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Introduction

The Finite Element Methods (F.E.M.) are widely used in engineering analysis, and has deep mathematical foundations. However, the treatment of incompressible or nearly incompressible problems, with only one unknown field variable, leads to numerical locking of this approximation. For the analysis of such problems, it is necessary to use a mixed formulation. However, mixed finite element methods are not stable in all cases, some of them show spurious pressure oscillations if displacement and pressure spaces are not properly chosen [1]. For a mixed formulation to be stable it must verify consistency, ellipticity and the so called inf-sup (or LBB) condition. The later is a severe condition which depends on the connection between the approximation spaces for the displacement and pressure [START_REF] Chapelle | The inf-sup test[END_REF]. The presence of a crack in a structure reveals two types of discontinuities : a strong discontinuity that requires an adapted mesh to the shape of the crack, hence the domain is meshed at each time step ; and a weak discontinuity that requires refinement at the crack tip. These two operations lead to a huge computational cost. In order to overcome these difficulties and to make the finite element method more flexible, many alternative methods had been developed. Apart from mixing meshless methods and finite elements, another alternative consists in using the concept of "partition of unity" introduced by Babuška, to creates an independence between the mesh and the crack. Among the class of partition of unity finite element methods, the Generalised Finite Element Method (GFEM) and the eXtended Finite Element Method (X-FEM) are the most advanced. The X-FEM allows to model cracks, material inclusions and holes on nonconforming meshes. It was introduced by Moës and al [START_REF] Moës | A finite element method for crack growth without remeshing[END_REF]. It consists in enriching the basis of the classical finite element method by a step function along the crack line and by some non-smooth functions representing the asymptotic displacement around the crack tip. In spite of the singular enrichment of the finite element basis, the obtained convergence error of X-FEM remains of order if linear finites elements are used. To improve this convergent rate and to obtain an optimal accuracy, Chahine and al introduced a new enrichment strategy [START_REF] Chahine | Crack tip enrichment in the X-FEM method using a cut-off function[END_REF] : the so called X-FEM cut-off. This enrichment strategy uses a cut-off function to locate the crack tip surface. In their work, Chahine et al have shown that the X-FEM cut-off has an optimal convergence rate of order h and that the conditioning of the stiffness matrix does not deteriorate. In this work, we extend the numerical results given by Chahine et al. [START_REF] Chahine | Crack tip enrichment in the X-FEM method using a cut-off function[END_REF] to an incompressible isotropic linear plane elasticity problem in fracture mechanics. In particular, this formulation must satisfy the famous inf-sup condition (or LBB). Let Ω be a two-dimensional cracked domain, Γ c denotes the crack and Γ the boundary of Ω. We assume that Γ \ Γ c is partitioned in two parts : Γ N where a Neumann surface force t is applied and Γ D where a Dirichlet condition u = 0 is imposed (see Fig. 1). We assume that we have a traction-free condition on Γ c . Let f be the body force applied on Ω. The equilibrium equation and boundary conditions are given by

-div σ(u) = f, in Ω, (1) σ(u) = C : ε(u), in Ω, (2) 
u = 0, on Γ D , (3) σ 
(u) • n = t, on Γ N , (4) σ 
(u) • n = 0, on Γ c . ( 5 
)
with n is the outside normal to the domain Ω. Let p be the hydrostatic pressure defined in two dimensions by : p = -tr(σ) 2 .

Now we decompose the stress tensor σ in two parts : the spherical part and the deviatoric part σ d given by :

σ d (u) = σ(u) + p I = 2µε d (u), where ε d (u) = ε(u) - div(u) 2 I.
Then, the strong mixed formulation is written as follows

-div[σ d -p I] = f in Ω, (6) 
div u = 0 in Ω. ( 7 
) Let V = v ∈ H 1 (Ω) with u = 0 on Γ D and Q = L 2 (Ω).
Taking the inner poduct of (6) with a test function v ∈ V , and multiplying (6) by a test function q ∈ Q. On applying Green's formula for elasticity, we find the weak mixed formulation

   Find (u, p) ∈ (V, Q) such that : Ω σ d (u) : ε(v) dΩ -Ω p div v dΩ = Ω f • v dΩ + Γ N t • v dΓ, ∀v ∈ V, Ω q div u dΩ = 0, ∀q ∈ Q.
Accordingly, the weak mixed formulation of the isotropic incompressible linear elastic problem is written as :

   Find (u, p) ∈ (V, Q) such that : a(u, v) -b(v, p) = L(v), ∀v ∈ V, b(u, q) = 0, ∀q ∈ Q, (8) with a(u, v) = Ω σ d (u) : ε(v) dΩ, b(v, p) = Ω p div v dΩ, L(v) = Ω f • v dΩ + Γ N t • v dΓ.
Discretization of the elasticity problem follows the usual steps. We approximate (u, p) by (u h , p h ) ∈ V h × Q h . The subspaces V h and Q h are finite dimensional spaces that will be defined later. The discretized problem is then :

   Find (u h , p h ) ∈ (V h , Q h ) such that a(u h , v h ) -b(v h , p h ) = L(v h ), ∀v h ∈ V h , b(u h , q h ) = 0, ∀q h ∈ Q h . (9) 
REMARK : The existence of a stable finite element approximate solution (u h , p h ) depends on choosing a pair of spaces V h and Q h such that the following condition holds :

inf q∈Q h sup v∈V h b(v h , q h ) q h 0,Ω v h 1,Ω ≥ β 0 .
where β 0 > 0 independent of h. This is the "Ladyzhenskaya-Brezzi-Babuška condition" (LBB) also called the "inf-sup condition" [1]. The verification of this condition for a couple (V h , Q h ) is very difficult to prove in practical situations. Therefore, the numerical evaluation of the inf-sup has been widely studied (see Chapelle and Bathe [START_REF] Chapelle | The inf-sup test[END_REF]). The numerical evaluation gives an indication of the verification of the LBB condition for a given finite element discretization. The numerical inf-sup test is based on the following proposition.

Proposition 1 ( [START_REF] Chapelle | The inf-sup test[END_REF]) Let [M] uu and [M] pp be the matrices associated with the H 1 -inner product in V h and the L 2 -inner product in Q h , respectively, and let µ min be the smallest nonzero eigenvalue of the eigenvalue problem :

[B] T [M] -1 uu [B] V = µ 2 [M] pp V.
Then the value of β 0 in the LBB condition is simply µ min .

The numerical test proposed in [START_REF] Chapelle | The inf-sup test[END_REF] is to test the stability of the mixed formulation by calculating β h with increasingly refined meshes. Indeed, if log(β h ) continuously decreases as h goes to 0, Chapelle and Bathe [START_REF] Chapelle | The inf-sup test[END_REF] predicted that the finite element violates the LBB condition. Otherwise, if β h stabilizes when the number of elements increases, then the numerical inf-sup test is verified.

X-FEM cut off

The idea of XFEM is to use a classical finite element space enriched by some additional functions. These functions result from the product of global enrichment functions and some classical finite element functions. This variant of X-FEM uses a cut-off function to find the singular enrichment surface. Indeed, for this method, the enrichment is introduced on all crack tip surface and not only on the nodes. The classical enrichment strategy for this problem is to use the asymptotic expansion of the displacement and pressure fields at the crack tip area. Indeed, the displacement is enriched by the Westergaard functions.

F = F j (x), 1 ≤ j ≤ 4 = √ r sin θ 2 , √ r cos θ 2 , √ r sin θ 2 sin θ, √ r cos θ 2 sin θ .
For the pressure, the asymptotic expansion at the crack tip is given by [START_REF] Legrain | Stability of incompressible formulations enriched with X-FEM[END_REF] p(r, θ)

= 2K I 3 √ 2πr cos θ 2 + 2K II 3 √ 2πr sin θ 2 .
This expression is used to obtain the basis of enrichment of the pressure in the area of the crack tip [START_REF] Legrain | Stability of incompressible formulations enriched with X-FEM[END_REF] :

     F p 1 = 1 √ r cos θ 2 , F p 2 = 1 √ r sin θ 2 .
We note that the displacement and pressure are also enriched with a Heaviside function at the nodes whose shape functions support is totally cut by the crack. Using this enrichment strategy, the discretisation spaces V h and Q h take the following forms :

V h = v h = ∑ i∈I α k ψ u,k + ∑ i∈I H β k Hψ u,k + 4 ∑ j=1 γ j F u j χ; α k , β k , γ j ∈ R ∀i, j , Q h = p h = ∑ i∈I p i ϕ p,i + ∑ i∈I H b p i Hϕ p,i + 2 ∑ j=1 c p j F p j χ; p i , b p i , c p j ∈ R ∀i, j ,
with ψ u,k is the vector shape function defined by :

ψ u,k =            ϕ u,i 0 if i = k + 1 2 , 0 ϕ u,i if i = k 2 , (10) 
and ϕ u,i (resp.ϕ p,i ) is a scalar schape function for displacement (resp. for pressure). χ is a is a polynom of order 5 between r 0 and R 1 such that :

χ(r) = 1 if r < r 0 , χ(r) = 0 if r > r 1 . ( 11 
)
4 Numerical study

In this section we numerically study the inf-sup condition and a comparison between the convergence rates of the X-FEM fixed area and X-FEM cut off. The numerical test is made on a non-cracked domain The Von Mises stress for this test is presented in Fig. 3(b). As expected the Von Mises stress is concentrated at the crack tip. 

Numerical inf-sup test

In this section we numerically study the inf-sup condition and its dependence on the position of the crack. First, the inf-sup condition is approximated using gradually refined structured triangulation meshes. The evolution of the numerical inf-sup value is plotted in Fig. 4 with respect to the element size. From this figure we can conclude that the numerical inf-sup value is stable for all studied formulations. Let δ be the crack position as shown in Fig. 5. To test the influence of the position of the crack on the inf-sup condition, we calculate the LBB condition by decreasing δ. The tests are made, on a P + 1 /P 1 formulation, with h = 1/60 (see Fig. 6(a)) and h = 1/40 (see Fig. 6(b)). The results presented on Figs. 6(a) and 6(b) show that the inf-sup condition remains bounded regardless of the position of the crack. Hence, one can conclude that our formulation is stable independently of the position of the crack. Figure 7(b) confirms that the convergence rate for the energy norm is of order h for both variants, of the X-FEM : with fixed area and cut-off. Figure 7(a) shows that the convergence rates for the L 2 -norm in displacement is of order h 2 for both variants. Figure 7(c) shows that the convergence rates for the L 2 -norm in pressure is h for both variants. Furthermore, the rate of convergence for the L 2 -norm is better than the one for the H 1 -norm, which is quite usual. Compared to the X-FEM method with a fixed enrichment area, the convergence rate is very close but the In order to test the computational cost of X-FEM cut-off, Table (1) shows a comparison between the number of degrees of freedom for different refinements of the classical method X-FEM with fixed enrichment area and the cut off method. This latter enrichment leads to a significant decrease in the number of degrees of freedom. Figure 8 shows that the conditioning of the linear system associated to the cut-off enrichment is much better than the one associated with the X-FEM with a fixed enrichment area. We can conclude that, similarly to the X-FEM with fixed enrichment area, the X-FEM cut off leads FIGURE 8 -Conditioning number of the stiffness matrix for the mixed problem. to an optimal convergence rate but it reduces the approximation errors without significant additional costs.

Convergence of the High-order X-FEM

The numerical tests of the higher order X-FEM method (P + 2 /P 1 disc, P + 2 /P 1 , P 2 /P 1 and P 2 /P 0 ) do not give an optimal order of convergence (see Figs. 9(a), 9(b), 9(c) and 9(d)). This means that the enrichment function does not capture the behavior of the solution at the crack tip. This result was expected as the main singularity belongs to H 3/2 (Ω). Then, for the X-FEM cut-off, the convergence rate remains limited to h 3/2 with high order polynomials.

To have an optimal convergence rate, we must make an asymptotic expansion of order 2 to find the correct expression of the enrichment basis for the displacement and pressure.

conclusion

By this study we can conclude that the X-FEM cut-off mixed formulation is stable, regardless of the position of the crack. Similar to the X-FEM with fixed enrichment area, the X-FEM cut-off gives an optimal convergence rate but without significant additional costs. For shape functions of higher order, the convergence rate is limited to h 3/2 . This result was expected as the main singularity belongs to H 3/2 (Ω).
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