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Abstract — The problem of parameter identification via inverse analysis based on full-field kinematic
data obtained via Digital Image Correlation (DIC) is discussed with special attention on resolving the
surface motion of adhesive joints. The response up to failure of a DCB-like structure is simulated using
either classical continuum and interface elements or membrane elements with drilling dofs and interface
elements with drilling rotations along the bondline. Identification results are presented that show the
differences between two such cases in terms of performances and parameter estimates.
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1 Introduction

In recent years adhesive bonding technologies have become widespread and almost commonplace in
industry. Whether it be electronic components [1] or furniture, food packaging materials [2] or floor co-
verings, shoes or high-tech solutions [3], there is almost no product on the market today that is produced
without adhesives. This virtually unlimited range of applications calls for an intensive research work in
order to fully exploit the potential of adhesive joints.

As for most structural components consisting of the assembly of individual elements, failure of adhe-
sive joints due to damage growth at bonded interfaces, leading to fracture development by sliding and
separation, is one of the most important failure modes and for its simulation the cohesive zone concept
initially proposed by Barenblatt [4] has become increasingly popular in the last decades. One of the
reasons of its success is probably the flexibility of the cohesive approach to fracture, which provides an
effective phenomenological description of the complex microscopic processes leading to the progressive
decay of cohesive forces and the formation of traction-free surfaces.

For situations where interface positions are a priori known, cohesive models are used in conjunction
with zero-thickness interface elements. These have to adequately resolve the process zone and be com-
patible with the surrounding continuum elements in order to obtain meaningful answers. Moreover, the
availability of trustworthy estimates of material parameters that characterize the traction-relative displa-
cement relationship and the general coherence between the data reduction schemes and the FE model in
which the cohesive law is used are not secondary aspects, since the assumptions made for computing the
material parameters from experiments have a direct impact on the results of computations.

In this study the fundamental problem of parameter identification via inverse analysis based on full-
field kinematic data obtained via Digital Image Correlation (DIC) is discussed with special attention on
resolving the surface motion of adhesive joints up to failure. This is not an easy task since computational
failure analysis would require elements that are highly flexibile and accurate, and with reduced sensitivity
to mesh distortion, whilst for identification purposes elments with low number of nodes are quite desi-
rable since they result in low connectivity of the structural stiffness matrix and reduced computational
cost. Obviously, finding the optimal trade-off between accuracy and computational cost is critical.

The evaluation of mode-I parameters governing the damage mechanics-based formulation developed
in [5] is addressed as the solution of a nonlinear programming problem. A least-squares norm is used
as objective function that quantifies the distance between experimental data and the analogous quantities
computed via finite elements as a function of the unknown parameters. The data set concern the deforma-
tion process of of a suitable region of interest extracted from the tested Double Cantilever Beam (DCB)
specimen [6].
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For the DCB problem at hand we suggest to simulate the response up to failure using interface
elements with drilling rotations located along the bondline [7]. The interest of such elements is motivated
by the fact that thay can be coupled with membrane/shell elements with in-plane rotations, which are
well-known to exhibit excellent accuracy and convergence features both for regular and distorted meshes,
see e.g. [8]. The interface elements with drilling dofs have been implemented in a customized version
of the finite element code FEAP [9] along with a suitable procedure for the computation of gradients
of displacements and forces with respect to the material parameters, i.e. parameter sensitivities. These
are indeed a key ingredient for identification purposes since, one one hand, thay may allow to determine
the location of measurements with the highest information content during experiments and, on the other
side, can also provide the search direction in a gradient-based minimization algorithm.

The outline of the paper is as follows. In section 2 the cohesive model is briefly introduced; the
interface element formulation is then recalled in section 3. The DCB test and the inverse identification
problem are discussed in section 4 ; the results of identification based on truly experimental results in
terms of full-field displacements data obtained via DIC are finally presented in section 5.

2 Cohesive damage model

The formulation of a cohesive-like model basically requires the definition of a relationship between
interface tractions and displacement discontinuities and the introduction of a criterion for damage to
grow and the process zone to move. In particular, we recall in the following the model proposed by
Valoroso and Champaney [5] and consider the simplest two-parameter version for the mode I case, that
is governed by the following equations :

t = (1−D)k〈[[u]]〉+ +k−〈[[u]]〉−

Y =
1
2

k〈[[u]]〉2
+

φ = Y −Y ∗ ≤ 0

Ẏ ∗ = Ḋ
∂F
∂D

φ ≤ 0; Ḋ ≥ 0; Ḋφ = 0

(1)

where t and Y respectively denote the interface traction and the damage-driving force, D ∈ [0,1] is the
scalar damage variable, [[u]] is the displacement jump in the direction normal to the interface while k and
k− are the undamaged interface stiffnesses in tension and compression, respectively. The impenetrability
constraint is introduced in penalty form via the stiffness coefficient k− and by distinguishing between the
positive and negative part of the displacement jump.
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Figure 1 – Cohesive relationship to be identified, (see also [5])
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The critical damage-driving force Y ∗ represents a non-decreasing energy threshold whose value is
determined by a monotonically increasing positive function F given as :

Y ∗ =





∫ t

0
Ẏ ∗dt = F(D) if D ∈ [0,1[

max
τ∈[0,T ]

Y(τ) if D = 1
(2)

Typical forms of F are that of power laws or exponential functions, and their explicit expressions
are constructed in a way to ensure that the energy dissipated in the formation of a new unit traction-free
surface equals the critical strain energy release rate Gc. In particular, the two-parameter version of the
exponential traction-separation relationship, see also Figure 1, is obtained using :

F(D) = −Gc log(1−D) (3)

We recall that in the above model the computation of the damage state, is completely explicit ; in
particular, for damage loading (Ḋ > 0) at each time τ the damage variable is computed as :

D(τ) = min

(
1, max

(σ≤τ)
{F−1(Y ∗(σ))}

)
(4)

see also [5] for a detailed account.
In the following the vector collecting the two material parameters to be identified will be denoted as :

x =

[
k

Gc

]
(5)

3 Interface element formulation

A consistent variational framework for problems including in-plane rotational degrees of freedom
has been presented by Hughes and Brezzi in [11]. In particular, in their formulation the stress tensor is
not a priori assumed to be symmetric, whereby the role it plays in the theory is complementary to that of
the (infinitesimal) rotation field.

The stiffness matrix of the drilling interface element can be obtained starting from the following
degenerated Hughes-Brezzi functional [7] :

Πγ(u,ϕ,τ ) =
1
2

∫

Ω
D[[u]] · [[u]]d Ω+

∫

Ω
τ · (u′−ϕ)dΩ− 1

2
γ−1

∫

Ω
τ 2 dΩ−

∫

Ω
f ·udΩ (6)

where u is the displacement vector, ϕ is the drilling rotation, τ is a Lagrange multiplier that plays the
same role of the skew-symmetric part of the stress in the continuum membrane element [10] and γ is a
regularizing parameter to be chosen in accordance with the ellipticity condition.

Introducing the standard linear continuous finite element interpolations for displacements and rota-
tions and adding quadratic modes for linking displacements to rotations, the discrete equations obtained
by taking the variations of the above functional can be written in matrix form as [7] :




Ke
u ge

ge,T −Ωe

γ




[
uI

τ I

]
=

[
f

0

]
(7)

The variable τ is in general assumed element-wise discontinuous, so that it can be eliminated using
static condensation; hence, the stiffness matrix to be assembled at the global level is :

Ke = Ke
u +

γ
Ωe (ge⊗ge) (8)

The individual terms of the stiffness matrix are evaluated using a three-point quadrature scheme. as
shown in [7], either Newton-Cotes or Gauss quadrature yield the same identical result.
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4 The DCB test and the identification problem

The Double Cantilever Beam is the standard test for obtaining the mode-I fracture toughness Gc of
adhesives. Different procedures exist for performing the experiment and for data reduction ; in particular,
corrected beam theories and compliance calibration methods are the most popular ones. However, apart
from requiring the knowledge of the crack length evolution during the test, the mentioned data reduction
schemes can exhibit possible incoherencies with the numerical model to be used for computations. For
this reason, in the author’s opinion the use of a Finite Element model to compute the material parameters
should be preferred.
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Figure 2 – DCB test specimen.

The geometry of the test considered is shown in Figure 2. The response of the DCB during the debon-
ding tests is simulated using the interface model discussed in Section 4. This is taken as the constitutive
law for interface elements, which have been implemented as a part of a customized version of the FE
code FEAP [9]. In the numerical simulations the right-end of the structure (intact part) is free whilst on
the left side two supports are prescribed and an increasing vertical displacements is imposed at the end
of the upper arm. The experimental raw load-deflection curve is shown in Figure 3 in terms of reaction
force P versus the relative displacement δ.
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Figure 3 – DCB test. Experimental load-deflection curve.

The present study aims to effective identification of the material parameters of the interface model
presented in section 2 via inverse analysis using as data set kinematic full-field data obtained from a
DIC procedure [12, 13]. In a deterministic framework, the optimal material parameters x̂ can be obtained
as the solution of a nonlinear programming problem where a suitable cost function is minimized. Such
a function can be conveniently defined to represent, at all considered instants, the distance between
measured quantities, i.e. displacements inside the monitored sub-domain, and those computed via the
mathematical model as a function of the unknown parameters x.
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The kinematic data set of the identification process (the measured kinematic quantities) is consti-
tuted by a time-space sampling of suitable displacements. In particular, it consists of a collection of
nu-dimensional vectors umeas

i each referring to a particular instant ti, i = 1 , ... , nt , of the loading process.
The values of the same displacements that are instead computed via the FE model will be denoted as
ucomp

i . With this notation in hand the identification problem is set as follows :

x̂ = argmin
x∈S

ω(x) (9)

for the cost function :

ω(x) =
nt

∑
i=1

{∣∣∣∣umeas
i −ucomp

i (x)
∣∣∣∣2

W−1
u

}
(10)

S being is the constraint set, that in the present case is defined as the set of x that are component-wise
positive :

S =
{

x ∈ ℜ |x j > 0, j = 1,2
}

(11)

In the previous equation W−1
u denotes a weighting operator that scales the terms entering the defini-

tion of the residual in order to render them all of the same magnitude.
The minimization of the objective function (10) is performed through either using the Simplex me-

thod and/or a gradient-based descent algorithm available in the Matlab package [14], for which an inter-
face has been developed to communicate with the FE code.

5 Results and discussion

Symmetric double cantilever beam (DCB) specimens were made using two 8 mm thick, 200.0 mm
wide and 20.0 mm deep Al 2024 T351 aluminum coupons, bonded with a layer of acrylic adhesive and
separed by an initial crack of length a = 50 mm that is used as the starting defect. The tested DCB assem-
bly was connected to the testing device using two 30mm-long by 10mm-thick fixtures after having coated
the surface with sprayed black and white paints to create the random texture necessary for measuring
kinematic fields measurement using DIC.

The experiment was monitored within a ROI of about 70× 10mm2 using a digital camera. The dis-
placement field has been estimated using a correlation code relying upon a FE discretization that uses
bilinear shape functions [13] ; the element size in the FE mesh used for image correlation (typically of
the order of some micrometers) being too small to be used for identification purposes, a suitable inter-
polation has been adopted in order to map the measured diplacements onto the FE mesh to be used for
identification.

Figure 4 shows at two different instants the kinematic measurements provided by DIC mapped onto
a FE mesh that uses a discretization of 1×1mm2 continuum elements. In the following are analyzed the
results of identification exercises based on such data.
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Figure 4 – DCB test. Interpolated displacement field computed via DIC at two different instants.
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Computations are first carried out using a FE mesh of 4400 Enhanced Assumed Strain quadrilaterals
and 150 interface elements. The result of identification is the vector :

x1 =

[
k

Gc

]
=

[
2583.875N/mm3

0.198390N/mm

]
(12)

Figure 5 shows the surface plot of the cost function of this series of identification exercises for a quite
wide range of material parameters. The shape of the surface confirms what has been already noted in [6],
i.e. that a good estimation of the fracture energy Gc is likely to be obtained in almost all cases, while a
good estimate of the interface stiffness is more difficult.

500 1000 1500 2000
0.05

0.1

0.15

0.2

0.25

0.3

K
0

G
C

Limit State Surface, Linear F.E., Displacements only

70

80

90

100

110

120

Figure 5 – Cost function surface. Classical continuum and interface elements

In the second series of computations use is made of a FE mesh consisting of 704 membrane elements
60 interface elements, both having drilling degrees of freedom. The result of identification is :

x2 =

[
k

Gc

]
=

[
5697.7076N/mm3

0.177167N/mm

]
(13)

Figure 6 shows the surface plot of the cost function of this series of identification exercises. Though
the shape of the surface remains the same as before, the convergence path takes place almost for a
constant value of the interface stiffness. However, the good performances of plane elements with drilling
dofs for this problem are evident since the solution (13) is obtained for a much coarser mesh.
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Figure 6 – Cost function surface. Continuum and interface elements with drilling dofs
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In the third series of computations we tried to enrich the information content of the available measures
by using an information about the rotation field tant can be obtained from the available measurements of
the displacement field. In particular, the drilling rotations computed using the interpolated nodal displa-
cements on the adopted FE mesh and a finite different scheme. The result is shown in Figure 7 in terms of
additional data (the infinitesimal rotation field) and in Figure 8 in terms of cost function and convergence
path of the minimization algorithms.
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Figure 7 – DCB test. Rotation field computed using interpolated displacements obtained from mapping
of DIC displacements.

In this case it is clearly seen that during the identification process the sequence generated by the
minimization algorithms lies mostly along the steepest descent path. However, the solution vector

x3 =

[
k

Gc

]
=

[
5915.228N/mm3

0,036100N/mm

]
(14)

seems to be not very reliable since since the value of Gc is too close to the physical limit value 0.00.
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Figure 8 – Cost function surface. Continuum and interface elements with drilling dofs. Rotations included
in data set

The reason of this apparent contradiction is probably the fact that in this case the quality of used
data (i.e. their information content) is not of the same for displacements and rotations, whereby adding
rotations into the data set has the effect of producing noise rather than improving precision. Improve-
ments in the estimation of material parameters can however be achieved by properly using the results
of the sensitivity analysis. The sensitivity information can indeed be very helpful in the development of
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inverse analysis procedures since it can be taken as the basis of a selection criterion for the choice of the
measurable quantities with the highest information content to be included in the cost function.
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