
HAL Id: hal-00592698
https://hal.science/hal-00592698

Submitted on 3 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Lagrangian finite element method for non- Newtonian
free-surface fluid flows and fluid-structure interaction

problems
Massimiliano Cremonesi, Attilio Frangi, Umberto Perego

To cite this version:
Massimiliano Cremonesi, Attilio Frangi, Umberto Perego. A Lagrangian finite element method for
non- Newtonian free-surface fluid flows and fluid-structure interaction problems. 10e colloque national
en calcul des structures, May 2011, Giens, France. pp.Clé USB. �hal-00592698�

https://hal.science/hal-00592698
https://hal.archives-ouvertes.fr


CSMA 2011
10e Colloque National en Calcul des Structures

9-13 Mai 2011, Presqu’île de Giens (Var)

A Lagrangian finite element method for non-Newtonian free-surface

fluid flows and fluid-structure interaction problems

M. Cremonesi1, F. Frangi2, U. Perego3

1 Laboratoire de Mécanique et Technologie, École Normale Supérieure de Cachan, France, cremonesi@lmt.ens-cachan.fr
2 Department of Structural Engineering, Politecnico di Milano, Italy, attilio.frangi@polimi.it
3 Department od Structural Engineering, Politecnico di Milano, Italy, umberto.perego@polimi.it

Résumé —

A Lagrangian Finite Element method is applied to the discretization of the Navier-Stokes equations

to simulate fluid problems with significant evolution of the free-surfaces. The same approach is also used

to treat fluid-structure interaction problems. Both Newtonian and non-Newtonian fluid behaviours are

considered. Different examples are performed to show the potentialities of the approach.
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1 Introduction

A critical point in the simulation of the fluid flow problems is the treatment of the free surface.

Similarly, in fluid-structure interaction problems the efficent determination of interface between solid

and fluid, is always crucial. The Arbitrary Lagrangian Eulerian method (ALE), in which the movement

of the fluid particles is independent of that of the mesh nodes, is often used to solve this kind of problems.

Other possible solution schemes are based on the volume of fluid or level set algorithms. Meshfree

and meshless methods are often used for their ability to recover the free-surfaces and the interfaces.

In this work an other possibility to overcome the difficulties concerning the tracking of the interfaces

is presented. A Lagrangian approach is used to describe both the fluid and the structural phases. In

particular, a staggered scheme is considered in which the fluid is treated using a new implementation [1]

of the Particle Finite Element Method (PFEM), first proposed by Oñate, Idelsohn and coworkes [2, 3],

and the structure using a classical finite element method.

Using a Lagrangian approach for the fluid flow the convective terms in the momentum conservation

equation, typical difficulty of the Eulerian framework, disappear. The difficulty is however transferred to

the necessity of a frequent remeshing of the fluid domain. In fact, in a Lagrangian framework the position

of element nodes is updated as a consequence of the fluid flow and the element distortion can become

excessive. To avoid these distortions, a possible remedy consists of a systematic remeshing of the volume

of the problem. To this purpose, an efficient Delaunay triangulation has been adopted. Moreover, to define

the integration domain and to correctly impose the boundary conditions, an “alpha shape method” [4] is

used.

The proposed Lagrangian Finite Element Method is particularly suited also for the solution of fluid-

structure interaction problems in the presence of free-surfaces, in conjunction with a classical finite

element method for the solid part.

2 Governing equations

The Particle Finite Element Method (PFEM) [2, 3] is conceived for the solution of fluid-dynamics

problems using a Lagrangian approach based on the formulation of the Navier-Stokes equations in ma-

terial coordinates. In the Lagrangian framework the equations of motion of a fluid can be written as :

ρ0
Du

Dt
= DivΠ+ρ0b in Ω0 × (0,T ) (1)

Div
(

JF−1u
)

= 0 in Ω0 × (0,T ) (2)
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where ρ0 is the density of the fluid, u is the velocity, Π = JσF−T is the first Piola-Kirchhoff stress tensor,

σ is the Cauchy stress tensor, F is the deformation gradient, J is the determinant of F and Ω0 represents

the initial (and reference) configuration. The Cauchy stress tensor σ can be related to the velocity u and

to the pressure p by the relation :

σ =−pI+ τ(u) (3)

where τ(u) represents the deviatoric stress. If a Newtonian constitutive law is considered, the deviatoric

stress can be directly expressed as a function of the velocity :

τ = µ
(

gradu+graduT
)

(4)

where µ is the viscosity of the fluid. If, insted, a non-Newtonian behaviour is considered, the deviatoric

stress is a generic nonlinear function of the velocity.

2.1 Space discretization

To discretize in space the problem (1)-(2) an isoparametric finite element discretization is introduced.

As explained in the next section, the same order of interpolation is used for both velocity and pressure

unknows. The semi-discretized form of the equations (1)-(2) reads :

M(x)
DU

Dt
+K(x)V+DT (x)P = B (5)

D(x)U = 0 (6)

where M is the mass matrix, K is the fluid stiffness matrix, D is the discretization of the divergence

operator and B is the vector of external forces :

Mab =
∫

Ω0

ρ0NaNbIdΩ0

Dab =
∫

Ω0

JNaGrad(Nb)F
−1dΩ0

Kab =
∫

Ω0

µJ
(

Grad(Na)F
−1
)

⊗
(

Grad(Nb)F
−1
)

dΩ0

Ba =
∫

Ω0

ρ0bNa d Ω0

where I is the identity matrix and Na the nodal shape function. The matrix operators K and D clearly

depend on the current configuration through the deformation gradient F.

2.2 Pressure stabilization

In the present approach every time the mesh is regenerated (connecting the points with the Delauany

triangulation), the informations related to the element are lost. The same occurs for informations related

to nodes not coinciding with triangle vertices. Consequently, to avoid convecting data from the old to the

new mesh, only vertx node data can be stored, and only linear shape functions can be used in the space

discretization of the problem (1)-(2). To avoid spurious oscillations due to the fact that the inf-sup con-
dition is not satisfied [5], a stabilization must be introduced. In particular a pressure-stabilizing/Petrov-
Galerkin (PSPG) stabilization is adopted [6]. Introducing the stabilization in the finite element space

discretization previously considered, the semi-discrete stabilized equations read :

M(x)
DU

Dt
+K(x)V+DT (x)P = B (7)

C(x)
DU

Dt
+D(x)V+L(x)P = H(x) (8)
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where the matrices C, L and H are given by :

Cab =
Nel

∑
e=1

∫
Ωe

0

τe
pspgGrad(Na)NbdΩ0

Lab =
Nel

∑
e=1

∫
Ωe

0

τe
pspg

ρ
Grad(Na) ·Grad(Nb)F

−1dΩ0

Ha =
Nel

∑
e=1

∫
Ωe

0

τe
pspgGrad(Na) ·bdΩ0

and the stabilization parameter is defined as :

τe
pspg =

ze

2‖u‖ (9)

and ze is the "element length" defined to be equal to the diameter of the circle which is area-equivalent

to the element e.

2.3 Time integration

The time integration is performed with a classical backward Euler scheme. Introducing a partition of

the time domain into N time steps of the same length ∆t, and choosing as the reference configuration at

time tn, the discretized system reads :

1

∆t
M

[

Un+1 −Un
]

+K(Un+1)Un+1 +DT (Un+1)Pn+1 = B (10)

1

∆t
C
[

Un+1 −Un
]

+D(Un+1)Un+1 +L(Un+1)Pn+1 = H (11)

where the matrices K, D and L and the vector H depend nonlinearly on the vector Un+1.

3 Description of the method

The PFEM, in the form implemented in the present work, consists of the following conceptual steps

(see also [2] and reference therein). Figure 1 shows a pictorial representation of the steps.

1. Fill the fluid domain with a set of points referred to as "particles" (Figure 1(a)). The accuracy of

the numerical solution is clearly dependent on the considered number of particles.

2. Generate a finite element mesh using the particles as nodes. This is achieved using a Delaunay

triangulation (Figure 1(b)).

3. Identify the external and internal boundaries to compute the domain integrals and to impose cor-

rectly the boundary conditions (Figure 1(c)).

4. Solve the non-linear Lagrangian equations of motion (10)-(11) finding velocity and pressure at

every node of the mesh.

5. Update the particle positions using the computed values of velocity and pressure (Figure 1(d)).

6. Check the mesh distortion :

– if the mesh is too distorted go back to step 2 and repeat for the next time step.

– if the mesh is not too distorted go back to step 3 and repeat for the next time step.

3.1 Mesh generation and identification of external boundaries

To solve the Lagrangian Navier-Stokes equations in a domain defined by the particles, a finite element

mesh is necessary. A possibility to generate a mesh starting from a particle distribution is the Delaunay

triangulation. The Delaunay triangulation generates the convex hull of the set of particles, i.e. the convex

figure with minimum area that encloses all the particles belonging to the set.
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(a) Initial point set (b) Mesh generation

(c) Boundary identification (d) Update of the particle position

FIGURE 1 – Steps of Particle Finite Element Method

Therefore, in a Lagrangian framework the external boundary Γt = ∂Ωt and the current volume Ωt

are defined by the position of the material particles. Every time that the mesh is regenerated with the

Delaunay triangulation, the particles belonging to the boundary may change and the new boundary nodes

(and therefore the particles) have to be identified. The identification process is divided in two phases :

– identification of the real shape of the particle distribution ;

– identification of the nodes that belong to the boundary.

The second phase is almost trivial, but the first one is critical. As introduced, the Delaunay triangulation

generates the convex hull of the set of particles. However, the convex hull may be not conformal with

the external boundaries. To clarify this problem, a set of points is shown in Figure 2(a) and its Delaunay

triangulation in Figure 2(b). It is clear that the Delaunay triangulation does not match the real boundaries.

(a) (b) (c)

FIGURE 2 – (a) Distrubution of points, (b) Delaunay triangulation, (c) Delaunay triangulation with α-

shape.

A possibility to overcome this problem is to correct the generated mesh using the so called α-shape

method [4] as proposed in [7]. The key idea is to remove the unnecessary triangles from the mesh using a
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criterion based on the mesh distortion. For each triangle e of the mesh, the minimal distance he between

two nodes in the element and the radius Re of the circumcircle of the element are defined. If h is computed

as the mean value of all the he, the shape factor :

αe =
Re

h
≥ 1√

3
, (12)

is an index of the element distortion. It is worth recalling that Re/he = 1/
√

3 is the ratio for an equilateral

triangle. All the elements that do not satisfy the condition :

αe ≤ ᾱ (13)

are removed from the mesh, where ᾱ ≥ 1 is assumed. Figure 2(c) shows the Delaunay triangulation

coupled with the alpha-shape scheme for the example introduced before.

In general, increasing the value of ᾱ, fewer triangles are removed from the original mesh and, for

ᾱ → ∞, the original Delaunay triangulation is always recovered.

Once the unnecessary triangles are removed from the Delaunay triangulation, the particles which

actually belong to the boundary can be identified.

The α-shape method can also be used for the identification of the fluid particles which separates from

the rest of the domain. When a particle on the boundary is a vertex of only one triangle and the triangle

is overly distorted, the particle is separated from the domain and all the mass of the triangle is assigned

to this particle in order to preserve the total fluid mass. After separation, the motion of these particles is

governed by the body force and the initial velocity which they are subjected to. At each new Delaunay

triangulation, the separated particles become vertices of triangles. In the case that a separated particle has

approached enough the fluid free boundary, the triangle is not eliminated by the α-shape method check

and the particle is again incorporated in the fluid mass.

4 Fluid-structure interaction

The proposed Lagrangian Finite Element Method is particularly suited for the solution of fluid-

structure interaction problems in the presence of free-surfaces, in conjunction with a classical finite ele-

ment method for the solid part. A critical issue of fluid-structure interaction schemes is the identification

of the contact interfaces between the solid and fluid domains. The evolution of the interaction surfaces is

tracked using a novel algorithm which exploits the features of the Lagrangian approach based on the con-

tinuous remeshing introduced for the fluid solution. The proposed algorithm is based on the superposition

of a set of fictitious fluid particles (called “ghost particles”) to the nodes of the solid domain, which can

come in contact with the fluid domain. When the Delaunay triangulation is performed, the alpha-shape

criterion selects those parts of the interface where the fluid particles can possibly come into contact with

the structure. If the two discretized domains are not in contact, the fluid and the solid analyses are per-

formed separately without any interaction. If instead parts of the two discretized domains are in contact,

a coupled analysis is performed with a Dirichlet-Neumann iterative approach. The fundamental steps of

the interaction can be listed as follows.

– Superpose a set of ghost particles to the solid surfaces which can possibly come into contact with

the fluid domain.

– Perform the Delaunay triangulation.

– Apply the α-shape method to remove the unnecessary triangles.

– Check whether the fluid is in contact with the solid part. The fluid element is assumed to be in

contact with the solid if at least one of its nodes is a ghost particle.

– If the two discretized domains are not in contact, the fluid and the solid analyses are performed

separately without any interaction.

– If the two discretized domains are in contact, a coupled analysis is necessary.

5 Applications

The proposed scheme has been applied to both Newtonian and non-Newtonian fluids. Comparisons

with numerical benchmarks and with experimental results are presented to show its potentialities.
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5.1 Fluid-structure interaction : filling of a deformable container

The present approach has been used to simulate an example of a fluid-structure interaction problem

involving large fluid motions with large displacements of the structure. Under the action of the gravity

force a fluid drops down from a funnel-shaped rigid container into a thin elastic container. The elastic

properties of the container are given as : Young modulus E = 210KPa, Poisson ratio ν = 0.3 and density

ρs = 2000Kg/m3. For the fluid a fluid viscosity µ = 0.001Kg/ms and a density ρ f = 1000Kg/m3 are

adopted. In the solution an initial fluid mesh of 5749 nodes and 11103 elements and a solid mesh of 2188

nodes and 3365 quadrilateral plane strain elements are adopted and a time step of 0.001s is used. Figure

3 shows the deformation of the elastic container at different time step.

FIGURE 3 – Deformation of an elastic container. Snapshots at different time step.

5.2 Non-Newtonian fluids : slump flow test

The non-Newtonian solver has been used to simulate typical tests on fresh concrete, mortar and

cement pastes. In general, yield stress and viscosity are parameters used to characterize the workability

of this kind of materials. The experimental determination of these parameters is a research topic of recent

years. However, in the identification of parameters an efficient numerical tool can be also very useful. To

this purpose, the non-Newtonian solver is used to simulate typical tests widely used in the experimental

identification of the rheological properties of fresh cement paste and concrete. For the cement pastes

and mortars a Bingham constitutive behaviour, which is the simplest model encompassing the concept

of yield stress, is considered. Using the Papanastasiou approximation [8], the Bingham behaviour can be

described as a relationship between deviatoric stress and velocity :

τ = µ̃ε(u) (14)

µ̃ = µ+
τ0

‖ε‖
(

1− e−n‖ε‖
)

(15)

where ε(u) =
(

gradu+graduT
)

is the symmetric part of the gradient of the velocity.

Figure 4 shows the simulation of a typical slump flow test. A rigid cone, open at both ends, is filled in

with fresh cement paste or concrete, then the cone is suddenly raised allowing the fluid concrete to flow

onto a board. The material will move only if the yield stress is exceeded and will stop when the stress

is below the yield stress. Table 1 shows a comparison between the experimental radius and the radius

computed with the present approach for different values of density, viscosity and yield stress for cement

pastes. A good agreement can be observed between experimental and numerical results. Details about

the numerical simulation of these tests can be found in [9].
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FIGURE 4 – Mini-slump-flow test. Snapshots at different time steps for a cement paste.

density (Kg/m3) viscosity (Pa s) yield stress (Pa) exp. radius (m) computed radius (m)

2252 4.018 18.0182 0.2249 0.2200

2242 3.511 7.4457 0.2668 0.2520

2231 3.009 2.4997 0.3333 0.3226

2252 5.014 25.8860 0.2249 0.2228

2242 3.836 10.6969 0.2682 0.2804

2231 3.585 3.5913 0.3333 0.3291

TABLE 1 – Mini-slump-flow test : comparisons for varying density, viscosity and yield stress for cement

pastes.

5.3 Deformable landslide simulation

The proposed approach is then used to simulate the wave generated by a deformable mass of granular

material sliding in a water channel. This example is particularly interesting because impulse waves in

bays, lakes or reservoirs generated by landslides or rock falls may propagate with possibly catastrophic

consequences for the surronding enviroment.

For the numerical simulation of the sliding mass a non-Newtonian Bingham fluid behaviour is as-

sumed, while a classical Newtonian behaviour is considered for the water [10]. Figure 5 shows snapshots

of the analysis at different time steps.
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(a) t = 0 s (b) t = 0.75 s

(c) t = 1 s (d) t = 1.25 s

FIGURE 5 – Landslide without initial velocity. Snapshots at different time steps.
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