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Coupling of finite element and boundary integral methods:
Motion of ellipsoidal capsules in simple shear flow
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2 Present address: Chemical Engineering, University of Batia, Santa Barbara, USA

Résumé— We introduce a novel numerical method to model the fluideitre interaction between
a microcapsule and an external flow. An explicit finite eletbmaethod is used to model the large de-
formation of the capsule wall, which is treated as a bidirnmerad hyperelastic membrane. It is coupled
with a boundary integral method to solve for the internal exrtkrnal Stokes flows. The study aims at
characterizing the motion and large deformation of andlttiellipsoidal capsule subjected to a simple
shear flow. Both oblate and prolate spheroids are considéveal regimes are found depending on the
value of the capillary number, ratio of the viscous to etaiirces. At low capillary number, the capsule
tumbles, behaving mostly like a solid particle. At highepilary numbers, the capsule has a fluid-like
behavior. It oscillates in the shear plane, while its meméreontinuously rotates around its deformed
shape. During the tumbling-to-swinging transition, thestde transits through an almost circular pro-
file in the shear plane, for which a long axis can no longer bimel@. Qualitatively, oblate and prolate
capsules are found to behave similarly, particularly ajdarapillary numbers, when the influence of the
initial state fades out. However, the capillary number aicivithe transition occurs is significantly lower
for oblate spheroids.

Mots clés— fluid-structure interaction, finite element method, baamydntegral method.

1 Introduction

Bioatrtificial capsules, which consist of an internal liqpicbtected by a thin hyperelastic wall, have
many practical uses in pharmaceutical, cosmetic and bioeagng applications. They can also be seen
as simplified models of red blood cells. When suspended ithandlowing liquid, capsules undergo
large deformations and strong fluid-structure viscous logpulue to the low-Reynolds-number flows of
the internal and suspending liquids. The membrane medidmthaviour has been extensively studied
numerically for initially-spherical capsules in flow andfdient strategies have been considered to derive
numerical solutions. Many studies have used a fluid solveedan the boundary integral method to
solve for the Stokes flow equations (e.qg. [1-5]). The velofiéld at any position within the fluid domain
is given by surface integrals calculated on the geometnumbaries. This method therefore has two main
advantages : it reduces the geometric dimension of thegmobly one, which largely decreases the total
number of nodes, and avoids re-meshing the fluid domain &ttegae step, which is hugely costly.

The model the most used for the capsule wall is that of a 2D rieygstic membrane : the wall
is considered to be infinitely thin and to have a negligibladieg stiffness. Two approaches may be
considered to model the capsule membrane mechanics : tiaiegof the force equilibrium on the
capsule wall may either be written locally at each pointofstr form) or globally integrated over the
capsule surface (weak form). Most capsule studies havetheesirong form of the equations. Capsules
in simple shear flows have been considered by PozrikidisRamanujan & Pozrikidis [2] and more
recently by Li & Sarkar [5], who computed the membrane load pgecewise constant function. Lat
al. [3] and Lac & Barthés-Biesel [4] used instead bi-cubic Birsgs as interpolation functions in order
to compute the loads with high accuracy. These studies Hemersthat the capsule wall is dominated
by in-plane membrane tensions, but compressive tensiansazaur locally, creating wrinkles.

An alternative option is to write the balance equations @irttveak form and to use a Finite Element
(FE) method. The local equilibrium equations are conveirtealtheir variational equivalent. Eggleton &
Popel [6] and Doddi & Bagchi [7] have coupled a FE method withramersed boundary method. Ho-



wever their FE method, based on the use of linear (P1) elayanks generality in the implementation.
The results are not very precise, which is probably a corsszpiof the method used for the fluids.

Recently, we have proposed a new method coupling the boyrnaggral method and the finite
element method [8]. It has the advantage to use the sameitilistion for the fluids and capsule wall,
which allows a Lagrangian tracking of the membrane positiih high accuracy. The numerical stability
and accuracy of the method have been demonstrated on acsplcapsule placed in different linear shear
flows. The method has been shown to be very stable in the peséim-plane compression.

Capsules with a non-spherical initial shape have beenderesi very little [9-11], even though they
provide more realistic models of red blood cells. The extengrinkling that appear when such cap-
sules deform had previously rendered most numerical siionkunstable. We presently study initially-
ellipsoidal capsules placed in a simple shear flow such tiet tevolution axis is in the shear plane.
We consider both oblate and prolate spheroids to charaettre influence of the capsule shape on the
deformation. Particular attention will be paid to the reggbserved and to the transition between them.

2 Problem statement

We consider a spheroidal microcapsule of semi-axes demaaitshg the revolution axis artdlalong
the orthogonal directions. It consists of an infinitely thiembrane of surface shear elastic modys
that encloses an incompressible liquid. It is suspendedimple shear flow in thex{,xo) plane :

\_/00 = VX2§1a (l)

wherey is the shear rate. The inner and outer fluids are supposedNewtonian and to have the same
viscosityu and densityp. Two main parameters influence the capsule deformationc@pidary number
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compares the viscous stresses in the flow to the elasticssgras the membrane. The length scéle
is defined as the radius of the sphere having the same volurtie alipsoid ( = v/ab?). The other
parameter is the aspect raigh, ratio of the ellipsoid semi-axis lengthes. The spheroidbite when
a/b < 1 and prolate whea/b > 1.

In the following sections, all studies are conducted for imitial values of the aspect rati@/b = 0.5
(oblate spheroid) anal/b = 2 (prolate spheroid). These two aspect ratios are wekdud comparing the
influence of the capsule initial shape. The two spheroide Hawdefinition, the same internal volume and
therefore the same length scdleWith initial surface areas differing by less than 2%, the tapsules
essentially have the same initial value of the surface-tramlume ratio.
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2.1 Membrane mechanics

Following [12], we treat the membrane as a purely bidimeraicgheet of hyperelastic material. In
particular, we neglect strain variations across the trésknand therefore the bending stiffness of the
material. We introduce the displaceméhtX,t) = x(X,t) — X, whereX andx are the positions of a
given material point in the reference and deformed stats. riglated to the velocity of the membrane
through the kinematic condition :

U (X.1) = vix). ©
ot
The numerical procedure consists in following the positibtthe capsule membrane after the start
of flow. At each time step, the membrane deformation is thusvn: it is quantified by the principal
dilation ratiosh; andA; in its plane. Two deformation invariants are generally used
lL=A4N—2 1h=ANA3-1=02-1 (4)

The Jacobiads = A1\, represents the ratio of the deformed to the undeformedigeeas.

Elastic stresses in an infinitely thin membrane are repldmethe elastic tensions corresponding
to forces per unit arc length measured in the plane of the mameb When the membrane is a two-
dimensional isotropic material, the Cauchy tension temswain be related to a strain energy function
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per unit area of undeformed membramgl,,1,). Presently we will consider two hyperelastic laws. The
neo-Hookean law describes the behaviour of an infinitely 8hieet of a three-dimensional isotropic
material s 1
Wi = =2 (14— ). 5
s T\ ©)
The area dilation modulus is thdy = 3Gs. Skalaket al. [12] derived a constitutive law for two-
dimensional materials with independent surface shear @addilation moduli

G
mék:f(|f+2|l—2|2+(:|§), C>-1/2. (6)
The area dilation modulus is théfy = Gg(1+ 2C) and the Poisson raties = C/(1+C). The Sk law
was initially designed to model the area-incompressiblenbrane of biological cells, such as red blood
cells, corresponding tG > 1.

The finite element method is then used to solve the equilibofithe membrane

whereq is the unknown viscous load exerted by the fluids on the menebaad]s- the surface diver-
gence operator in the deformed configuration. The locallieguim is written in a weak form using the
virtual work principle. Let?’ be the Sobolev spadé’. For any virtual displacement field< 7/, the
internal and external virtual work balance requires

Ja-qds- [ &(@):1ds—o ®)
S S =
whereg(g) = % (DSQ+ DSQT) is the virtual strain tensor. The equation is solved for talh. Note that
most finite element procedures look instead for the disphec field, treating the forces as known. This
is not possible when dealing with a capsule : the lack of kiagrrboundary conditions implies that the
displacement solution is not unique.

2.2 Internal and external flows

Once the loady is known, the velocity field can be calculated solving for ihiernal and external
flows with the boundary integral method. The flows are indemed by the Stokes equations, as the
Reynolds numbeRe= pl?y/u is infinitely small. To determine the new position of the adpsat the
following time step, one needs to solve for the velocity @& thoints of the capsule. The latter can be
expressed as an integral equation over the deformed capstdeeS :

WS V) = V(Xo) + %m [ 306,99 ds ©)

wherev™ is the undisturbed flow velocity] is the Green's single layer kernel= x, —x andr = ||r||.
The new position of the membrane points is obtained sol@)g (

2.3 Numerical method

For a given deformed state of the capsule, we first solve the gmblem (8).7/ is discretized as
a finite element space using an unstructured mesh, with gtia@®,) curved triangular elements. The
discretized problem leads to the following matrix system :

MH{d"} = {R}, (10)

where{g"} corresponds to the degrees of freedom of the discretized] |v§ has the structure of a
mass matrix andR} corresponds to the right-hand side of (8) and depends neasly on the displa-
cementU. The tensiong are computed directly using the strain energy functienSolving the solid
problem consists in assemblif@®} and [M] on the deformed state. Surface integration is performed
using Hammer points on the elements. Eq. (10) is then solsed) the sparse solver Pardiso [13].
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FIGURE 1 — Evolution of the capsule shape in the shear plane overahedriod. The initial shape is a

prolate spheroida/b = 2, and the membrane follows the Sk law wik= 1. The grey scale corresponds
to the normal component of the loagl,n. The dot shows the position of material point P, originalty o
the short axis. The value of the non-dimensional time #tépgiven below each shape.

The velocity field is obtained explicitly from the boundangegral equation (9), which is discretized
on thesame meshs for the solid problem, once again using Hammer pointsi®iritegration. Finally,
the new position is obtained by convecting the nodes aftegrting (3) numerically with a second-
order Runge-Kutta method. More information on the convecgeand stability of the method may be
found in [8].

3 Results

3.1 Motion modes : tumbling and swinging

Depending on the value of the capillary numi@a, a given ellipsoidal capsule may exhibit two
types of motion. At low flow strength, a “solid-like” regimecurs, calledumbling Oblate and prolate
spheroids exhibit a similar behaviour. Figura)lfhows the time evolution of a prolate ellipsoidal capsule
with initial aspect ratica/b = 2 (a/¢ = 1.59) and a Sk membran€ & 1) for Ca= 0.1. It shows that,
during tumbling, the capsule rotates like a quasi-rigithethid subjected to the flow vorticity, while the
internal flow is almost stationary with respect to the membrd his is illustrated by the fact that point
P that was initially on the small axis of the ellipsoid, rengain the vicinity of its initial location.

Since the capsule profile may be quite difficult to charazéenve evaluate the capsule distortion by
the deformation of its ellipsoid of inertia [2]. This methmwidely used, but gives approximate results
when the deformed particle shape is far from ellipsoidal. Sgynmetry, the material points initially
located in the shear plan&;(x2) remain in it and two of the principal axes of the ellipsoidimértia
with semi-axed.; andL, (L, > L) are also located in the shear plane. Correspondinglycarnsenient
to quantify the three-dimensional capsule deformatiorhlie deformation of the intersection of the
profile with the shear plane. The Taylor deformation paramistthen defined as

L —Lo
Li+Lo

12= (11)
Note that, contrary to a spherical capsule, the initial @atiD1, is not zero and is given bl;)l2 =|la—
b|/(a-+b). The time-evolution of the Taylor parametj, is shown in figure & The large oscillations
prove that the membrane can undergo large displacemettitsuvitirge deformation, which is due to the
initial shape flaccidity (measured by the surface area tormelratio).
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FIGURE 2 — Taylor parameteD, as a function of time.&) solid line : Sk lawC = 1,a/b=2,Ca=0.1
(tumbling regime), dotted line : Sk la® = 1, a/b = 2, Ca= 0.9 (swinging regime), horizontal line :
D9, =0.33 (b) Sk lawC = 1, a/b = 2,Ca= 0.9 (transition).

At higher flow strength, a “fluid-like” regime occurs, calls@inging The membrane rotates around
the deformed shape of the capsule similarly to the tanldingamotion observed for spherical capsules.
Because of the initial anisotropy of the reference shamentbmbrane points are not equivalent : a sta-
tionary steady state is not possible and a periodic motiath@fdeformed capsule occurs. Like in the
tumbling regime, oblate and prolate spheroids behaveailyiin the swinging regime. We illustrate the
salient motion features for the same ellipsoidal capsuf@aat 0.9 (fig. 1c). The capsule assumes an
elongated shape with a long axis aligned with the maximum fitmain direction, while the membrane
continuously rotates around the deformed shape. The timlaten of the Taylor parametdd1 is also
shown in figure A. It can be noted thdd1, oscillates around a mean value that is larger than in the tum-
bling regime. The capsule reaches its maximum deformatiben the material points located originally
on the longer axis of the ellipsoid are in the straining dicet(see fig. &, yt = 23.5). ConverselyD;,
is minimum when the points originally on the smaller axis iarthe straining direction, or equivalently,
when the points originally on the longer axis are alignedhhe flow compression directiogt(= 30.5).

3.2 Tumbling-swinging transition

In order to study the tumbling-to-swinging transition, wansider the same capsule/b = 2) at a
capillary numbeCa= 0.3. One characteristic difference between the tumbling andgng regimes is
the time-evolution of the capsule long axis. In the tumbliegime, the long axis rotates over time, while
it oscillates around a mean value in the swinging regimes Thhow the transition has been previously
defined [9-11]. However, we believe that such a criterioroisquite appropriate to determine the critical
capillary numbeiCa* at which the transition occurs. Indeed, figurd)l$hows that during each half-
cycle, the capsule transits through an almost circular lprosfithe shear plane (here yit= 26). At this
time, the two principal axes of the ellipsoid of inertia iretehear plane have roughly the same length
(L1 =~ Ly), thus there is no clearly identified “long” axis. The facatlthe capsule profile becomes quasi
circular in the shear plane shows that the transition cpoeds to a Taylor parameter getting close to
zero at its minimum (figure Bj. In conclusion, we propose to define the critical capillaoynberCar
as an interval using the criterion

minDj» < 0.05, (12)

minD1, being the minimum value of the Taylor parameter over oneogeif his criterion corresponds to
a relative difference of 10% between the lendthsandL, of the axes, which is the minimum difference
that can be quantified with precision.

Figure 1 also shows that the transition is associated with@eased wrinkling of the capsule wall.
The most extensive wrinkling is seen to occubas approaches 0, i.e. as the long axis of the undeformed
ellipsoid becomes shorter. However, wrinkling is transiguring the cycle and the wrinkles disappear
when the capsule long axis is in the direction of the viscaretch ¢t = 20.5 in figure b).



@)

0.05

o

S 0

= x
E 005t

% -0.1 |

e

-0.15

minD12

-02

1.5
Ca

1.5
Ca

FIGURE 3 — (@) Minimum values of the Taylor parametBr;» of the ellipsoid of inertia. The horizontal
line corresponds to the limit mDy, = 0.05 used to define the transitiorb) (Maximum value during
a period of the minimum principal tension. Results are shéwran oblate spheroidafb = 0.5, filled
symbols) and a prolate sphero@/b = 2, open symbols)J: NH law; A : Sk law withC = 1.

3.3 Effect of capillary number

We now conduct a systematic study of the motion of a sphdroa@zsule in a simple shear flow as a
function of the capillary number. Two material laws are utsedescribe the membrane, the neo-Hookean
law (5) and Skalak’s law (6) wit@ = 1, which have the same behaviour at small deformation. Titialin
aspect ratios are studiedi/b = 0.5 anda/b = 2. This makes it possible to compare the behaviour of
oblate and prolate spheroids, but a systematic study ofnfiieehce of the aspect ratio is outside the
scope of this article.

The minimum value mib4, is shown as a function @aand membrane law in figurea3A larger
value ofCais required to reach the same valuelDah with the Sk law than with the NH law. If the NH
and Sk C = 1) laws behave similarly at small deformation levels, they known to diverge at larger
deformation, the Sk law exhibiting a strain-hardening béha and the NH law a strain-softening one.

Figure 3 also proves that miD,, indeed goes through a global minimum in all cases. The witer
minDj, < 0.05 provides values afa* confined within a small interval, because of the sharp variat
of minDy, around the global minimum. To determine the intervals ferdhtical capillary numbe€a*,
the capillary number was increased systematically by sté@s01 for oblate spheroids and 0.05 for
prolate spheroids. The values of capillary number for winithD 1, < 0.05 are provided in table 1. Note
that, for a given aspect ratio, ti@a* intervals are almost equal for the two material laws considle
This is due to the fact that the transition takes place at madealeformation levels, for which the two
laws behave similarly. However, oblate and prolate cagshée values ofa“ that differ by a factor
~ 10. As the 2 capsules studied/b = 0.5,2) share the same initial value for the Taylor parameter in
the shear plane[fl’2 = 0.33), any difference in their behaviour is due to the diffeein their initial
geometry in the orthogonal direction. The prolate elligabicapsule therefore requires a higher energy
to reach the shape for whidby, ~ 0 than an oblate capsule, because of its short charaatdéstjth in
the orthogonal direction.

It is shown in figure 1 that widespread in-plane compressamnarcur. In the absence of a physical
bending stiffness in the numerical model, such compregssions cause numerical wrinkles. In or-
der to study in-plane compression, figute shows the maximum value over one periodigfi(t), the
minimum principal tension, denoted mey, :

Maxtimin = mtax(rmin(t)) = mtax< miP2 (Ti ()_(,t))) , (13)
Xl=1,
wherert; are the principal tensions. In all the cases studigg, is hegative through most of the period
indicating that compression always occurs somewhere foersidal capsules. The positive values of
Tmin OCcur when the long axis of the original ellipsoid is in theasting direction.
Figure ® shows that, for large values Gfa, even the maximum value af,i, is negative. It means



a/b=05 a/b=1 a/b=2

NH Car €[0.02,0.04 * Ca" €[0.20,0.25
Cay =0.70 Cay =0.63 Cay =0.35
Sk,C=1 Ca €[0.020.05 * Ca* € [0.25,0.35]

Cay =25 Cay =24 Cay =14

TABLE 1 — Values of the critical capillary numbeEa* andCay for the cases studied. The value<Cat,
are provided for an initially-spherical capsule for refeze [3].

that negative tensions occur even when the capsule redshrasximum elongation. The reason is that,
at large values o€a, negative tensions and wrinkles appear at the tips of thegated capsule. Lac
et al. [3] observed this phenomenon for an initially-sphericgystde /b = 1) and definec€Cay as the
capillary number above which negative tensions appeaeatigtstate. In the case of spheroidal capsules,
we defineCay as the critical capillary number above which migy, < 0. The values o€ay found for

the different cases studied are provided in table 1.

Except for a prolate NH spheroid, the largest amount of Wirigkoccurs in the swinging regime, for
values ofCa slightly aboveCa*. During tank-treading motion, strong wrinkling tends t@ocwhen the
long axis of the initial ellipsoid has to be compressed toobse the short axis of the deformed capsule.
However, as the capillary number is increased and the aamdomes more elongated, the isotropic
component of the tensions (related to the Poisson ratioefrtembrane) increases and compensates
the negative tensions : wrinkling becomes less importame Maximum amount of wrinkling therefore
occurs during transition and for capillary numbers sliglatbove it.

In the case of a prolate NH spheroid, the wrinkling does nbisile asCa increases. This is a
consequence of the proximity of the two critical capillagnmbersCa* € [0.20,0.25 andCay = 0.35in
this particular case. Indeed, if we consider a material tpaiiginally on the long axis of the ellipsoid,
atCa= 0.35 the point is on the short axis of the deformed capsule andgtwvrinkling occurs, since
Cais only slightly aboveCa*. A quarter of a period later, the material point is in theigiray direction,
but buckling and wrinkling occur at the tips, &a is aroundCay. These two phenomena then lead
to a constant wrinkling of the membrane, that even seems mifgnover time, but this is probably a
numerical artifact due to the lack of a proper bending stgin the model of the capsule wall.

4 Conclusion

We have modelled the behaviour and large deformation of lggseidal capsule in a simple shear
flow using the novel method of Waltet al. [8], that couples boundary integrals for the flows to finite
membrane elements. The study has shown that the couplifgoohet well-suited to the simulation of
non-spherical capsules and that it remains numericallylesta the presence of in-plane compression,
even though the mechanical wall model does not account futtibg stiffness. This is a convenient fea-
ture when the bending effects remain localised and weak. t8tmodel exactly the physical behaviour
of the capsule wall, a proper shell model remains to be imptded.

The coupling method allowed us to study the behaviour ofteldad prolate spheroids, with aspect
ratiosa/b = 0.5 anda/b = 2, and to recognise two regimes : a quasi-solid regime (‘tungh at low
capillary numbers, where the long axis of the capsule retatdhe shear plane, and a quasi-fluid re-
gime (‘swinging’) at high capillary numbers, where this swiscillates around a mean inclination and
membrane rotation (tank treading) occurs. These two reg@ne separated by a transition region, du-
ring which the capsule transits through a phase where thexes of the capsule in the shear plane are
approximately of the same length4{, ~ 0). For the transition to occur, the critical stage is for ploints
initially located on the small axis to have enough energyasspthe long axis of the deformed capsule.
The transition can thus be understood as the crossing ofemgyebarrier as proposed by Skotheim &
Secomb [14]. However, in their semi-analytical theoryytBapposed that the shape of the capsules re-
mained constant and postulated a periodic variation of titaénsenergy of the membrane. The present
study shows that the capsule shape changes over time arbdletergy variation is thus more complex
than predicted.



We have also shown that oblate and prolate spheroids behalitatively similarly in most respects.
Still the capsule initial shape influences the transitiomveen the tumbling and swinging regimes, which
occurs at a much lower value Gfa for oblate spheroids. The tumbling regime is thereforetkohito a
very small range of capillary numbers for oblate spheraadsthe value of the critical capillary number
at transition is low.

We do not believe that the transition can be considered agaaate regime, distinct from tumbling
and swinging. It rather corresponds to the parameter ramgeenhe two regimes behave so closely that
they cannot be accurately distinguished from one anotleng®with the present study, all the existing
numerical studies of capsules in simple shear flow indidaa¢ the tumbling-to-swinging transition is
associated with a phase whem, ~ 0[9, 10, 11]. A similar behaviour has been found experinigntar
lipid vesicles [15, 16]. These findings are, however, at aditls the experiments conducted by Abkarian
et al.[17] on red blood cells in a simple shear flow. They observg tharing the tumbling-to-swinging
transition, the red blood cell maintains an almost conssaape and that the transition occurs through
anintermittent regimaluring which the cell alternately swings and tumbles. Haveour study and the
other numerical studies cited above fail to find such an imitéent regime and always observe that the
tumbling-to-swinging transition is associated with laxgeiations of the capsule shape.
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