
HAL Id: hal-00592617
https://hal.science/hal-00592617v1

Submitted on 13 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Approach Based on Edge Coloring of Tripartite
Graph for Designing Parallel LDPC Interleaver

Architecture
Sani Awais Hussein, Philippe Coussy, Cyrille Chavet, Eric Martin

To cite this version:
Sani Awais Hussein, Philippe Coussy, Cyrille Chavet, Eric Martin. An Approach Based on Edge Col-
oring of Tripartite Graph for Designing Parallel LDPC Interleaver Architecture. IEEE International
Symposium on Circuits and Systems (ISCAS) 2011, May 2011, Rio de Janeiro, Brazil. pp.XX-YY.
�hal-00592617�

https://hal.science/hal-00592617v1
https://hal.archives-ouvertes.fr

An Approach Based on Edge Coloring of Tripartite Graph

for Designing Parallel LDPC Interleaver Architecture

Awais SANI, Philippe COUSSY, Cyrille CHAVET, Eric MARTIN.
Lab-STICC, Université de Bretagne-Sud, Lorient

Abstract- A practical and feasible solution for LDPC decoder is to

design partially-parallel hardware architecture. These architectures

are efficient in terms of area, cost, flexibility and performances.

However, this type of architecture is complex to design since

concurrent read and write accesses to data have to be performed at each

time instance without any conflict. To solve this memory mapping

problem, we present in this paper, an original approach based on a

tripartite graph modeling and a modified edge coloring algorithm to

design parallel LDPC interleaver architecture.

1. INTRODUCTION

Low-density parity-check (LDPC) codes [1] has gained a lot of

attention in information theory community thanks to their near

Shannon limit error correction capabilities and the explicit

parallelism exhibited by their iterative decoding algorithm. These

codes have already been included in several wireless

communication standards such as DVB-S2 and DVB-T2 [3], WiFi

(IEEE 802.11n) [4] or WiMAX (IEEE 802.16e) [5].

LDPC codes are linear block codes and are represented either by a

sparse parity check matrix H or by a bipartite graph which is called

Tanner graph [2]. Figure 1.a shows the tanner graph of a LDPC

code, which consists of two sets of vertices: variable node set (VN)

and check node set (CN). A data vi ∈ VN represents one bit in the

codeword (i.e. data to be processed) whereas cj ∈ CN represents a

check equation used in generating parity check bits (i.e. operation

to be done on the data). A vi is connected to a cj by an edge if and

only if vi is checked by cj.

The decoding process is carried out by an iterative message-

passing algorithm called “Belief Propagation Algorithm” [12]. In

this algorithm, VN and CN iteratively exchange their soft-

information to qualify the likelihood of the variable in accordance

with the associated parity-check equation [1].

In literature, currently three main families of LDPC decoder

architecture have been proposed:

• Fully-Parallel decoder architectures

• Serial decoder architectures

• Partially-Parallel decoder architectures

Fully-Parallel decoders suffer from prohibitive area and serial

decoders from low throughput. Thus the only LDPC decoder

architecture fulfilling the need of current communication standards

is partially-parallel architecture. In partially-parallel architecture

several processing elements PEs are used and set of variable nodes

and set of check nodes are allotted to each PE. High throughput

requirement can be achieved using a proper number of PEs, while

the interconnection network cost tends to be less critical as

compared to fully-parallel implementation. Typical architecture for

partially-parallel decoder is shown in Figure 1.b in which P PEs

are always connected with B memory banks where P = B. While

designing partially-parallel decoder architecture, the

implementation issues mainly arise due to the communication

structure between VNs and CNs whereas the computation at

variable node and check node is quite simple. Moreover, partially-

parallel architecture suffers from memory accesses collision

problem i.e., more than one PE concurrently accesses the same

memory bank to read or write data. Hence, the communication

structure becomes more and more challenging to design with the

increase in the number of nodes, the number of iterations and the

parallelism.

In this paper, we present a memory mapping methodology based

on tripartite graph which is able to provide all the PEs conflict free

parallel access to the memory banks. This algorithm provides

conflict free memory mapping for all types of decoding methods,

codeword lengths, code types and code rates.

The remainder of the paper is organized as follows. Section 2

presents a state of the art related to partially-parallel LDPC

decoder design. Section 3 introduces the mapping problem. Section 4

defines concepts related to graph in order to understand the proposed

approach. Section 5 details the mapping algorithm we propose. Finally,

section 6 explains the algorithm through a pedagogical example.

2. RELATED WORKS

Currently three classes of approaches to design partially-parallel LDPC

decoder architectures exist to tackle the collision problem:

• Design LDPC codes to avoid collision problem [6], [7],

• Use extra memory elements and control logic in the

interconnection network in order to remove conflicts [8], [9], [10],

• Find a memory mapping to provide conflict free access to all the

memory banks at any time instance [11], [15], [16].

In the first category of decoder implementation, structured or

architecture oriented LDPC codes are designed in order to avoid conflicts

in accessing data from memory banks. These codes remove the memory

access conflicts and simplify the interconnection network through the

use of a barrel shifter [6] or a customized network [7]. However,

constraints in the development of structured LDPC codes may cause

degradation in code performance.

In the second class of decoder implementation, memory access conflicts

are removed either through the addition of extra memory elements or

complex interconnection network or both. In [8], configuration

memories are used along with 2D-mesh network for LDPC codes of

different block size and code rates. In [9], concurrent accesses to the

same memory bank are avoided through the use of heterogeneous

network. However, this network becomes complex with increasing

degree of parallelization and suffers from reduction in the achievable

throughput. In [10], binary de Bruijn network is employed for providing

flexible on-chip network for LDPC decoder. Concurrent accesses to the

same memory bank are avoided through dedicated routing algorithm

which deflects one of the conflicted packets at the router. The flexibility

in these complex interconnection networks is paid through additional

hardware, increased decoding latency and power consumption.

In the last class, methodologies for solving collision problem are

proposed to map the data in different memory banks for conflict free

concurrent read/write accesses. In [11], the authors propose to use a

mapping algorithm to remove memory conflicts in flexible LDPC

decoders. However, the proposed approach is based on a simulated-

annealing algorithm, so the user cannot predict when the algorithm will

end. Moreover, it fails to optimize either the storage elements or the

interconnection network. Finally, different heuristics [15], [16] have

been proposed to solve the mapping problem in turbo and LDPC

decoding. However, they consider in-place memory accesses in which

data have to be read from and write to the same memory location.

Finally, conflict graph can be used. In this model, a node represents a

data and two nodes are connected if and only if the associated data are

accessed at the same time. Node coloring approach can then be used to

solve the mapping problem: each color corresponds to one memory

bank. Unfortunately only one color can be assigned to one node, i.e. a

data can be stored in only one memory bank. This constraint may

require more memory banks than needed (see [17] for more details).

Similarly, number of algorithms have been proposed for coloring the

edges of a bipartite graph by constructing partitions ([13] and [14] for

example). Unfortunately, like node coloring approaches they can not be

used to solve the mapping problem because each data is supposed to be

Check nodes

Variable nodes

PE 1

PE 0

PE P In
te

rc
o
n
n
e
c
ti
o
n
s
 n

e
tw

o
rk

Mem 1

Mem 0

Mem B

a. Tanner graph of an LDPC b. Decoder architecture

Figure 1: LDPC code and decoder architecture

stored in one memory bank only i.e. only one color can be assigned

to one edge.

3. PROBLEM FORMULATION

To explain the problem, we consider a set of K data {l1, l2,…, lK}

and a set of P processing elements {PE1, PE2,…, PEP} which

iteratively process these K data in N time instances {t1, t2,…, tN}.

In order to store these K data and to achieve parallel iterative

processing for high throughput, a set of B memory banks {b0,

b1,…, bB-1}, where B = P, is used. All the memory banks have the

same size M which is equal to M = K/P.

Mapping problem

Store K data in B memory banks in such a manner that P

processing elements can, at each time instance, access B memory

banks in parallel for first reading P data and then writing back

these P data without any conflict.

To explain the problem, we introduce a mapping matrix in which

we have P rows, related to the processing elements, and N

columns, related to the time instances ti. Each column is further

divided into three sub-columns. First sub-column shows the data

which need to be accessed in parallel by P processing elements at ti

whereas second sub-column contains the memory banks from

where data are read and third sub-column represents the memory

banks in which these data are written at ti. Also, data in each row

are processed by the processing element connected with this row.

Figure 2 represents the mapping matrix in which we have K = 6, P

= B = 3, M = 2 and N = 6. Each data is processed 3 times which

shows the iterative nature of the data access. However, data

accesses are interleaved in time and there is no regularity in

processing the data; e.g., data 3 is successively processed in time

instances t1 and t2 whereas the first access to the data 4 occurs at

time instance t3.

RW RW RW RW RW RW

PE1 1 3 6 5 4 2

PE2 2 5 1 6 3 1

PE3 3 6 4 2 5 4

t1 t2 t3 t4 t5 t6

P
arallelism

Time
Figure 2: Mapping Matrix

Memory Mapping Constraints

To successfully map the data (i.e. to allow conflict free parallel

memory access) (1) in a given number of memory banks and (2) to

tackle the iterative nature of data access in error correction coding,

the mapping matrix must fulfill the two following constraints:

1- At each time instance, all the memory banks have to be used

one and only one time.

2- The bank of the last write access to a data must be the same

as the bank of its first read access.

To tackle the mapping problem, we introduce the concept of

multiple read and multiple write access. Therefore, we can access

data in two ways: we can either (1) read and write a data from the

same memory bank (if it is possible) i.e. like in classical

approaches (see [15], [16] for example) or (2) read a data from one

memory bank and then write it in a different one as we propose in

this paper. The proposed approach, which allows to access data

with an in-place strategy, is based on edge coloring of tripartite

graph and is presented in section 5.

4. DEFINITIONS

A graph G = (V, E) is a collection of nodes, set V, and edges, set

E. If v,w ∈ V then an edge e(v,w) ∈ E is incident to v and to w, and

vertices v and w are said adjacent. A subgraph of G is a graph

whose vertices and edges are in G.

To delete edge (v,w) from G means to form the subgraph G – (v,w),

consisting of all vertices of G and all edges of G except (v,w).

A graph G = (S1 ∪ S2 ∪ S3, E) is tripartite, if a set of graph vertices

decomposed into three disjoint sets such that no two graph vertices

within the same set are adjacent i.e. S1 ∩ S2 ∩ S3 =∅.

The degree of vertex v is the number of edges incident to v. A graph is

regular if all vertices have the same degree. A graph is semi regular, if

all the vertices in any of its vertex set have the same degree.

A path P is a sequence of edges (v1, v2), (v2, v3),..., (vn-1, vn). The ends of

P are vertices v1 and vn. If v1 ≠ vn, P is open; otherwise P is closed. A

graph is connected if there is a path between any two distinct vertices.

If Si is the vertex set whose all the vertices have the same degree in a

semi regular tripartite graph G = (S1 ∪ S2 ∪ S3, E) then partition in G is

defined as a subgraph containing all the elements of Si. (i.e. S1, S2 or S3)

Lemma 1: When the degree dt of a vertex of Si in a semi regular graph is

even then we have dt/2 partitions in which each vertex’s degree dt’ is 2.

Lemma 2: When the degree dt of a vertex of Si in a semi regular graph is

odd then we have 2td partitions in which each vertex’s degree dt’ is

2 and one subgraph in which dt’ is 1.

We finally define a regular partition in semi regular tripartite graph as a

partition that respects either Lemma 1 or Lemma 2.

An edge coloring of G is an assignment of a color to each edge in G. An

edge chromatic number, χ`(G), is the fewest number of colors necessary

to color each edge of a graph so that no two edges incident to the same

vertex have the same color.

5. PROPOSED APPROACH
The proposed approach is divided into two parts. In the first part, we

model our problem as a tripartite graph based on mapping matrix i.e.,

the interleaving law. In the second part, we apply a 2-step coloring

approach on the tripartite graph to color its edges so that data can be

read from and be written to the memory without any conflict at any time

instance.

5.1 Modeling

A Tripartite graph G = (TR ∪ TW ∪ L, E) is constructed based on

mapping matrix (e.g. Figure 3). Vertex sets TR and TW represent all the

time instances at which data are read and written respectively. Vertex

set L represents all the data used in the computation. An edge (l, taR) is

incident to the data vertex l and to the read access time instance vertex

taR if l needs to be read at taR . Similarly, an edge (tcW, l) is incident to l

and to the write access time instance vertex tcW if l needs to be written at

tcW. Moreover, at each data vertex l, edges (l, taR) and (tcW, l) are placed

on two different sides of l as shown in Figure 3.b.

In order to follow the mapping constraint and for functional correctness

of data accesses, the memory bank from which data is read from its

current access must be the same as the memory bank in which the data

is written in its previous access. If i is the access order of data l and n is

the total number of times the data l is accessed, then i = {1, 2,……, n}.

Definition: two edges (l, taR) and (tcW, l) are called related edges if

i = j - 1 for i > 1

 n for i = 1

where i = Order(l, taR), j = Order(tcW, l) and where Order(l, taR) and

Order(tcw, l) are respectively the read and the write access order of data

l.

If colors of edges represent memory banks (as shown in section 5.2),

then at each data vertex l, related edges must have the same color.

Related edges representation of data node l for i = 3 is shown in Figure

3.c. Related edges are connected with dotted line.

One interesting property of parallel LDPC decoding architecture is that

the number of accesses to data or processing elements at any time

instance is always equal which implies that corresponding tripartite

graph is always semi regular at vertex set TR and TW. This implies that

all the time nodes (either for read or write accesses) in the tripartite

graph have the same degree dt=P. Since vertex set TR and TW are always

semi regular, the regular partitions contain all the vertices of both TR

and TW with the degree requirement mentioned in Lemma 1 and 2.

T
im

e

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

1

2

3

4

5

6

Read Access Data Elements Write Access
a. Tripartite Graph of Figure. 2.

1st Read Access

2nd Read Access

Last Read Access

1st Write Access

2nd Write Access

Last Write Access

1st Write Access

2nd Write Access

3rd Write Access

1st Read Access

2nd Read Access

3rd Read Access

b. Data Node l Representation
c. Related edges representation

for i = 3 of l

Figure 3: Tripartite Graph Representation

5.2 2-step coloring approach

A 2-step algorithm is used to color the edges of tripartite graph and

hence to find a conflict free memory mapping: (1) tripartite graph

is divided into regular partitions and then (2) each regular

partition is colored independently.

Step I, Partitioning Algorithm:

The algorithm (see Figure 4.a) begins constructing a path pcurr by

selecting a data vertex lcurr. Process of addition is then invoked to

add an edge (lcurr, taR) into pcurr and its related edge (tcW, lcurr) into

the current set of related edges Relpcurr. Process of deletion is then

applied to remove from Gtmp all invalid and their related edges

from time nodes that belong to pcurr.

Definition: An edge is invalid if its selection decreases the number

of edges at any read or write access vertex to less than dt’.

Otherwise, it is a valid edge.

Process of addition is again invoked at tcurr,R to add another valid

edge (taR, lnext) into pcurr and to reach at lnext. The related edge of

(taR, lnext) is included in Relpcurr. Process of deletion is then applied.

At that point pcurr = {(lcurr, taR), (taR, lnext)}. The algorithm continues

by alternating applying process of addition and process of deletion

until pcurr is completed, i.e. the process of addition does not find

any valid edge to be included in pcurr. At that point, pcurr and

Relpcurr are included in the current partition Parcurr.

While the partition is not regular (i.e. degree of valid edges at each

read and write access time nodes is exactly dt’), the algorithm starts

constructing another path by using the remaining edges of Gtmp.

The algorithm starts constructing another partition on the

remaining graph Gtmp = G - Parcur until Gtmp is not empty.

Apply process of addition and

deletion alternately on Gtmp.

Path is completed

Regular partition is completed

Graph is partitioned

Yes

Yes

Yes

No

Remove the regular partition.

No

No

Alternately removes the read and write

access conflict at each time vertex.

Partition is completely colored

Graph is completely colored

No

No

Yes

Yes

a. Partitioning Algorithm b. Coloring Algorithm

Figure 4: Partitioning and Coloring Algorithms

Step II, Coloring Algorithm:

Our coloring algorithm (which flow chart is shown in Figure 4.b),

colors each partition with at most two colors thanks to the construction

of regular partitions.

For each partition Parcurr, the algorithm starts by choosing any read

access time vertex tinit,R whose edges are still not colored. First color is

given to edge (tinit,R, l) and its related edge (l, tcurr,W). Since at most two

edges exist at each time vertex thanks to the construction of regular

partitions, the algorithm gives a second color to (tcurr,W, lnext) and its

related edge (lnext, tcurr,R). After reaching at tcurr,R, the algorithm tests

whether tcurr,R = tinit,R. If not, then algorithm gives first color to the 2nd

edge at tcurr,R and its related edge until algorithm reaches at tinit,R. In case

algorithm reaches tinit,R, it tests whether partition is completely colored.

If not, then algorithm chooses another node as tinit,R and repeats the same

process until Parcurr is completely colored.

Partitioning and coloring algorithms are explained through a

pedagogical example in the next section.

6. PRACTICAL IMPLEMENTATION

Let us present an example based on the mapping matrix in Figure 2. The

first step is the construction of tripartite graph which is already depicted

in Figure 3.a. This semi regular tripartite graph has each time vertex

with degree dt = 3. Following Lemma 2, we will have after applying the

partitioning algorithm two partitions: one partition in which each time

vertex’s degree dt’ is 2 and one partition in which dt’ is 1.

The algorithm starts by selecting data 1 and then invokes the process of

addition which adds the first available edge (1, t1R) into the path p1,

leading to p1 = {(1, t1R)}. The related edge of (1, t1R) that is (1, t6w) is

also included in the current set Relp1. The selected read access edges

and their related edges are represented by bold lines in Figure 5.a. The

process of deletion is invoked but no invalid edge is found to be deleted.

The process of addition continues by adding the edge (t1R, 2) into the

path p1 and its related edge (2, t6W) into Relp1. We have now p1 = {(1,

t1R), (t1R, 2)} and Relp1 = {(1, t6w), (2, t6W)}. At this point, the number of

access at t1R and t6W increases to 2 and the other unselected edges at t1R

and t6W becomes invalid edges. So the process of deletion removes the

invalid edge (4, t6W) and its related edge (4, t3R) as shown in Figure 5.b.

The algorithm continues by alternately invoking the two processes until

the path p1 reaches at t6R. We have at that point p1 = {(1, t1R), (t1R, 2), (2,

t4R), (t4R, 6), (6, t3R), (t3R, 1), (1, t6R)} and Relp1 = {(1, t6w), (2, t6W), (2,

t1W), (6, t3W), (6, t2W), (1, t1w), (1, t3w)}. The edges of p1 and Relp1 are

shown in Figure 5.c. At this point, the process of addition can choose

either (t6R, 2) or (t6R, 4) to augment p1. But choosing (t6R, 2) makes (t6R,

4) and its related edge (4, t5W) invalid because the number of edges at

t5W becomes less than 2. So the process adds (t6R, 4) (the only available

valid edge) into p1, (4, t5W) into Relp1 and declares (t6R, 2) and its related

edge (2, t4W) as invalid as shown in Figure 5.d.

At this stage, the algorithm finds that no more valid edges available at

data vertex 4 to be added in p1 = {(1, t1R), (t1R, 2), (2, t4R), (t4R, 6),(6,

t3R), (t3R, 1), (1, t6R), (t6R, 4)} and Relp1 = {(1, t6w), (2, t6W), (2, t1W), (6,

t3W), (6, t2W), (1, t1w), (1, t3w), (4, t5W)} as shown in Figure 6.a. The

algorithm adds p1 and Relp1 into Par1 but Par1 does not form a regular

partition because t2R and t5R are not included in p1. So the algorithm

starts to construct a new path p2 by again invoking the process of

addition and deletion. The resultant path p2 = {(3, t5R), (t5R, 5), (5, t2R),

(t2R, 6)} is shown in Figure 6.b. Now the partition Par1 is the union of

all the paths and their related edge sets, Par1 = p1 + p2 + Relp1 + Relp2.

Again the algorithm tests whether Par1 constitutes a regular partition.

This time the test is successful and the Par1 is declared as regular

partition (see Figure 6.c).

After the construction of Par1, the algorithm finds that the graph is not

completely traversed. So the algorithm deletes Par1 to obtain the graph

Gtmp = G - Par1 and applies again the processes on Gtmp to obtain the

paths, p’1 = {(2, t6R)}, p’2 = {(3, t1R)}, p’3 = {(3, t2R)}, p’4 = {(4, t3R)},

p’5 = {(4, t5R)}, p’6 = {(5, t4R)}.

Similarly partition Par2 is the sum of all the traversed paths and their

related edges as given below,

 Par2 = p’1 + p’2 + p’3 + p’4 + p’5 + p’6 + Relp’1 + Relp’2 + Relp’3 +

Relp’4 + Relp’5 + Relp’6 (see Figure 6.d).

After the construction of Par2, the partitioning algorithm finds that

the graph is completely traversed and is terminated.

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

a. b.

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

c. d.

Figure 5: Path construction through Partitioning Algorithm

After the generation of the partitions, each partition is colored

depending on the degree dt’ of its time node. For example, the Par1

is colored with, dt’ = 2, colors and the Par2 is colored with, dt’ = 1,

color. To color the partition Par1, the algorithm starts from any

read access time vertex whose edges are still not colored. In this

example, the algorithm begins from t1R and gives one color b0 to

(t1R , 1) and its related edge (1, t6W) to reach at t6W. At t6W, the

algorithm then gives different color b1 to the other edge (t6W, 2) and

its related edge (t1R , 2) to reach at t1R as shown in Figure 7.a. In

this figure, grey straight line represents color b0 and grey dotted

line represents color b1.

The algorithm finds that t1R is completely colored so it chooses

another uncolored read access time vertex t2R and gives color b0 to

(t2R , 5) and its related edge (5, t5W) to reach at t5W. At t5W, the

algorithm gives different color b1 to the other edge (t5W , 4) and its

related edge (t6R, 4) to reach at t6R as shown in Figure 7.b.

The algorithm continues until the partition is completely colored.

The complete coloring of Par1 is shown in Figure 8.a. The coloring

of Par2 is easier: all the edges are colored with one single color b2

represented by grey big dotted lines in Figure 8.b because dt’ = 1 as

already mentioned.

The complete coloring of G is shown in Figure 9.a. The

corresponding mapping matrix is presented in Figure 9.b.

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

a. b.

Figure 7: Conflict Free Edge Coloring of Par1

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

a. b.

Figure 8: Conflict Free Edge Coloring of Par1 and Par2

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

R W R W R W R W R W R W

1 b0 b1 3 b2 b1 6 b0 b1 5 b2 b0 4 b2 b1 2 b2 b1

2 b1 b0 5 b0 b2 1 b1 b0 6 b1 b1 3 b1 b2 1 b0 b0

3 b2 b2 6 b1 b0 4 b2 b2 2 b0 b2 5 b0 b0 4 b1 b2

t1 t2 t3 t4 t5 t6

a. Coloring of G b. Mapping matrix

Figure 9: Conflict free edge coloring of G and corresponding mapping matrix

7. CONCLUSION

In this paper, we proposed an approach to solve the mapping problem

that arises when designing parallel LDPC interleaver. The concept of

tripartite edge coloring has been introduced to design hardware

architectures supporting multiple read/write accesses. This approach can

be used to solve the mapping problems in other signal processing,

communication domains... In future works, additional constraints will

be added to take into account the complexity of interconnection

network.

REFERENCE

[1] R.G. Gallager,“Low Density Parity Check Codes” IRE Trans. Info. Theory,

21-28, 1962.

[2] Tanner, R. M., 1981. “A recursive approach to low complexity codes”.

IEEE Trans. Info. Theory, 533-547

[3] “Frame structure channel coding and modulation for the second generation

digital terrestrial television broadcasting system (DVB-T2),” DVB

DocumentA122, 2008.

[4] IEEE 802.11n. “Wireless LAN Medium Access Control and Physical Layer

specifications: Enhancements for Higher Throughput”, IEEE P802.11n/D1.0,

2006

[5] “Air interface for fixed and mobile broadband wireless access systems,” in

P802.16e/D12 Draft, (Washington, DC, USA), pp. 100-105, IEEE, 2005

[6] M.M. Mansour, N.R. Shanbhag, “High-throughput, LDPC decoders,” IEEE

Trans. on Very Large Scale Integration VLSI Systems, vol.11, pp.976-996, 2003.

[7] Y.Chen, D.Hocevar, “A FPGA and ASIC implementation of rate 1/2, 8088-

b irregular low density parity check decoder”. in Global Telecommunication

Conf., 113-117, 2003.

[8] Theocharides, T., Link, G., Vijaykrishnan, N., and Irwin, M. J., 2005.

“Implementing LDPC Decoding on a Network-on-Chip”. Proc. of the int.

Conference on VLSI Design.

[9] Kienle, F., Thul, M. J., and When, N., 2003. “Implementation Issues of

Scalable LDPC-Decoders”. in Proceeding of 3rd International Symposium on

Turbo Codes and Related Topics, Brest, France, 291-294.

[10] H.Moussa, A.Baghdadi, M.Jezequel.“Binary de Bruijn on-chip netwok for a

flexible multiprocessor LDPC decoder”.45th ACM/IEEE DAC, p.429-434, 2008.

[11] F.Quaglio, F.Vacca, C.Castellano, A.Tarable, M G.Asera. “Interconnection

Framework for High-Throughput, Flexible LDPC Decoders”. In proceeding

Design Automation and Test in Europe Conference and Exhibition, 2006.

[12] J.Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible reference, Morgan Kaufmann, 1988.

[13] H.N. Gabow, “Using Euler partitions to edge color bipartite multigraphs”,

International Journal of Computer and Information Sciences 5 (1976) 345-355.

[14] R.Cole, J. Hopcroft, “On edge coloring bipartite graphs”, SIAM Journal on

Computing 11 (1982) 540-546.

[15] A.Tarable, S. Benedetto and G.Montorsi, “Mapping interleaving laws to

parallel turbo and LDPC decoder architectures”, IEEE Trans. Inf. Theory, vol.50,

no.9, pp.2002-2009, Sep. 2004.

[16] C. Chavet, P. Coussy, P. Urard and E. Martin, “Static Address Generation

Easing: a Design Methodology for Parallel Interleaver Architecture”. In

proceeding ICASSP 2010.

[17] C. Chavet, P. Coussy, “A memory Mapping Approach for Parallel

Interleaver design with multiples read and write accesses”. In Proceedings of the

IEEE International Symposium on Circuits and Systems (ISCAS) 2010.

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

 Read Access Data Elements Write Access

1

2

3

4

5

6

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

a. Path p1 and its related edges b. Path p2 and its related edges

Read Access Data Elements Write Access

1

2

3

4

5

6

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

 Read Access Data Elements Write Access

1

2

3

4

5

6

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

c. Regular partition Par1 d. Regular partition Par2

Figure 6: Path construction through Partitioning Algorithm

