic wall, have
many practical uses in pharmaceutical, cosmetic and bioengineering applications. They can also be seen
as simplified models of red blood cells. When suspended in another flowing liquid, capsules undergo
large deformations and strong fluid-structure viscous coupling due to the low-Reynolds-number flows of
the internal and suspending liquids. The membrane mechanical behaviour has been extensively studied
numerically for initially-spherical capsules in flow and different strategies have been considered to derive
numerical solutions. Many studies have used a fluid solver based on the boundary integral method to
solve for the Stokes flow equations (e.g. [1-5]). The velocity field at any position within the fluid domain
is given by surface integrals calculated on the geometric boundaries. This method therefore has two main
advantages : it reduces the geometric dimension of the problem by one, which largely decreases the total
number of nodes, and avoids re-meshing the fluid domain at each time step, which is hugely costly.

The model the most used for the capsule wall is that of a 2D hyperelastic membrane : the wall
is considered to be infinitely thin and to have a negligible bending stiffness. Two approaches may be
considered to model the capsule membrane mechanics : the equations of the force equilibrium on the
capsule wall may either be written locally at each point (strong form) or globally integrated over the
capsule surface (weak form). Most capsule studies have usedthe strong form of the equations. Capsules
in simple shear flows have been considered by Pozrikidis [1],Ramanujan & Pozrikidis [2] and more
recently by Li & Sarkar [5], who computed the membrane load asa piecewise constant function. Lacet
al. [3] and Lac & Barthès-Biesel [4] used instead bi-cubic B-splines as interpolation functions in order
to compute the loads with high accuracy. These studies have shown that the capsule wall is dominated
by in-plane membrane tensions, but compressive tensions can occur locally, creating wrinkles.

An alternative option is to write the balance equations in their weak form and to use a Finite Element
(FE) method. The local equilibrium equations are convertedinto their variational equivalent. Eggleton &
Popel [6] and Doddi & Bagchi [7] have coupled a FE method with an immersed boundary method. Ho-
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wever their FE method, based on the use of linear (P1) elements, lacks generality in the implementation.
The results are not very precise, which is probably a consequence of the method used for the fluids.

Recently, we have proposed a new method coupling the boundary integral method and the finite
element method [8]. It has the advantage to use the same discretization for the fluids and capsule wall,
which allows a Lagrangian tracking of the membrane positionwith high accuracy. The numerical stability
and accuracy of the method have been demonstrated on a spherical capsule placed in different linear shear
flows. The method has been shown to be very stable in the presence of in-plane compression.

Capsules with a non-spherical initial shape have been considered very little [9-11], even though they
provide more realistic models of red blood cells. The extensive wrinkling that appear when such cap-
sules deform had previously rendered most numerical simulations unstable. We presently study initially-
ellipsoidal capsules placed in a simple shear flow such that their revolution axis is in the shear plane.
We consider both oblate and prolate spheroids to characterize the influence of the capsule shape on the
deformation. Particular attention will be paid to the regimes observed and to the transition between them.

2 Problem statement

We consider a spheroidal microcapsule of semi-axes denoteda along the revolution axis andb along
the orthogonal directions. It consists of an infinitely thinmembrane of surface shear elastic modulusGs

that encloses an incompressible liquid. It is suspended in asimple shear flow in the (x1,x2) plane :

v∞ = γ̇x2e1, (1)

whereγ̇ is the shear rate. The inner and outer fluids are supposed to beNewtonian and to have the same
viscosityµ and densityρ. Two main parameters influence the capsule deformation. Thecapillary number

Ca=
µγ̇ℓ
Gs

(2)

compares the viscous stresses in the flow to the elastic stresses in the membrane. The length scaleℓ
is defined as the radius of the sphere having the same volume asthe ellipsoid (ℓ = 3

√
ab2). The other

parameter is the aspect ratioa/b, ratio of the ellipsoid semi-axis lengthes. The spheroid isoblate when
a/b< 1 and prolate whena/b> 1.

In the following sections, all studies are conducted for twoinitial values of the aspect ratio :a/b= 0.5
(oblate spheroid) anda/b= 2 (prolate spheroid). These two aspect ratios are well-suited to comparing the
influence of the capsule initial shape. The two spheroids have, by definition, the same internal volume and
therefore the same length scale,l . With initial surface areas differing by less than 2%, the two capsules
essentially have the same initial value of the surface-area-to-volume ratio.

2.1 Membrane mechanics

Following [12], we treat the membrane as a purely bidimensional sheet of hyperelastic material. In
particular, we neglect strain variations across the thickness and therefore the bending stiffness of the
material. We introduce the displacementU(X, t) = x(X, t)−X, whereX and x are the positions of a
given material point in the reference and deformed state. Itis related to the velocity of the membrane
through the kinematic condition :

∂
∂t

U(X, t) = v(x, t) . (3)

The numerical procedure consists in following the positionof the capsule membrane after the start
of flow. At each time step, the membrane deformation is thus known : it is quantified by the principal
dilation ratiosλ1 andλ2 in its plane. Two deformation invariants are generally used:

I1 = λ2
1+λ2

2−2, I2 = λ2
1λ2

2−1= J2
s −1. (4)

The JacobianJs = λ1λ2 represents the ratio of the deformed to the undeformed surface areas.
Elastic stresses in an infinitely thin membrane are replacedby the elastic tensions corresponding

to forces per unit arc length measured in the plane of the membrane. When the membrane is a two-
dimensional isotropic material, the Cauchy tension tensorτ can be related to a strain energy function
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per unit area of undeformed membranews(I1, I2). Presently we will consider two hyperelastic laws. The
neo-Hookean law describes the behaviour of an infinitely thin sheet of a three-dimensional isotropic
material

wNH
s =

Gs

2

(

I1−1+
1

I2+1

)

. (5)

The area dilation modulus is thenKs = 3Gs. Skalaket al. [12] derived a constitutive law for two-
dimensional materials with independent surface shear and area dilation moduli

wSk
s =

Gs

4

(

I2
1 +2I1−2I2+CI2

2

)

, C >−1/2. (6)

The area dilation modulus is thenKs = Gs(1+ 2C) and the Poisson ratioνs = C/(1+C). The Sk law
was initially designed to model the area-incompressible membrane of biological cells, such as red blood
cells, corresponding toC≫ 1.

The finite element method is then used to solve the equilibrium of the membrane

∇ s · τ+q= 0. (7)

whereq is the unknown viscous load exerted by the fluids on the membrane and∇ s· the surface diver-
gence operator in the deformed configuration. The local equilibrium is written in a weak form using the
virtual work principle. LetV be the Sobolev spaceH1. For any virtual displacement field ˆu ∈ V , the
internal and external virtual work balance requires

∫
S
û·qdS−

∫
S
ε̂(û) : τ dS= 0, (8)

whereε̂(û) = 1
2

(

∇ sû+ ∇ sûT
)

is the virtual strain tensor. The equation is solved for the loadq. Note that
most finite element procedures look instead for the displacement field, treating the forces as known. This
is not possible when dealing with a capsule : the lack of kinematic boundary conditions implies that the
displacement solution is not unique.

2.2 Internal and external flows

Once the loadq is known, the velocity field can be calculated solving for theinternal and external
flows with the boundary integral method. The flows are indeed governed by the Stokes equations, as the
Reynolds numberRe= ρl2γ̇/µ is infinitely small. To determine the new position of the capsule at the
following time step, one needs to solve for the velocity of the points of the capsule. The latter can be
expressed as an integral equation over the deformed capsulesurfaceS :

∀x0 ∈ S, v(x0) = v∞(x0)+
1

8πµ

∫
S
J(x0,x) ·q(x)dS, (9)

wherev∞ is the undisturbed flow velocity,J is the Green’s single layer kernel,r = x0− x andr = ‖r‖.
The new position of the membrane points is obtained solving (3).

2.3 Numerical method

For a given deformed state of the capsule, we first solve the solid problem (8).V is discretized as
a finite element space using an unstructured mesh, with quadratic (P2) curved triangular elements. The
discretized problem leads to the following matrix system :

[M]{qN}= {R} , (10)

where{qN} corresponds to the degrees of freedom of the discretized load, [M] has the structure of a
mass matrix and{R} corresponds to the right-hand side of (8) and depends non-linearly on the displa-
cementU . The tensionsτ are computed directly using the strain energy functionws. Solving the solid
problem consists in assembling{R} and [M] on the deformed state. Surface integration is performed
using Hammer points on the elements. Eq. (10) is then solved using the sparse solver Pardiso [13].
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(a) Ca= 0.1

19 21.5 24 25 27.5

(b) Ca= 0.3

20.5 24 26 27.5 29.5

(c) Ca= 0.9

23.5 25.5 30.5 32 34

FIGURE 1 – Evolution of the capsule shape in the shear plane over one half period. The initial shape is a
prolate spheroid,a/b= 2, and the membrane follows the Sk law withC= 1. The grey scale corresponds
to the normal component of the load,q ·n. The dot shows the position of material point P, originally on
the short axis. The value of the non-dimensional time stepγ̇t is given below each shape.

The velocity field is obtained explicitly from the boundary integral equation (9), which is discretized
on thesame meshas for the solid problem, once again using Hammer points for the integration. Finally,
the new position is obtained by convecting the nodes after integrating (3) numerically with a second-
order Runge-Kutta method. More information on the convergence and stability of the method may be
found in [8].

3 Results

3.1 Motion modes : tumbling and swinging

Depending on the value of the capillary numberCa, a given ellipsoidal capsule may exhibit two
types of motion. At low flow strength, a “solid-like” regime occurs, calledtumbling. Oblate and prolate
spheroids exhibit a similar behaviour. Figure 1(a) shows the time evolution of a prolate ellipsoidal capsule
with initial aspect ratioa/b = 2 (a/ℓ = 1.59) and a Sk membrane (C = 1) for Ca= 0.1. It shows that,
during tumbling, the capsule rotates like a quasi-rigid ellipsoid subjected to the flow vorticity, while the
internal flow is almost stationary with respect to the membrane. This is illustrated by the fact that point
P that was initially on the small axis of the ellipsoid, remains in the vicinity of its initial location.

Since the capsule profile may be quite difficult to characterize, we evaluate the capsule distortion by
the deformation of its ellipsoid of inertia [2]. This methodis widely used, but gives approximate results
when the deformed particle shape is far from ellipsoidal. Bysymmetry, the material points initially
located in the shear plane (x1,x2) remain in it and two of the principal axes of the ellipsoid ofinertia
with semi-axesL1 andL2 (L1 ≥ L2) are also located in the shear plane. Correspondingly, it isconvenient
to quantify the three-dimensional capsule deformation with the deformation of the intersection of the
profile with the shear plane. The Taylor deformation parameter is then defined as

D12 =
L1−L2

L1+L2
. (11)

Note that, contrary to a spherical capsule, the initial value of D12 is not zero and is given byD0
12 = |a−

b|/(a+b). The time-evolution of the Taylor parameterD12 is shown in figure 2a. The large oscillations
prove that the membrane can undergo large displacements without large deformation, which is due to the
initial shape flaccidity (measured by the surface area to volume ratio).
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FIGURE 2 – Taylor parameterD12 as a function of time. (a) solid line : Sk lawC= 1, a/b= 2,Ca= 0.1
(tumbling regime), dotted line : Sk lawC = 1, a/b = 2, Ca= 0.9 (swinging regime), horizontal line :
D0

12 = 0.33 (b) Sk lawC= 1, a/b= 2,Ca= 0.9 (transition).

At higher flow strength, a “fluid-like” regime occurs, calledswinging. The membrane rotates around
the deformed shape of the capsule similarly to the tank-treading motion observed for spherical capsules.
Because of the initial anisotropy of the reference shape, the membrane points are not equivalent : a sta-
tionary steady state is not possible and a periodic motion ofthe deformed capsule occurs. Like in the
tumbling regime, oblate and prolate spheroids behave similarly in the swinging regime. We illustrate the
salient motion features for the same ellipsoidal capsule atCa= 0.9 (fig. 1c). The capsule assumes an
elongated shape with a long axis aligned with the maximum flowstrain direction, while the membrane
continuously rotates around the deformed shape. The time evolution of the Taylor parameterD12 is also
shown in figure 2a. It can be noted thatD12 oscillates around a mean value that is larger than in the tum-
bling regime. The capsule reaches its maximum deformation,when the material points located originally
on the longer axis of the ellipsoid are in the straining direction (see fig. 1c, γ̇t = 23.5). Conversely,D12

is minimum when the points originally on the smaller axis arein the straining direction, or equivalently,
when the points originally on the longer axis are aligned with the flow compression direction (γ̇t = 30.5).

3.2 Tumbling-swinging transition

In order to study the tumbling-to-swinging transition, we consider the same capsule (a/b = 2) at a
capillary numberCa= 0.3. One characteristic difference between the tumbling and swinging regimes is
the time-evolution of the capsule long axis. In the tumblingregime, the long axis rotates over time, while
it oscillates around a mean value in the swinging regime. This is how the transition has been previously
defined [9-11]. However, we believe that such a criterion is not quite appropriate to determine the critical
capillary numberCa⋆ at which the transition occurs. Indeed, figure 1(b) shows that during each half-
cycle, the capsule transits through an almost circular profile in the shear plane (here atγ̇t = 26). At this
time, the two principal axes of the ellipsoid of inertia in the shear plane have roughly the same length
(L1 ≈ L2), thus there is no clearly identified “long” axis. The fact that the capsule profile becomes quasi
circular in the shear plane shows that the transition corresponds to a Taylor parameter getting close to
zero at its minimum (figure 2(b). In conclusion, we propose to define the critical capillarynumberCa⋆

as an interval using the criterion
minD12 < 0.05, (12)

minD12 being the minimum value of the Taylor parameter over one period. This criterion corresponds to
a relative difference of 10% between the lengthsL1 andL2 of the axes, which is the minimum difference
that can be quantified with precision.

Figure 1 also shows that the transition is associated with anincreased wrinkling of the capsule wall.
The most extensive wrinkling is seen to occur asD12 approaches 0, i.e. as the long axis of the undeformed
ellipsoid becomes shorter. However, wrinkling is transient during the cycle and the wrinkles disappear
when the capsule long axis is in the direction of the viscous stretch (̇γt = 20.5 in figure 1b).
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FIGURE 3 – (a) Minimum values of the Taylor parameterD12 of the ellipsoid of inertia. The horizontal
line corresponds to the limit minD12 = 0.05 used to define the transition. (b) Maximum value during
a period of the minimum principal tension. Results are shownfor an oblate spheroid (a/b = 0.5, filled
symbols) and a prolate spheroid (a/b= 2, open symbols).� : NH law ;△ : Sk law withC = 1.

3.3 Effect of capillary number

We now conduct a systematic study of the motion of a spheroidal capsule in a simple shear flow as a
function of the capillary number. Two material laws are usedto describe the membrane, the neo-Hookean
law (5) and Skalak’s law (6) withC= 1, which have the same behaviour at small deformation. Two initial
aspect ratios are studied :a/b = 0.5 anda/b = 2. This makes it possible to compare the behaviour of
oblate and prolate spheroids, but a systematic study of the influence of the aspect ratio is outside the
scope of this article.

The minimum value minD12 is shown as a function ofCa and membrane law in figure 3a. A larger
value ofCa is required to reach the same value ofD12 with the Sk law than with the NH law. If the NH
and Sk (C = 1) laws behave similarly at small deformation levels, they are known to diverge at larger
deformation, the Sk law exhibiting a strain-hardening behaviour and the NH law a strain-softening one.

Figure 3a also proves that minD12 indeed goes through a global minimum in all cases. The criterion
minD12 < 0.05 provides values ofCa⋆ confined within a small interval, because of the sharp variations
of minD12 around the global minimum. To determine the intervals for the critical capillary numberCa⋆,
the capillary number was increased systematically by stepsof 0.01 for oblate spheroids and 0.05 for
prolate spheroids. The values of capillary number for whichminD12< 0.05 are provided in table 1. Note
that, for a given aspect ratio, theCa⋆ intervals are almost equal for the two material laws considered.
This is due to the fact that the transition takes place at moderate deformation levels, for which the two
laws behave similarly. However, oblate and prolate capsules have values ofCa⋆ that differ by a factor
∼ 10. As the 2 capsules studied (a/b = 0.5,2) share the same initial value for the Taylor parameter in
the shear plane (D0

12 = 0.33), any difference in their behaviour is due to the difference in their initial
geometry in the orthogonal direction. The prolate ellipsoidal capsule therefore requires a higher energy
to reach the shape for whichD12 ∼ 0 than an oblate capsule, because of its short characteristic length in
the orthogonal direction.

It is shown in figure 1 that widespread in-plane compression can occur. In the absence of a physical
bending stiffness in the numerical model, such compressivetensions cause numerical wrinkles. In or-
der to study in-plane compression, figure 3b shows the maximum value over one period ofτmin(t), the
minimum principal tension, denoted maxτmin :

maxτmin = max
t

(τmin(t)) = max
t

(

min
x,i=1,2

(τi(x, t))

)

, (13)

whereτi are the principal tensions. In all the cases studied,τmin is negative through most of the period
indicating that compression always occurs somewhere for spheroidal capsules. The positive values of
τmin occur when the long axis of the original ellipsoid is in the straining direction.

Figure 3b shows that, for large values ofCa, even the maximum value ofτmin is negative. It means
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a/b= 0.5 a/b= 1 a/b= 2

NH Ca⋆ ∈ [0.02,0.04] ⋆ Ca⋆ ∈ [0.20,0.25]
CaH = 0.70 CaH = 0.63 CaH = 0.35

Sk,C = 1 Ca⋆ ∈ [0.02,0.05] ⋆ Ca⋆ ∈ [0.25,0.35]
CaH = 2.5 CaH = 2.4 CaH = 1.4

TABLE 1 – Values of the critical capillary numbersCa⋆ andCaH for the cases studied. The values ofCaH

are provided for an initially-spherical capsule for reference [3].

that negative tensions occur even when the capsule reaches its maximum elongation. The reason is that,
at large values ofCa, negative tensions and wrinkles appear at the tips of the elongated capsule. Lac
et al. [3] observed this phenomenon for an initially-spherical capsule (a/b= 1) and definedCaH as the
capillary number above which negative tensions appear at steady state. In the case of spheroidal capsules,
we defineCaH as the critical capillary number above which maxτmin < 0. The values ofCaH found for
the different cases studied are provided in table 1.

Except for a prolate NH spheroid, the largest amount of wrinkling occurs in the swinging regime, for
values ofCa slightly aboveCa⋆. During tank-treading motion, strong wrinkling tends to occur when the
long axis of the initial ellipsoid has to be compressed to become the short axis of the deformed capsule.
However, as the capillary number is increased and the capsule becomes more elongated, the isotropic
component of the tensions (related to the Poisson ratio of the membrane) increases and compensates
the negative tensions : wrinkling becomes less important. The maximum amount of wrinkling therefore
occurs during transition and for capillary numbers slightly above it.

In the case of a prolate NH spheroid, the wrinkling does not subside asCa increases. This is a
consequence of the proximity of the two critical capillary numbersCa⋆ ∈ [0.20,0.25] andCaH = 0.35 in
this particular case. Indeed, if we consider a material point originally on the long axis of the ellipsoid,
atCa≈ 0.35 the point is on the short axis of the deformed capsule and strong wrinkling occurs, since
Ca is only slightly aboveCa⋆. A quarter of a period later, the material point is in the straining direction,
but buckling and wrinkling occur at the tips, asCa is aroundCaH . These two phenomena then lead
to a constant wrinkling of the membrane, that even seems to amplify over time, but this is probably a
numerical artifact due to the lack of a proper bending stiffness in the model of the capsule wall.

4 Conclusion

We have modelled the behaviour and large deformation of an ellipsoidal capsule in a simple shear
flow using the novel method of Walteret al. [8], that couples boundary integrals for the flows to finite
membrane elements. The study has shown that the coupling method is well-suited to the simulation of
non-spherical capsules and that it remains numerically stable in the presence of in-plane compression,
even though the mechanical wall model does not account for bending stiffness. This is a convenient fea-
ture when the bending effects remain localised and weak. Still, to model exactly the physical behaviour
of the capsule wall, a proper shell model remains to be implemented.

The coupling method allowed us to study the behaviour of oblate and prolate spheroids, with aspect
ratiosa/b = 0.5 anda/b = 2, and to recognise two regimes : a quasi-solid regime (‘tumbling’) at low
capillary numbers, where the long axis of the capsule rotates in the shear plane, and a quasi-fluid re-
gime (‘swinging’) at high capillary numbers, where this axis oscillates around a mean inclination and
membrane rotation (tank treading) occurs. These two regimes are separated by a transition region, du-
ring which the capsule transits through a phase where the twoaxes of the capsule in the shear plane are
approximately of the same length (D12≈ 0). For the transition to occur, the critical stage is for thepoints
initially located on the small axis to have enough energy to pass the long axis of the deformed capsule.
The transition can thus be understood as the crossing of an energy barrier as proposed by Skotheim &
Secomb [14]. However, in their semi-analytical theory, they supposed that the shape of the capsules re-
mained constant and postulated a periodic variation of the strain energy of the membrane. The present
study shows that the capsule shape changes over time and thatthe energy variation is thus more complex
than predicted.
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We have also shown that oblate and prolate spheroids behave qualitatively similarly in most respects.
Still the capsule initial shape influences the transition between the tumbling and swinging regimes, which
occurs at a much lower value ofCa for oblate spheroids. The tumbling regime is therefore limited to a
very small range of capillary numbers for oblate spheroids,as the value of the critical capillary number
at transition is low.

We do not believe that the transition can be considered as a separate regime, distinct from tumbling
and swinging. It rather corresponds to the parameter range where the two regimes behave so closely that
they cannot be accurately distinguished from one another. Along with the present study, all the existing
numerical studies of capsules in simple shear flow indicate that the tumbling-to-swinging transition is
associated with a phase whenD12≈ 0 [9, 10, 11]. A similar behaviour has been found experimentally for
lipid vesicles [15, 16]. These findings are, however, at oddswith the experiments conducted by Abkarian
et al. [17] on red blood cells in a simple shear flow. They observe that, during the tumbling-to-swinging
transition, the red blood cell maintains an almost constantshape and that the transition occurs through
an intermittent regimeduring which the cell alternately swings and tumbles. However, our study and the
other numerical studies cited above fail to find such an intermittent regime and always observe that the
tumbling-to-swinging transition is associated with largevariations of the capsule shape.
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