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The paper proposes a synthesis of new methodologies for developing a distributed, integrated shunted piezo composite for beams and plates applications able to modify the structural vibro acoustical impedance of the passive supporting structure so as to absorb or reflect incidental power flow. This design implements tailored structural responses, through integrated passive and active features, and offers the potential for higher levels of vibration isolation as compared to current designs. Optimization tools for designing shunt circuits is based on using dedicated numerical approach able to compute the multi-modal wave dispersions curves into the whole first Brillouin zone for periodically distributed 2D shunted piezo-mechanical systems. By using a specific indicator evaluating the evanescent part Bloch's waves, we optimize, in a second time, the piezoelectric shunting electrical impedance for controlling energy diffusion into the proposed semi-active distributed set of cells. A 3D modeling of semi-distributed distribution of the optimal smart metamaterial is used for validating the obtained cell design.

INTRODUCTION

Tailoring the dynamical behavior of wave-guide structures can provide an efficient and physically elegant approach for optimizing mechanical components with regards to vibration and acoustic criteria, among others. However, achieving this objective may lead to different outcomes depending on the context of the optimization. In the preliminary stages of a product's development, one mainly needs optimization tools capable of rapidly providing global design directions. Such optimization will also depend on the frequency range of interest. One usually discriminates between the low frequency (LF) range and the medium frequency (MF) range, especially if vibration and noise are considered. However, it should be noted that LF optimization of vibration is more common in the literature than MF optimization. For example, piezoelectric materials and other adaptive and smart systems are employed to improve the vibroacoustic quality of structural components, especially in the LF range [START_REF] Preumont | Vibration control of structures : An introduction[END_REF][START_REF] Elliott | Active Control of Sound[END_REF][START_REF] Banks | Smart material structures Modeling Estimation and Control[END_REF] even if ditributed transducers are used [START_REF] Batra | Multimode vibration suppression with passive twoterminal distributed network incorporating piezoceramic transducers[END_REF][START_REF] Tzou | A study of segmentation of distributed piezoelectric sensors and actuators, part i : Theorical analysis[END_REF]. Recently, much effort has been spent on developing new multi-functional structures integrating electro-mechanical systems in order to optimize their vibroacoustic behavior over a larger frequency band of interest [START_REF] Collet | Wave Motion Optimization in Periodically Distributed Shunted Piezocomposite Beam Structures[END_REF][START_REF] Thorp | Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches[END_REF][START_REF] Beck | Broadband vibration suppression assessment of negative impedance shunts[END_REF][START_REF] Beck | Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array[END_REF][START_REF] Bartoli | Modeling wave propagation in damped waveguides of arbitrary cross-section[END_REF][START_REF] Mace | Modelling wave propagation in two-dimensional structures using finite element analysis[END_REF]. However, there is still a lack of studies in the literature for MF optimization of structural vibration. To that end, the focus of this study is to provide a suitable numerical tool for computing wave dispersion in 2D periodic systems incorporating controlling electronics devices. The main final aim is to allow their optimization in order to optimize vibroacoustic diffusion in 2D wave guides. Two numerical approaches can be distinguished for computing that dispersion : the semi-analytical finite element method (SAFE) and the wave finite element (WFE) method. The main disadvantage of the SAFE method is that FE used are not standard so they must be specifically defined for each application. Nevertheless, a large amount of FE has been developed since 1975 to compute dispersion curves of rails [START_REF] Akrout | Comportement dynamique déterministe et large bande des structures guidées[END_REF], laminated composite plates [START_REF] Manconi | The Wave Finite Element Method for 2-dimensional Structures[END_REF][START_REF] Berthaut | Multi-mode wave propagation in ribbed plates : Part i k-space characteristics[END_REF] and viscoelastic laminated composite plates [START_REF] Floquet | Sur les équations différentielles linéaires à coefficients périodiques[END_REF]. To avoid development of specific FE, the WFE method considers the structures as periodic in order to model, with standard FE, a period of the structure. By using the periodic structure theory (PST) introduced by Mead [START_REF] Akrout | Comportement dynamique déterministe et large bande des structures guidées[END_REF], an eigenvalue problem can be formulated from the stiffness and mass matrices of the FE model to find wave numbers of all the propagating waves. The WFE method has been successfully used to deal with wave propagation in two dimensional structures [START_REF] Bloch | Über die Quantenmechanik der Electron in Kristallgittern[END_REF][START_REF] Collet | Numerical tools for semi-active optimization of 2d waves dispersion into mechanical system[END_REF]. One of the main problem of all these approaches is the difficulty to compute the damped wave numbers in the whole Brillouin domain necessary for optimizing vibroacoustic behavior of smart periodic structures. After recalling the Floquet-Bloch theorems, we introduce a new numerical formulation for computing the multi-modal damped wave numbers dispersion in the whole first Brillouin domain of a periodical smart structure made of periodically distributed shunted piezoelectric patches. Based on this wave modeling, optimization of the electrical impedance of the shunted circuit is made in order to decrease group velocity of flexural waves. The obtained optimal impedance is also tested in controlling the HF response of a semi-distributed system.

PIEZO-ELASTO-DYNAMICAL APPLICATION OF THE FLOQUET-BLOCH THEOREM

In this section the application of the celebrated Floquet-Bloch theorem is presented for piezo-elastodynamic problems. Based on the well known results obtained by Floquet [START_REF] Joannopoulos | Photonic Crystals : Molding the Flow of Light[END_REF] in one-dimensional and later rediscovered by Bloch [START_REF] Kittel | Introduction to Solid State Physics[END_REF] in multidimensional problems, we propose an original application to bi-dimensional piezo-elastodynamical problem leading to very general numerical implementation for computing waves dispersion for periodically smart distributed mechanical systems incorporating electronic components and damping effects [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF].

The Bloch Theorem

The Bloch theorem gives the form of homogeneous states of Schrödinger equation with periodic potential. This theorem can be considered as a multidimensionnal application of the Floquet theorem [START_REF] Allaire | Bloch waves homogenization and spectral asymptotic analysis[END_REF]. The periodic medium (or potential) properties satisfy

M(x + R.m) = M(x), m ∈ Z 3 where R = [r 1 , r 2 , r 3 ] ∈ R 3×3
is a matrix grouping the three lattice's basis vectors (in 3D). We can also define the primitive cell as a convex polyhedron of R 3 called Ω x . The reciprocal unit cell is denoted by Ω k limited by the reciprocal lattice vector defined by the three vectors g j so that : r i .g j = 2πδ i j (δ i, j the Kronecker index). We note G = [g 1 , g 2 , g 3 ] the reciprocal lattice matrix in the later. If Ω x is the irreductible primitive cell, Ω k corresponds to the first Brillouin zone of the lattice. One can see [START_REF] Ichchou | Guided waves group and energy velocities via finite elements[END_REF] for details.

The Bloch Theorem stipulates that any functions u(x) ∈ L 2 (R 3 , C n ) can be expressed as

u(x) = Ω k e ikx ũ(x, k)dk (1) 
where the Bloch amplitude ũ(x, k) is Ω x -periodic and has the representations

ũ(x, k) = ∑ n∈Z 3 û(k + Gn)e iGn.x , u(x) = |Ω x | (2π) 3 ∑ n∈Z 3 u(x + Rn)e ik(x+Rn) (2) 
where û(k) stands for the Fourier transform of u(x). One can also demonstrate that the mean value of the Bloch amplitude is the Fourier amplitude of u(x) for the corresponding wave vector : ũ(., k) Ω x = û(k). Using the Bloch theorem to represent the solutions of periodical partial derivative equations implies that all derivatives are shifted by k in the sense given by the used spatial operator.

Based on that theorem one can define the expansion functions v m (x, k), called the Bloch eigen modes, such that they can be used to represent the Bloch amplitudes of any solution of the corresponding partial derivative equation as

ũ(x, k) = ∑ m u m (k)v m (x, k) (3) 
and at the same time diagonalize the partial derivative equations. One notes that the expansion coefficients u m (k) depend on the applied disturbance and also on the induced wave vector (see [START_REF] Houillon | Wave motion in thin-walled structures[END_REF] for details). 

Application to Piezo-Elastodynamic

Let us consider a piezo-elastodynamic problem made of infinite periodic distribution of unitary cell described in figure 1. The harmonic homogeneous dynamical equilibrium of system is driven by the following partial derivative equation :

ρ ẅ(x) -∇σ(x) = 0 ∀x ∈ Ω x -∇D(x) = 0 ∀x ∈ Ω x (4) 
where w(x) ∈ R 3 (Ω x ) is the displacement vector, σ represents the Cauchy stress tensor, ε = ∇ sym w = 1 2 (∇w T (x) + w(x)∇ T ) the Green strain tensor, D(x) the electric displacement. The linear constitutive material behavior relationships can be written as

σ = C E (x)ε -e T (x)E (5) D = e(x)ε + ε S (x)E (6) 
where E = -∇V the electric field vector (V the voltage), C E the elasticity tensor at constant electrical field, e T the piezoelectric coupling tensor and ε S the dielectric permittivity at constant strain. We add to this set of equilibrium equations an output expression

q o = - S t D.ndS (7) 
allowing the introduction of the charge measurement on the piezoelectric's top electrode and hence the dual counterpart of the imposed electrical Dirichlet boundary condition for applying the shunt impedance operator.

The equations above are consistent for each kind of material to the extent that null piezoelectric and permittivity tensors can be used when passive materials are considered. All of these tensors also depend on the spatial location vector x. The piezo-elastodynamic equilibrium can also be written as :

ρω 2 w(x) + ∇C∇ sym (w(x)) + ∇e T (x)∇V (x) = 0 ∀x ∈ Ω x (8) -∇e(x)∇ sym (w(x)) + ∇ε S (x)∇V (x) = 0 ∀x ∈ Ω (9)
As the problem is 2D infinitely periodic, only electrostatic boundary conditions have to be considered on each cell : [START_REF] Bartoli | Modeling wave propagation in damped waveguides of arbitrary cross-section[END_REF] where S b is the grounded bottom electrode of the piezoelectric layer, S t is the top electrode connected to the external shunt and s l the lateral electrode less boundary. The top electrode applied feedback voltage V o depends on the shunt characteristic and on the collected charges q o (7) and can be expressed in the Fourier space by :

   V = 0 ∀x ∈ S b V = V o ∀x ∈ S t D.n = 0 ∀x ∈ S l
V o (iω) = -Z(iω)q o (iω) (11) 
By considering a primitive cell of the periodic problem Ω x and by using the Bloch theorem, we can compute the associated Bloch eigenmodes (3) and the dispersion functions by searching the eigen solutions of the homogeneous problem ( 8) and ( 9) as :

u(x) = w(x) V (x) = u n,k (x)e ik.x (12) 
with u n,k (x) =

w n,k (x) V n,k (x)
, Ω x periodic functions. By using the same approach as proposed in [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF],

one can demonstrate that the finite element discretization of u n,k (x) are solutions of the generalized algebraic eigenvalues problem :

(K(Z(iω n (λ, φ)) + λL(φ, Z(iω n (λ, φ))) -λ 2 H(φ, Z(iω n (λ, φ))) -ω 2 n (λ, φ)M)u n,k (φ) = 0, (13) 
where

k = k   cos(φ) sin(φ) 0   = kΦ, λ = ik, M and K(Z(iω n (λ, φ)))
are respectively the standard symmetric semi-definite mass and stiffness matrices (the mass matrix is semi definite because elastostatic equation are condensed into the equation), L(φ, Z(iω n (λ, φ))) is a skew-symmetric matrix and H(φ, Z(iω n (λ, φ))) is a symmetric semi-definite positive matrix. These matrices are linked to specific weak term of the problem's weak formulation as described in [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF]. When k and φ are fixed and Z does not depend on ω the system ( 13) is a linear eigen value problem allowing us to compute the dispersion functions ω 2 n (k, φ) and the associated Bloch eigenvector u n,k (φ).

This approach has been widely used for developing homogenization techniques and spectral asymptotic analysis like in the work of [START_REF] Mencik | Multi-mode propagation and diffusion in structures through finite elements[END_REF]. It can also be applied for computing wave's dispersion even if Floquet propagators is preferred for 1D or quasi 1D computation, as indicated in [START_REF] Maysenhölder | Körperschall-energie Grundlagen zur Berechnung von Energiedichten und Intensitäten[END_REF][START_REF] Hagood | Damping of structural vibrations with piezoelectric materials and passive electrical networks[END_REF][START_REF] Collet | Modal Synthesis and Dynamical Condensation Methods for Accurate Piezoelectric Systems Impedance Computation[END_REF]. Nevertheless these approaches have been only developed for undamped mechanical systems that is to say represented by a set of real matrices. In this case, most of the previously published works present techniques based on the mesh of a real k-space (i.e k or λ and φ) inside the first Brillouin zone for obtaining the corresponding frequency dispersion and the associated Floquet vectors. For undamped system only propagative or evanescent waves exist corresponding to a of eigen solutions purely real or imaginary. Discrimination between each class of waves is easy. If a damped system is considered (K, L, H are complex frequency dependent) or frequency dependence of the electrical shunt impedance is considered, the obtained eigenvalue problem is not quadratic and a complex specific numerical methodology has to be implemented. Furthermore, evanescent part of propagating waves appear as the imaginary part of ω 2 n (λ, Φ). It then becomes very difficult to distinguish the propagative and evanescent waves but also to compute the corresponding physical wave's movements by applying spatial deconvolution.

Another much more suitable possibility for computing damped system, dedicated for time/space deconvolution and for computation of diffusion properties as defined by [START_REF] Collet | Wave Motion Optimization in Periodically Distributed Shunted Piezocomposite Beam Structures[END_REF][START_REF] Collet | Modal Synthesis and Dynamical Condensation Methods for Accurate Piezoelectric Systems Impedance Computation[END_REF], is to consider the following generalized eigen value problem :

(K(Z(ω) -ω 2 M + λ n (ω, φ)L(φ, Z(ω)) -λ 2 n (ω, φ)H(φ, Z(ω)))u n (ω, φ) = 0. (14) 
In this problem, the pulsation ω is a real parameter corresponding to the harmonic frequency. Wave's numbers and Floquet vectors are then computed. An inverse Fourier transformation in the k-space domain can lead us to evaluate the physical wave's displacements and energy diffusion operator when the periodic distribution is connected to another system as in [START_REF] Collet | Wave Motion Optimization in Periodically Distributed Shunted Piezocomposite Beam Structures[END_REF]. Another temporal inverse Fourier transformation can furnish a way to access spatio-temporal response for non-homogeneous initial conditions.

Computation of the group velocity and evanescence criterion

The main aim of this paper is to provide a numerical methodology for optimizing the piezoelectric shunt impedance Z(ω) for controlling energy flow into the periodically distributed piezo-composite structure. For doing this, we need to define a suitable criterion. The waves group velocities indicate how energy is transported into the considered system and allow to distinguish the 'propagative' and 'evanescent' waves. If one Bloch eigen solution (i.e u n (ω, φ), k n (ω)) is considered, the associated group velocity vector [START_REF] Casadei | Vibration control of plates featuring periodic arrays of hybrid shunted piezoelectric patches[END_REF] is given by :

C g n (ω, φ) = ∇ k ω = S e tot = I E tot ( 15 
)
where : is the spatial and time average respectivelly on one cell and one period, S is the density of energy flux defined in [START_REF] Casadei | Vibration control of plates featuring periodic arrays of hybrid shunted piezoelectric patches[END_REF], I the mean intensity and e tot , E tot the total piezomechanical energy and its time average on a period (see [START_REF] Casadei | Vibration control of plates featuring periodic arrays of hybrid shunted piezoelectric patches[END_REF] for details). In this problem, we only consider mechanical energy transportation as the electrostatic coupling is decentralized and can be condensed as a mechanical interface as proved in [32] and generally computed in [33]. So we also compute the intensity vector I by :

I n = - ω 2 Re( Ω x C(ε n (x, ω, φ) + ikΞ n (x, ω, φ)).(w * n (x, ω, φ))dΩ/V ol (16) 
where . * is the complex conjugate and V ol the domain volume. As the spatio-temporal average of the system Lagragian is null (see [START_REF] Casadei | Vibration control of plates featuring periodic arrays of hybrid shunted piezoelectric patches[END_REF]), the total energy average is approximated by only computing the kinetic energy average :

E tot = 1 2 ( Ω x ρω 2 w n (x, ω, φ).w * n (x, ω, φ)dΩ/V ol (17) 
The group velocity vectors C g n (ω, φ) is computed for all wave numbers at each frequency. In order to focus our analysis on only flexural modes (S and SH ones) we introduce an indicator allowing to select them by computing the ratio of kinetic energy average on out of plane displacement as :

Ind(n, ω, φ) = 1 2 ( Ω x ρω 2 wz n (x, ω, φ)wz * n (x, ω, φ)dΩ)/V ol E tot (18) 
with wz n (x, ω, φ) being the (Oz) component of vector w n (x, ω, φ).

Optimisation of the Flexural energy flow inside the shunted periodic piezo-composite

The considered piezo-composite cell is presented in figure 1. The supporting plate material is standard aluminum with 0.1 % of hysteretic damping ratio and the piezoelectric material is P1-91 PZT. The used methodology for optimizing the shunt impedance Z(iω) is based on the minimization of the maximal group velocity collinear to the wave number vector [START_REF] Akrout | Comportement dynamique déterministe et large bande des structures guidées[END_REF] for waves having a ratio of transported flexural kinetic energy (18) greater than 0.8. The used criterion can also be written as :

Crit(Z(iω), φ) = max n/Ind(n,ω,φ)>0.8 (C g n (ω, φ).Φ) (19) 
The used numerical optimization of the criteria is based on a multidimensional unconstrained nonlinear minimization (Nelder-Mead).

We also optimize the criterion by considering any frequency dependent complex impedance. We present in figure 3(a) and 3(b) the obtained real parts and imaginary parts of the wave number kx n (iω) along (Ox) axis. The red circles mark the dispersions curves for Z = 0 and the blue crossed the optimal dispersion. The corresponding group velocities along (Ox) are presented in figure 4 while the real and imaginary parts of the optimal impedance are plotted in figure 5.

We immediately observe that the optimization of the shunt impedance leads to greatly modify the group velocity of the A o mode in the first part of the spectrum (i.e before the first bending band gap FIGURE 5 -Real and imaginary parts of the optimal impedance between 22 and 27 kHz). The bending waves also propagate energy with a lower velocity and can even been very low as evanescent waves before 6 kHz. The corresponding real and imaginary parts of the dispersion curves are slightly modified. We notice an increase of the imaginary values indicating an increase of the spatial decay rates. The optimal impedance values are almost real, and correspond to those obtained if a constant negative capacitance is used. The corresponding average value is -150.05 pC.V -1 . Some imaginary parts of the optimal impedance are negative which indicate that the optimization leads to provide energy to the system for controlling mechanical damping effect introduced with hysteretic damping ratios into the model, and, also, obtain a fully conservative system.

Validation on a periodically semi-distributed set of adaptive cells

In order to study the translation of the wave properties obtained by optimizing the previously described criterion on the dynamical response of a finite dimension system, we apply the optimal impedance on a finite set of shunted piezo-composite cells semi-distributed onto a plate system as described in figure 2. The harmonic response of this system is also computed at different frequency when optimal impedance is connected or not to each patches. We plot in figure 6 the obtained results in term of kinetic energy density.

These numerical results clearly show up a strong influence of the modifications of the wave dispersion (i.e on the group velocities) in the standing wave responses plotted in figure 6. We observe at 5 kHz an increase in the dynamic response of the system when optimal shunt is connected. A large part of the system energy remains in its left part where the applied forces is located. The semi-distributed interface also change the system admittance and filter wave diffusion by increasing is reflexibility property. At 22 kHz, the energy diffusion is clearly condensed into the left part of the system with a largely decreased amplitude compared to this obtained with open circuit. The structural dynamical admittance has been decreased by connecting the shunt circuits. Finally, at 60 kHz, the energy is concentrated on the right part of the system between the adaptive interface and the clamped boundary condition. We observe something similar to a wave trap effect. The average value is, one more time, largely decrease by using the shunt circuits.

Conclusions

This paper presents a numerical procedure able to compute the damped wave's dispersion functions in the whole first Brillouin domain of multi dimensionnal piezo-elastodynamical wave guides. The method was applied for determining the optimal impedance allowing to minimize the group velocities of the flexural waves. Based on this approach, some numerical test on a finite dimension system incorporating a semi-distributed set of shunted piezo-composite cells has been performed. We underline a strong influence of the designed shunt circuits in the dynamical response of the system. Even if the link between the obtained wave properties are not clearly established, we also demonstrated that our developed numerical procedures can be used for optimizing the energy diffusion operator of such adaptive mechanical interface. To do so, additional work has to be done for optimizing the complete interface scattering and for controlling the evanescent waves playing an important role in the finite system dynamical response. The proposed methodology can also be used for studying particular dissipation phenomenon such as those induced by complex shunted piezoelectric patches as proposed by [START_REF] Beck | Broadband vibration suppression assessment of negative impedance shunts[END_REF] and [34], or even foams or complex polymers behaviors. The proposed method furnishes an efficient tool for future optimization of distributed smart cells as proposed in the case of 1D wave guide by [START_REF] Collet | Wave Motion Optimization in Periodically Distributed Shunted Piezocomposite Beam Structures[END_REF].
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 2 FIGURE 1 -Generic 3D piezocomposite periodic cell
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 3 FIGURE 3 -Real parts (a) and imaginary parts (b) of the wave number kx n (iω) along (Ox), the red circles mark values obtained for Z = 0 and the blue crossed the optimal ones
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 4 FIGURE 4 -Group velocities along (Ox) direction ; the red circles mark values obtained for Z = 0 and the blue crossed the optimal ones

FIGURE 6 -

 6 FIGURE 6 -Kinetic Energy density for different source frequency ((a) 5 kHz, (b) 22 kHz, (c) 60 kHz). On the left with optimal impedance connected to the piezo-patches and on the right with open circuit
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