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Résumé — Pelvic floor (pelvic support) disorders occur only in women and become more common as
women age. However, the surgical practices remain poorly evaluated. The realization of a simulator of
the dynamic behavior of the pelvic organs is an identified need. To determine the strain and stress in
the biological soft tissues hyperelastic constitutive laws are often used in the context of finite element
analysis. In our work, the Mooney-Rivlin model was taken into consideration to simulate the interactions
between these organs due to pressure.
Mots clés — Pelvic organs, hyperelastic, finite element, interactions, Mooney-Rivlin model, pressure.

1 Introduction

Pelvic floor (pelvic support) disorders occur only in women and become more common as women
age. They involve a dropping down (prolapse) of the bladder, urethra, small intestine, rectum, uterus,
or vagina caused by the failure of the system of support. About 11.1%of women need surgery for a
pelvic floor disorder during her lifetime, given an average life expectancy is 79 years[1]. However, the
surgical practices remain poorly evaluated. The realization of a simulator of the dynamic behavior of
the pelvic organs which allowing the surgeon to estimate the functional impact of his actions before his
implementation is then a need identified.

Our project is to conceive a simulator of soft tissues based on physical behaviours of each organ
taking into account interactions between them inside the pelvic cavity. This simulator will be in a loop of
a clinical routine to provide preoperative information for the surgery planning. In this workflow, the si-
mulation will be based on a patient-specific in which each geometrical model will be carried out starting
from MRI acquisition of pelvic organs of one patient as shown in Figure 1[2]. The constraint time si-
mulation has to be considered and fast computational methods are necessary to solve large deformations
with multiple contacts.

From a mechanical point of view, the pelvic organs have specific geometries and material properties.
They can be thought of as biomechanical structures move and interact with each other, due to the external
pressures, while the constraints are induced by rigid bodies (bones) as well as soft tissues such as muscles,
ligaments and fascias, all ensuring the stability of these organs.

2 Goemetrical definition of the pelvic system

A geometrical rebuilding is performed based on the magnetic resonance image (MRI) data from a
single patient without genital prolapse. However, there is a problem meshing the 3D model, so as the
first step of this work, a 2D sagittal section of the 3D model was chosen to be the test model. The mesh
is constructed with plane quadrilateral elements.

3 Mechanical properties and constitutive laws

The characterisation of the mechanical behaviour of pelvic tissues is an essential step for performing
the numerical simulation. The biological soft tissues are often considered as non-linear elastic, large de-
formation and quasi-incompressible materials[3]. To determine the strain and stress in the biological soft
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FIGURE 1 – Geometrical models of pelvic organs

tissues such as ligaments, tendons, pelvic organs or arterial walls, anisotropic hyperelastic constitutive
laws are often used in the context of finite element analysis.

Among the different strain energy density functions available in the literature, Mooney-Rivlin is
often chosen in the simulation of organs’ contact[4]. Usually, the hyperelastic materials undergo large
deformations. In order to describe the geometrical transformation problems, the deformation gradient
tensor is introduced by

Fi j(x) = δi j +
∂ui

∂u j
or F = I+∇u (1)

where I is the unity tensor, x the position vector and u the displacement vector. Because of large
displacements and rotations, Green-Lagrangian strain is adopted for the non-linear relationships between
strains and displacements. We note C the stretch tensor or the right Cauchy-Green deformation tensor (
C = FTF ). The Green-Lagrangian strain tensor E is defined by

E = (C− I)/2 (2)

In the case of hyperelastic law, there exists an elastic potential function W (or strain energy density
function) which is a scale function of one of the strain tensors, whose derivative with respect to a strain
component determines the corresponding stress component. This can be expressed by

S =
∂W
∂E

= 2
∂W
∂C

(3)

where S is the second Piola-Kirchoff stress tensor. In the particular case of isotropic hyperelasticity,
(3) can be written by

S = 2
[

I3
∂W
∂I3

C−1 +

(
∂W
∂I1

+ I1
∂W
∂I2

)
I− ∂W

∂I2
C
]

(4)

where Ii (i = 1,2,3) denote the invariants of the right Cauchy-Green deformation tensor C :

I1 =Cii ; I2 = (I2
1 −Ci jCi j)/2 ; I3 = det(C) (5)

In case of isotropic behaviour, the Mooney-Rivlin model, described by the strain energy density
function, is often chosen in the literature to model the behaviour of the soft tissue materials. This model
has been implemented into an in-house finite element code FER[5]to model the bladder, the rectum and
the uterus. The Mooney-Rivlin strain energy density formulation is given by

W =C10(I1 −3)+C01(I2 −3)+
1
d
(J−1)2 (6)
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where C10 , C01 and d are the material coefficients. I1 and I2 are the first and second invariants,
respectively. Noticed that if d approaches infinity, the last part of equation (6) will disappear or approach
zero, so it will back to strain energy density function for an incompressible Mooney-Rivlin material.

4 Loading application

The essential problem is to assign suitable loadings on the system taking into account the pelvic or-
gans encountered in the phenomenon of prolapses. As mentioned before, these organs move and interact
with each other, due to the external pressures, so we considered applying a compressive pressure exerted
by the lungs onto the pelvic area.

Because of large deformations, the loading application of compressive pressure on the pelvic area is
non linear and highly dependent of the current configuration of the organs. Indeed these loads are always
normal to the deformed surfaces of the organs which will be considered in out work as follows.

The surface load term is given by

Fp =

∫
a

pnda (7)

where p is the uniform pressure which acting on a surface a having a pointwise normal n. In this equation
the magnitude of the area element and the orientation of the normal are both deformation-dependent. In
terms of parameterization the normal and area elements can be obtained in terms of the tangent vectors
∂x/∂ξ and ∂x/∂η as,

n =

∂x
∂ξ ×

∂x
∂η∥∥∥ ∂x

∂ξ ×
∂x
∂η

∥∥∥ ; da =

∥∥∥∥∂x
∂ξ

× ∂x
∂η

∥∥∥∥dξdη (8)

The deformation-dependent load vector (7) can be transformed to the reference configuration of the
loaded element surface,

Fp =
∫
a

pnda =
∫
A

p(
∂x
∂ξ

× ∂x
∂η

)dξdη (9)

where A is the parameter plane.
The cross product in (9) can be computed as,

n̂e = φe,ξ ×φe,η =


x2,ξx3,η − x3,ξx2,η
x3,ξx1,η − x1,ξx3,η
x1,ξx2,η − x2,ξx1,η

 (10)

The corresponding virtual work component is,

δW p
ext =

∫
a

pn ·δvda (11)

where δv denotes an arbitrary virtual velocity from the current position of the body.
Express (11) in the parameter plane as,

δW p
ext =

∫
A

pδv · (∂x
∂ξ

× ∂x
∂η

)dξdη (12)

To linearize (12), after some algebraic operations[6], we can get a symmetric function,

DδW p
ext [u] = 1

2
∫

A p ∂x
∂ξ ·

[
( ∂u

∂η ×δv)+( ∂δv
∂η ×u)

]
dξdη

− 1
2
∫

A p ∂x
∂η ·

[
(∂u

∂ξ ×δv)+( ∂δv
∂ξ ×u)

]
dξdη

(13)

Discretization of this equation will lead to a symmetric component of the tangent matrix, therefore,
the vector of stiffness coefficients is given by
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kp,ab =
1
2
∫

A p ∂x
∂ξ ·

(
∂Na
∂η Nb − ∂Nb

∂η Na

)
dξdη

_ 1
2
∫

A p ∂x
∂η ·

(
∂Na
∂ξ Nb − ∂Nb

∂ξ Na

)
dξdη

(14)

in which a, b means the two different nodes in one element surface, N is the shape function.
For the two-dimensional problems, the description of the normal vector n is a lot simpler

n̂e =

{
−x2,ε
x1,ε

}
(15)

the vector of stiffness coefficients is,

kp,ab =
1
2

∫
L

p ·
(

∂Na

∂ξ
Nb −

∂Nb

∂ξ
Na

)
dξ (16)

5 Contact modeling

Without going into details, after spatial and temporal discretization, non linear problems involving
contacts are governed by the following nodal algebraic equations defined at each time step :

Fi(U)+Fe(t)+Fc = 0 (17)

where Fi is the vector of internal forces, Fe denotes the vector of external loads and Fc the vec-
tor of contact action/reaction forces. These equations are strongly non-linear with respect to the nodal
displacements U , because of finite strains, large displacements of solids and the contact phenomenon
(irreversibility of frictional effects).

A typical solution procedure for this type of non-linear analysis is obtained by using the Newton-
Raphson iterative procedure : {

Ki
T ∆U = F +Fc

U i+1 =U i +∆U
(18)

Ki
T =− ∂Fi

∂U is the tangential matrix (including mass and stiffness matrix) and F = Fi(Ui)+Fe(t) .
The gap vector between two bodies Ω1 and Ω2 in the global coordinates system is defined by :

X i+1 =U i+1
c1 −U i+1

c2 +X0 (19)

where Uc1 (resp. Uc2 ) is the displacement vector of the contact node of Ω1 (resp. Ω2 ) and X0 is the
initial gap vector. The equation (19) can be easily transformed as follows :

X i+1 =CU i+1 +X0 (20)

where C is a condensation matrix.
By the virtual work principle, we have :

RT δX = FT
c δU ⇒ Fc =CT R (21)

where R represents the nodal contact forces in the global reference frame (X ,Y,Z) . By combining
equations (18), (20) and (21), we obtain :

X i+1 =W R+UF (22)

with

W =CK−1CT ; UF =CK−1F +CU i +X0 (23)

Let Q be the rotation matrix between the local frame ( T1,T2,N ) (Fig.2) and (X, Y, Z) . Let x and
r be respectively the gap vector and the contact force vector in the local frame. Equation (22) may be
written in the local frame :
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FIGURE 2 – The gap between two contact points

x = wr+ x f (24)

where :x = QX i+1;r = QR;x f = QX f ;w = QTWQ.
For the following, let xn be the algebraic value of the normal gap, xt the tangential part of the gap

vector, rn the algebraic value of the normal contact force and rt the tangential part of the contact force
vector. The complete contact law (Signorini conditions + Coulomb friction laws) is a complex non-
smooth dissipative law including three statuses :

Nocontact :xn > 0andr = 0
Contactwithsticking :∥xt∥= 0andr ∈ int(Kµ)
Contactwithsliding :r ∈ bd(Kµ)withrt =−µrn

xt
∥xt∥

(25)

where int(Kµ) and bd(Kµ) denote the interior and the boundary of the so-called coulomb cone res-
pectively.

DeSaxcé and Feng [7] have proposed an augmented Lagrangian formulation of the contact derived
from a bipotential function as follows :

r∗ = r−ρx∗; x∗ = x+µ∥xt∥N (26)

They have demonstrated that the three possible contact statuses as mentioned in Equation (25) can be
stated from the following projection operator : if r∗ ∈ Kµ (contact with sticking) then r = r∗ , if r∗ ∈ K∗

µ

(separating) then r = 0 and if r∗ ∈R3−(Kµ∪K∗
µ )(contact with sliding) then r is the orthogonal projection

of r∗ onto Kµ . K∗
µ is the polar cone of Kµ (Fig.3).

FIGURE 3 – The Coulomb cone and contact projection operators

Consequently, the projection operation can be explicitly defined by :
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ProjKµ
(r∗) = r∗ if ∥r∗t ∥< µr∗n

ProjKµ
(r∗) = 0 if µ∥r∗t ∥<−r∗n

ProjKµ
(r∗) = r∗−

(
∥r∗t ∥−µr∗n

1+µ

)(
r∗t
∥r∗t ∥

−µN
)

otherwise
(27)

The contact solving problem is defined by :{
x = wr+ x f

r = ProjKµ(r
∗)

(28)

where the unknowns are x and r. The solution can be done by using Uzawa or Newton techniques.
Interested readers could find more details in[8].

6 Similation results and discussion

The problem concerns the muti-contact of three organs onto the pubis and pelvic floor due to the
pressure. The organs are modelled by 2165 nodes and 1781 plane quadrilateral elements. We considered
the pubis is constrained fully as a rigid body. The pelvic floor is constrained only in the two sides which
obstruct the organs to expand from below. A uniform pressure is applied on the upper surfaces of rectum,
uterus and bladder as shown in Figure 4.

FIGURE 4 – Load application on pelvic system

Mooney-Rivlin constitutive law has been used in literature to model the behaviour of pelvic ma-
terials. Based on the linear elastic material properties of pelvic tissue (Poisson’s ration=0.4, Young’s
modulus=15KPa [9]), the characteristics of this example are : C01 =2000Pa, C10 =500Pa, d =8000, mass
density ρ = 500 kg/m3, pressure p =10Pa. The total simulation time is 3×10−3 s and the solution para-
meters are : ∆t = 10−4 s, ξ = 0.5, θ = 0.55. We assume that no damping and Coulomb friction between
contact surfaces exist. Fig.5 shows the distribution of the von Mises stress during the contact. It is noted
that the concentration is localized in the contact zone as expected.

As we can see in figure 5, we have succeeded to simulate efficiently the interactions between these
hyperelastic bodies due to the pressure. This is a first step which opens many perspectives and can
propose a tool to help physicians to characterize functional impact of these organs. With this tool, it
is possible to have a good idea of the impact force, the dimension of impact surface, the deepness of
significant stresses, the energy absorbed by the soft tissue. Of course a lot of problems remain to be
solved to have simulations close to reality as :

- having quantitative measurements of the mechanical properties of biological tissues in vivo.
- improving the modelling of soft tissue by building the 3D models with fine meshes, taking into

account the internal pressures inside the organs which affects its deformation results.
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FIGURE 5 – Von-Mises stress distribution of four steps in one test
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