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Résumé — The paper proposes a synthesis of new methodologies for developing a distributed, inte-
grated shunted piezo composite for beams and plates applications able to modify the structural vibro
acoustical impedance of the passive supporting structure so as to absorb or reflect incidental power flow.
This design implements tailored structural responses, through integrated passive and active features, and
offers the potential for higher levels of vibration isolation as compared to current designs. Optimiza-
tion tools for designing shunt circuits is based on using dedicated numerical approach able to compute
the multi-modal wave dispersions curves into the whole first Brillouin zone for periodically distributed
2D shunted piezo-mechanical systems. By using a specific indicator evaluating the evanescent part Blo-
ch’s waves, we optimize, in a second time, the piezoelectric shunting electrical impedance for controlling
energy diffusion into the proposed semi-active distributed set of cells. A 3D modeling of semi-distributed
distribution of the optimal smart metamaterial is used for validating the obtained cell design.
Mots clés — Distributed control, 2D Waves Dispersion, Bloch Theorem, Shunted piezoelectric, Mid-
Frequency Optimization.

1 INTRODUCTION

Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically
elegant approach for optimizing mechanical components with regards to vibration and acoustic criteria,
among others. However, achieving this objective may lead to different outcomes depending on the context
of the optimization. In the preliminary stages of a product’s development, one mainly needs optimization
tools capable of rapidly providing global design directions. Such optimization will also depend on the
frequency range of interest. One usually discriminates between the low frequency (LF) range and the
medium frequency (MF) range, especially if vibration and noise are considered. However, it should be
noted that LF optimization of vibration is more common in the literature than MF optimization. For
example, piezoelectric materials and other adaptive and smart systems are employed to improve the
vibroacoustic quality of structural components, especially in the LF range [1, 2, 3] even if ditributed
transducers are used [4, 5]. Recently, much effort has been spent on developing new multi-functional
structures integrating electro-mechanical systems in order to optimize their vibroacoustic behavior over
a larger frequency band of interest[6, 7, 8, 9, 10, 13]. However, there is still a lack of studies in the
literature for MF optimization of structural vibration. To that end, the focus of this study is to provide a
suitable numerical tool for computing wave dispersion in 2D periodic systems incorporating controlling
electronics devices. The main final aim is to allow their optimization in order to optimize vibroacoustic
diffusion in 2D wave guides.
Two numerical approaches can be distinguished for computing that dispersion : the semi-analytical finite
element method (SAFE) and the wave finite element (WFE) method. The main disadvantage of the
SAFE method is that FE used are not standard so they must be specifically defined for each application.
Nevertheless, a large amount of FE has been developed since 1975 to compute dispersion curves of rails
[15], laminated composite plates [16, 17] and viscoelastic laminated composite plates [18]. To avoid
development of specific FE, the WFE method considers the structures as periodic in order to model,
with standard FE, a period of the structure. By using the periodic structure theory (PST) introduced by
Mead [15], an eigenvalue problem can be formulated from the stiffness and mass matrices of the FE
model to find wave numbers of all the propagating waves. The WFE method has been successfully used
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to deal with wave propagation in two dimensional structures [19, 20]. One of the main problem of all
these approaches is the difficulty to compute the damped wave numbers in the whole Brillouin domain
necessary for optimizing vibroacoustic behavior of smart periodic structures.
After recalling the Floquet-Bloch theorems, we introduce a new numerical formulation for computing the
multi-modal damped wave numbers dispersion in the whole first Brillouin domain of a periodical smart
structure made of periodically distributed shunted piezoelectric patches. Based on this wave modeling,
optimization of the electrical impedance of the shunted circuit is made in order to decrease group velocity
of flexural waves. The obtained optimal impedance is also tested in controlling the HF response of a
semi-distributed system.

2 PIEZO-ELASTO-DYNAMICAL APPLICATION OF THE FLOQUET-
BLOCH THEOREM

In this section the application of the celebrated Floquet-Bloch theorem is presented for piezo-elastodynamic
problems. Based on the well known results obtained by Floquet [21] in one-dimensional and later redisco-
vered by Bloch [22] in multidimensional problems, we propose an original application to bi-dimensional
piezo-elastodynamical problem leading to very general numerical implementation for computing waves
dispersion for periodically smart distributed mechanical systems incorporating electronic components
and damping effects [23].

2.1 The Bloch Theorem

The Bloch theorem gives the form of homogeneous states of Schrödinger equation with periodic
potential. This theorem can be considered as a multidimensionnal application of the Floquet theorem
[24]. The periodic medium (or potential) properties satisfy M(x+R.m) = M(x), m ∈ Z3 where R =
[r1,r2,r3] ∈ R3×3 is a matrix grouping the three lattice’s basis vectors (in 3D). We can also define the
primitive cell as a convex polyhedron of R3 called Ωx. The reciprocal unit cell is denoted by Ωk limited
by the reciprocal lattice vector defined by the three vectors g j so that : ri.g j = 2πδi j (δi, j the Kronecker
index). We note G = [g1,g2,g3] the reciprocal lattice matrix in the later. If Ωx is the irreductible primitive
cell, Ωk corresponds to the first Brillouin zone of the lattice. One can see [25] for details.

The Bloch Theorem stipulates that any functions u(x) ∈ L2(R3,Cn) can be expressed as

u(x) =
∫

Ωk

eikxũ(x,k)dk (1)

where the Bloch amplitude ũ(x,k) is Ωx-periodic and has the representations

ũ(x,k) = ∑
n∈Z3

û(k+Gn)eiGn.x,

u(x) =
|Ωx|
(2π)3 ∑

n∈Z3

u(x+Rn)eik(x+Rn) (2)

where û(k) stands for the Fourier transform of u(x). One can also demonstrate that the mean value of
the Bloch amplitude is the Fourier amplitude of u(x) for the corresponding wave vector : 〈ũ(.,k)〉

Ωx
=

û(k). Using the Bloch theorem to represent the solutions of periodical partial derivative equations im-
plies that all derivatives are shifted by k in the sense given by the used spatial operator.

Based on that theorem one can define the expansion functions vm(x,k), called the Bloch eigen
modes, such that they can be used to represent the Bloch amplitudes of any solution of the corresponding
partial derivative equation as

ũ(x,k) = ∑
m
um(k)vm(x,k) (3)

and at the same time diagonalize the partial derivative equations. One notes that the expansion coefficients
um(k) depend on the applied disturbance and also on the induced wave vector (see [26] for details).

2



100 200 300 400 500 600 700 800

100

200

300

400

500

600

1 mm

z

x
y

0

1 mm

Piezoelectric Patch

AluminumPlate

10 mm

10 mm

Z(jω)

Ω

St

Sl

Sr
Sr

Sb

FIGURE 1 – Generic 3D piezocomposite perio-
dic cell

100 200 300 400 500 600 700 800

100

200

300

400

500

600

10 mm

5 mm

semi-distributed shunted piezo-electrics

Clamped Boundary

F (t)

Aluminum Plate

Aluminum Plate

5 mm

10 mm

FIGURE 2 – 3D piezocomposite periodic semi-
distributed Cells

2.2 Application to Piezo-Elastodynamic

Let us consider a piezo-elastodynamic problem made of infinite periodic distribution of unitary cell
described in figure 1. The harmonic homogeneous dynamical equilibrium of system is driven by the
following partial derivative equation :{

ρẅ(x)−∇σ(x) = 0 ∀x ∈Ωx

−∇D(x) = 0 ∀x ∈Ωx
(4)

where w(x) ∈ R3(Ωx) is the displacement vector, σ represents the Cauchy stress tensor, ε = ∇symw =
1
2(∇wT (x) +w(x)∇T ) the Green strain tensor, D(x) the electric displacement. The linear constitutive
material behavior relationships can be written as

σ = CE(x)ε− eT (x)E (5)

D = e(x)ε+ εS(x)E (6)

where E = −∇V the electric field vector (V the voltage), CE the elasticity tensor at constant electrical
field, eT the piezoelectric coupling tensor and εS the dielectric permittivity at constant strain. We add to
this set of equilibrium equations an output expression

qo =−
∫

St

D.ndS (7)

allowing the introduction of the charge measurement on the piezoelectric’s top electrode and hence the
dual counterpart of the imposed electrical Dirichlet boundary condition for applying the shunt impedance
operator.
The equations above are consistent for each kind of material to the extent that null piezoelectric and
permittivity tensors can be used when passive materials are considered. All of these tensors also depend
on the spatial location vector x. The piezo-elastodynamic equilibrium can also be written as :

ρω
2w(x)+∇C∇sym(w(x))+∇eT (x)∇V (x) = 0 ∀x ∈Ωx (8)

−∇e(x)∇sym(w(x))+∇εS(x)∇V (x) = 0 ∀x ∈Ω (9)

As the problem is 2D infinitely periodic, only electrostatic boundary conditions have to be considered on
each cell : 

V = 0 ∀x ∈ Sb
V =V o ∀x ∈ St

D.n= 0 ∀x ∈ Sl

(10)

where Sb is the grounded bottom electrode of the piezoelectric layer, St is the top electrode connected to
the external shunt and sl the lateral electrode less boundary. The top electrode applied feedback voltage
Vo depends on the shunt characteristic and on the collected charges qo (7) and can be expressed in the
Fourier space by :

V o(iω) =−Z(iω)qo(iω) (11)

By considering a primitive cell of the periodic problem Ωx and by using the Bloch theorem, we can com-
pute the associated Bloch eigenmodes (3) and the dispersion functions by searching the eigen solutions
of the homogeneous problem (8) and (9) as :

u(x) =

[
w(x)
V (x)

]
= un,k(x)eik.x (12)
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with un,k(x) =

[
wn,k(x)
Vn,k(x)

]
, Ωx periodic functions. By using the same approach as proposed in [23],

one can demonstrate that the finite element discretization of un,k(x) are solutions of the generalized
algebraic eigenvalues problem :

(K(Z(iωn(λ,φ))+λL(φ,Z(iωn(λ,φ)))−λ
2H(φ,Z(iωn(λ,φ)))−ω

2
n(λ,φ)M)un,k(φ) = 0, (13)

where k = k

 cos(φ)
sin(φ)

0

= kΦ, λ = ik, M and K(Z(iωn(λ,φ))) are respectively the standard symmetric

semi-definite mass and stiffness matrices (the mass matrix is semi definite because elastostatic equation
are condensed into the equation), L(φ,Z(iωn(λ,φ))) is a skew-symmetric matrix and H(φ,Z(iωn(λ,φ)))
is a symmetric semi-definite positive matrix. These matrices are linked to specific weak term of the pro-
blem’s weak formulation as described in [23]. When k and φ are fixed and Z does not depend on ω the
system (13) is a linear eigen value problem allowing us to compute the dispersion functions ω2

n(k,φ) and
the associated Bloch eigenvector un,k(φ).

This approach has been widely used for developing homogenization techniques and spectral asymp-
totic analysis like in the work of [27]. It can also be applied for computing wave’s dispersion even if
Floquet propagators is preferred for 1D or quasi 1D computation, as indicated in [28, 29, 30]. Never-
theless these approaches have been only developed for undamped mechanical systems that is to say
represented by a set of real matrices. In this case, most of the previously published works present tech-
niques based on the mesh of a real k-space (i.e k or λ and φ) inside the first Brillouin zone for obtaining
the corresponding frequency dispersion and the associated Floquet vectors. For undamped system only
propagative or evanescent waves exist corresponding to a family of eigen solutions purely real or imagi-
nary. Discrimination between each class of waves is easy. If a damped system is considered (K,L,H are
complex frequency dependent) or frequency dependence of the electrical shunt impedance is considered,
the obtained eigenvalue problem is not quadratic and a complex specific numerical methodology has
to be implemented. Furthermore, evanescent part of propagating waves appear as the imaginary part of
ω2

n(λ,Φ). It then becomes very difficult to distinguish the propagative and evanescent waves but also to
compute the corresponding physical wave’s movements by applying spatial deconvolution.

Another much more suitable possibility for computing damped system, dedicated for time/space de-
convolution and for computation of diffusion properties as defined by [6, 30], is to consider the following
generalized eigen value problem :

(K(Z(ω)−ω
2M+λn(ω,φ)L(φ,Z(ω))−λ

2
n(ω,φ)H(φ,Z(ω)))un(ω,φ) = 0. (14)

In this problem, the pulsation ω is a real parameter corresponding to the harmonic frequency. Wave’s
numbers and Floquet vectors are then computed. An inverse Fourier transformation in the k-space domain
can lead us to evaluate the physical wave’s displacements and energy diffusion operator when the periodic
distribution is connected to another system as in [6]. Another temporal inverse Fourier transformation
can furnish a way to access spatio-temporal response for non-homogeneous initial conditions.

2.3 Computation of the group velocity and evanescence criterion

The main aim of this paper is to provide a numerical methodology for optimizing the piezoelec-
tric shunt impedance Z(ω) for controlling energy flow into the periodically distributed piezo-composite
structure. For doing this, we need to define a suitable criterion. The waves group velocities indicate how
energy is transported into the considered system and allow to distinguish the ’propagative’ and ’evanes-
cent’ waves. If one Bloch eigen solution (i.e un(ω,φ), kn(ω)) is considered, the associated group velocity
vector [31] is given by :

Cgn(ω,φ) = ∇kω =
〈〈S〉〉
〈〈etot〉〉

=
〈I〉
〈Etot〉

(15)

where 〈〈:〉〉 is the spatial and time average respectivelly on one cell and one period, S is the density of
energy flux defined in [31], I the mean intensity and etot , Etot the total piezomechanical energy and its
time average on a period (see [31] for details). In this problem, we only consider mechanical energy
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FIGURE 3 – Real parts (a) and imaginary parts (b) of the wave number kxn(iω) along (Ox), the red circles
mark values obtained for Z = 0 and the blue crossed the optimal ones

transportation as the electrostatic coupling is decentralized and can be condensed as a mechanical in-
terface as proved in [32] and generally computed in [33]. So we also compute the intensity vector I
by :

〈In〉=−
ω

2
Re(

∫
Ωx

C(εn(x,ω,φ)+ ikΞn(x,ω,φ)).(w
∗
n(x,ω,φ))dΩ/Vol (16)

where .∗ is the complex conjugate and Vol the domain volume. As the spatio-temporal average of the
system Lagragian is null (see [31]), the total energy average is approximated by only computing the
kinetic energy average :

〈Etot〉=
1
2
(
∫

Ωx

ρω
2wn(x,ω,φ).w

∗
n(x,ω,φ)dΩ/Vol (17)

The group velocity vectors Cgn(ω,φ) is computed for all wave numbers at each frequency. In order to
focus our analysis on only flexural modes (S and SH ones) we introduce an indicator allowing to select
them by computing the ratio of kinetic energy average on out of plane displacement as :

Ind(n,ω,φ) =
1
2(
∫

Ωx
ρω2wzn(x,ω,φ)wz∗n(x,ω,φ)dΩ)/Vol

〈Etot〉
(18)

with wzn(x,ω,φ) being the (Oz) component of vector wn(x,ω,φ).

3 Optimisation of the Flexural energy flow inside the shunted periodic
piezo-composite

The considered piezo-composite cell is presented in figure 1. The supporting plate material is stan-
dard aluminum with 0.1 % of hysteretic damping ratio and the piezoelectric material is P1-91 PZT.
The used methodology for optimizing the shunt impedance Z(iω) is based on the minimization of the
maximal group velocity collinear to the wave number vector (15) for waves having a ratio of transported
flexural kinetic energy (18) greater than 0.8. The used criterion can also be written as :

Crit(Z(iω),φ) = maxn/Ind(n,ω,φ)>0.8(Cgn(ω,φ).Φ) (19)

The used numerical optimization of the criteria is based on a multidimensional unconstrained nonlinear
minimization (Nelder-Mead).

We also optimize the criterion by considering any frequency dependent complex impedance. We
present in figure 3(a) and 3(b) the obtained real parts and imaginary parts of the wave number kxn(iω)
along (Ox) axis. The red circles mark the dispersions curves for Z = 0 and the blue crossed the optimal
dispersion. The corresponding group velocities along (Ox) are presented in figure 4 while the real and
imaginary parts of the optimal impedance are plotted in figure 5.

We immediately observe that the optimization of the shunt impedance leads to greatly modify the
group velocity of the Ao mode in the first part of the spectrum (i.e before the first bending band gap
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FIGURE 5 – Real and imaginary parts of the
optimal impedance

between 22 and 27 kHz). The bending waves also propagate energy with a lower velocity and can even
been very low as evanescent waves before 6 kHz. The corresponding real and imaginary parts of the
dispersion curves are slightly modified. We notice an increase of the imaginary values indicating an
increase of the spatial decay rates. The optimal impedance values are almost real, and correspond to those
obtained if a constant negative capacitance is used. The corresponding average value is−150.05 pC.V−1.
Some imaginary parts of the optimal impedance are negative which indicate that the optimization leads
to provide energy to the system for controlling mechanical damping effect introduced with hysteretic
damping ratios into the model, and, also, obtain a fully conservative system.

3.1 Validation on a periodically semi-distributed set of adaptive cells

In order to study the translation of the wave properties obtained by optimizing the previously descri-
bed criterion on the dynamical response of a finite dimension system, we apply the optimal impedance on
a finite set of shunted piezo-composite cells semi-distributed onto a plate system as described in figure 2.
The harmonic response of this system is also computed at different frequency when optimal impedance
is connected or not to each patches. We plot in figure 6 the obtained results in term of kinetic energy
density.

These numerical results clearly show up a strong influence of the modifications of the wave dispersion
(i.e on the group velocities) in the standing wave responses plotted in figure 6. We observe at 5 kHz an
increase in the dynamic response of the system when optimal shunt is connected. A large part of the
system energy remains in its left part where the applied forces is located. The semi-distributed interface
also change the system admittance and filter wave diffusion by increasing is reflexibility property. At 22
kHz, the energy diffusion is clearly condensed into the left part of the system with a largely decreased
amplitude compared to this obtained with open circuit. The structural dynamical admittance has been
decreased by connecting the shunt circuits. Finally, at 60 kHz, the energy is concentrated on the right
part of the system between the adaptive interface and the clamped boundary condition. We observe
something similar to a wave trap effect. The average value is, one more time, largely decrease by using
the shunt circuits.

4 Conclusions

This paper presents a numerical procedure able to compute the damped wave’s dispersion functions
in the whole first Brillouin domain of multi dimensionnal piezo-elastodynamical wave guides. The me-
thod was applied for determining the optimal impedance allowing to minimize the group velocities of the
flexural waves. Based on this approach, some numerical test on a finite dimension system incorporating
a semi-distributed set of shunted piezo-composite cells has been performed. We underline a strong in-
fluence of the designed shunt circuits in the dynamical response of the system. Even if the link between
the obtained wave properties are not clearly established, we also demonstrated that our developed nume-
rical procedures can be used for optimizing the energy diffusion operator of such adaptive mechanical
interface. To do so, additional work has to be done for optimizing the complete interface scattering and
for controlling the evanescent waves playing an important role in the finite system dynamical response.
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(a) 5 kHz

(b) 22 kHz

(c) 60 kHz

FIGURE 6 – Kinetic Energy density for different source frequency ((a) 5 kHz, (b) 22 kHz, (c) 60 kHz).
On the left with optimal impedance connected to the piezo-patches and on the right with open circuit

The proposed methodology can also be used for studying particular dissipation phenomenon such as
those induced by complex shunted piezoelectric patches as proposed by [8] and [34], or even foams or
complex polymers behaviors. The proposed method furnishes an efficient tool for future optimization of
distributed smart cells as proposed in the case of 1D wave guide by [6].
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