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Abstract- A practical and feasible solution for LDPC decoder is to 

design partially-parallel hardware architecture. These architectures 

are efficient in terms of area, cost, flexibility and performances. 

However, this type of architecture is complex to design since 

concurrent read and write accesses to data have to be performed at each 

time instance without any conflict. To solve this memory mapping 

problem, we present in this paper, an original approach based on a 

tripartite graph modeling and a modified edge coloring algorithm to 

design parallel LDPC interleaver architecture. 
 

1. INTRODUCTION 
 

Low-density parity-check (LDPC) codes [1] has gained a lot of 

attention in information theory community thanks to their near 

Shannon limit error correction capabilities and the explicit 

parallelism exhibited by their iterative decoding algorithm. These 

codes have already been included in several wireless 

communication standards such as DVB-S2 and DVB-T2 [3], WiFi 

(IEEE 802.11n) [4] or WiMAX (IEEE 802.16e) [5].  

LDPC codes are linear block codes and are represented either by a 

sparse parity check matrix H or by a bipartite graph which is called 

Tanner graph [2]. Figure 1.a shows the tanner graph of a LDPC 

code, which consists of two sets of vertices: variable node set (VN) 

and check node set (CN). A data vi ∈ VN represents one bit in the 

codeword (i.e. data to be processed) whereas cj ∈ CN represents a 

check equation used in generating parity check bits (i.e. operation 

to be done on the data). A vi is connected to a cj by an edge if and 

only if vi is checked by cj.   

The decoding process is carried out by an iterative message-

passing algorithm called “Belief Propagation Algorithm” [12]. In 

this algorithm, VN and CN iteratively exchange their soft-

information to qualify the likelihood of the variable in accordance 

with the associated parity-check equation [1].  

In literature, currently three main families of LDPC decoder 

architecture have been proposed: 

• Fully-Parallel decoder architectures 

• Serial decoder architectures 

• Partially-Parallel decoder architectures 

Fully-Parallel decoders suffer from prohibitive area and serial 

decoders from low throughput. Thus the only LDPC decoder 

architecture fulfilling the need of current communication standards 

is partially-parallel architecture. In partially-parallel architecture 

several processing elements PEs are used and set of variable nodes 

and set of check nodes are allotted to each PE. High throughput 

requirement can be achieved using a proper number of PEs, while 

the interconnection network cost tends to be less critical as 

compared to fully-parallel implementation. Typical architecture for 

partially-parallel decoder is shown in Figure 1.b in which P PEs 

are always connected with B memory banks where P = B. While 

designing partially-parallel decoder architecture, the 

implementation issues mainly arise due to the communication 

structure between VNs and CNs whereas the computation at 

variable node and check node is quite simple. Moreover, partially-

parallel architecture suffers from memory accesses collision 

problem i.e., more than one PE concurrently accesses the same 

memory bank to read or write data. Hence, the communication 

structure becomes more and more challenging to design with the 

increase in the number of nodes, the number of iterations and the 

parallelism. 

In this paper, we present a memory mapping methodology based 

on tripartite graph which is able to provide all the PEs conflict free 

parallel access to the memory banks. This algorithm provides 

conflict free memory mapping for all types of decoding methods, 

codeword lengths, code types and code rates. 

The remainder of the paper is organized as follows. Section 2 

presents a state of the art related to partially-parallel LDPC 

decoder design. Section 3 introduces the mapping problem. Section 4 

defines concepts related to graph in order to understand the proposed 

approach. Section 5 details the mapping algorithm we propose. Finally, 

section 6 explains the algorithm through a pedagogical example. 
 

2. RELATED WORKS 
 

Currently three classes of approaches to design partially-parallel LDPC 

decoder architectures exist to tackle the collision problem: 

• Design LDPC codes to avoid collision problem [6], [7], 

• Use extra memory elements and control logic in the 

interconnection network in order to remove conflicts [8], [9], [10],  

• Find a memory mapping to provide conflict free access to all the 

memory banks at any time instance [11], [15], [16]. 

In the first category of decoder implementation, structured or 

architecture oriented LDPC codes are designed in order to avoid conflicts 

in accessing data from memory banks. These codes remove the memory 

access conflicts and simplify the interconnection network through the 

use of a barrel shifter [6] or a customized network [7]. However, 

constraints in the development of structured LDPC codes may cause 

degradation in code performance. 

In the second class of decoder implementation, memory access conflicts 

are removed either through the addition of extra memory elements or 

complex interconnection network or both. In [8], configuration 

memories are used along with 2D-mesh network for LDPC codes of 

different block size and code rates. In [9], concurrent accesses to the 

same memory bank are avoided through the use of heterogeneous 

network. However, this network becomes complex with increasing 

degree of parallelization and suffers from reduction in the achievable 

throughput. In [10], binary de Bruijn network is employed for providing 

flexible on-chip network for LDPC decoder. Concurrent accesses to the 

same memory bank are avoided through dedicated routing algorithm 

which deflects one of the conflicted packets at the router. The flexibility 

in these complex interconnection networks is paid through additional 

hardware, increased decoding latency and power consumption. 

In the last class, methodologies for solving collision problem are 

proposed to map the data in different memory banks for conflict free 

concurrent read/write accesses. In [11], the authors propose to use a 

mapping algorithm to remove memory conflicts in flexible LDPC 

decoders. However, the proposed approach is based on a simulated-

annealing algorithm, so the user cannot predict when the algorithm will 

end. Moreover, it fails to optimize either the storage elements or the 

interconnection network. Finally, different heuristics [15], [16] have 

been proposed to solve the mapping problem in turbo and LDPC 

decoding. However, they consider in-place memory accesses in which 

data have to be read from and write to the same memory location.  

Finally, conflict graph can be used. In this model, a node represents a 

data and two nodes are connected if and only if the associated data are 

accessed at the same time. Node coloring approach can then be used to 

solve the mapping problem: each color corresponds to one memory 

bank. Unfortunately only one color can be assigned to one node, i.e. a 

data can be stored in only one memory bank. This constraint may 

require more memory banks than needed (see [17] for more details). 

Similarly, number of algorithms have been proposed for coloring the 

edges of a bipartite graph by constructing partitions ([13] and [14] for 

example). Unfortunately, like node coloring approaches they can not be 

used to solve the mapping problem because each data is supposed to be 
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Figure 1: LDPC code and decoder architecture 



stored in one memory bank only i.e. only one color can be assigned 

to one edge. 

3. PROBLEM FORMULATION 
 

To explain the problem, we consider a set of K data {l1, l2,…, lK} 

and a set of P processing elements {PE1, PE2,…, PEP} which 

iteratively process these K data in N time instances {t1, t2,…, tN}. 

In order to store these K data and to achieve parallel iterative 

processing for high throughput, a set of B memory banks {b0, 

b1,…, bB-1}, where B = P, is used. All the memory banks have the 

same size M which is equal to M = K/P.  

Mapping problem  

Store K data in B memory banks in such a manner that P 

processing elements can, at each time instance, access B memory 

banks in parallel for first reading P data and then writing back 

these P data without any conflict. 

To explain the problem, we introduce a mapping matrix in which 

we have P rows, related to the processing elements, and N 

columns, related to the time instances ti. Each column is further 

divided into three sub-columns. First sub-column shows the data 

which need to be accessed in parallel by P processing elements at ti 

whereas second sub-column contains the memory banks from 

where data are read and third sub-column represents the memory 

banks in which these data are written at ti. Also, data in each row 

are processed by the processing element connected with this row. 

Figure 2 represents the mapping matrix in which we have K = 6, P 

= B = 3, M = 2 and N = 6. Each data is processed 3 times which 

shows the iterative nature of the data access. However, data 

accesses are interleaved in time and there is no regularity in 

processing the data; e.g., data 3 is successively processed in time 

instances t1 and t2 whereas the first access to the data 4 occurs at 

time instance t3.  

RW RW RW RW RW RW

PE1 1 3 6 5 4 2

PE2 2 5 1 6 3 1

PE3 3 6 4 2 5 4

t1 t2 t3 t4 t5 t6

P
arallelism

Time  
Figure 2: Mapping Matrix 

Memory Mapping Constraints 

To successfully map the data (i.e. to allow conflict free parallel 

memory access) (1) in a given number of memory banks and (2) to 

tackle the iterative nature of data access in error correction coding, 

the mapping matrix must fulfill the two following constraints: 

1- At each time instance, all the memory banks have to be used 

one and only one time.  

2- The bank of the last write access to a data must be the same 

as the bank of its first read access. 

 

To tackle the mapping problem, we introduce the concept of 

multiple read and multiple write access. Therefore, we can access 

data in two ways: we can either (1) read and write a data from the 

same memory bank (if it is possible) i.e. like in classical 

approaches (see [15], [16] for example) or (2) read a data from one 

memory bank and then write it in a different one as we propose in 

this paper. The proposed approach, which allows to access data 

with an in-place strategy, is based on edge coloring of tripartite 

graph and is presented in section 5. 

 
4. DEFINITIONS 

 

A graph G = (V, E) is a collection of nodes, set V, and edges, set 

E. If v,w ∈ V then an edge e(v,w) ∈  E is incident to v and to w, and 

vertices v and w are said adjacent. A subgraph of G is a graph 

whose vertices and edges are in G.  

To delete edge (v,w) from G means to form the subgraph G – (v,w), 

consisting of all vertices of G and all edges of G except (v,w).  

A graph G = (S1 ∪ S2 ∪ S3, E) is tripartite, if a set of graph vertices 

decomposed into three disjoint sets such that no two graph vertices 

within the same set are adjacent i.e. S1 ∩ S2 ∩ S3 =∅.  

The degree of vertex v is the number of edges incident to v. A graph is 

regular if all vertices have the same degree. A graph is semi regular, if 

all the vertices in any of its vertex set have the same degree.   

A path P is a sequence of edges (v1, v2), (v2, v3),..., (vn-1, vn). The ends of 

P are vertices v1 and vn. If v1 ≠ vn, P is open; otherwise P is closed. A 

graph is connected if there is a path between any two distinct vertices.  

If Si is the vertex set whose all the vertices have the same degree in a 

semi regular tripartite graph G = (S1 ∪ S2 ∪ S3, E) then partition in G is 

defined as a subgraph containing all the elements of Si. (i.e. S1, S2 or S3)  

Lemma 1: When the degree dt of a vertex of Si in a semi regular graph is 

even then we have dt/2 partitions in which each vertex’s degree dt’ is 2. 

Lemma 2: When the degree dt of a vertex of Si in a semi regular graph is 

odd then we have  2td  partitions in which each vertex’s degree dt’ is 

2 and one subgraph in which dt’ is 1. 

We finally define a regular partition in semi regular tripartite graph as a 

partition that respects either Lemma 1 or Lemma 2.  

An edge coloring of G is an assignment of a color to each edge in G. An 

edge chromatic number, χ`(G), is the fewest number of colors necessary 

to color each edge of a graph so that no two edges incident to the same 

vertex have the same color.  

5. PROPOSED APPROACH  
The proposed approach is divided into two parts. In the first part, we 

model our problem as a tripartite graph based on mapping matrix i.e., 

the interleaving law. In the second part, we apply a 2-step coloring 

approach on the tripartite graph to color its edges so that data can be 

read from and be written to the memory without any conflict at any time 

instance.  

 

5.1 Modeling 

A Tripartite graph G = (TR ∪  TW ∪ L, E) is constructed based on 

mapping matrix (e.g. Figure 3). Vertex sets TR and TW represent all the 

time instances at which data are read and written respectively. Vertex 

set L represents all the data used in the computation. An edge (l, taR) is 

incident to the data vertex l and to the read access time instance vertex 

taR if l needs to be read at taR . Similarly, an edge (tcW, l) is incident to l 

and to the write access time instance vertex tcW if l needs to be written at 

tcW. Moreover, at each data vertex l, edges (l, taR) and (tcW, l) are placed 

on two different sides of l as shown in Figure 3.b.  

 

In order to follow the mapping constraint and for functional correctness 

of data accesses, the memory bank from which data is read from its 

current access must be the same as the memory bank in which the data 

is written in its previous access. If i is the access order of data l and n is 

the total number of times the data l is accessed, then i = {1, 2,……, n}.  

 

Definition: two edges (l, taR) and (tcW, l) are called related edges if 

i = j - 1 for i > 1                   

                                                  n      for i = 1    

where i = Order(l, taR),  j = Order(tcW, l) and where Order(l, taR) and 

Order(tcw, l) are respectively the read and the write access order of data 

l. 

If colors of edges represent memory banks (as shown in section 5.2), 

then at each data vertex l, related edges must have the same color.    

Related edges representation of data node l for i = 3 is shown in Figure 

3.c. Related edges are connected with dotted line. 

 

One interesting property of parallel LDPC decoding architecture is that 

the number of accesses to data or processing elements at any time 

instance is always equal which implies that corresponding tripartite 

graph is always semi regular at vertex set TR and TW. This implies that 

all the time nodes (either for read or write accesses) in the tripartite 

graph have the same degree dt=P. Since vertex set TR and TW are always 

semi regular, the regular partitions contain all the vertices of both TR 

and TW with the degree requirement mentioned in Lemma 1 and 2. 
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Figure 3: Tripartite Graph Representation 

 
5.2 2-step coloring approach 

A 2-step algorithm is used to color the edges of tripartite graph and 

hence to find a conflict free memory mapping: (1) tripartite graph 

is divided into regular partitions and then (2) each regular 

partition is colored independently.   

 

Step I, Partitioning Algorithm:  

The algorithm (see Figure 4.a) begins constructing a path pcurr by 

selecting a data vertex lcurr. Process of addition is then invoked to 

add an edge (lcurr, taR) into pcurr and its related edge (tcW, lcurr) into 

the current set of related edges Relpcurr. Process of deletion is then 

applied to remove from Gtmp all invalid and their related edges 

from time nodes that belong to pcurr.  

 

Definition: An edge is invalid if its selection decreases the number 

of edges at any read or write access vertex to less than dt’. 

Otherwise, it is a valid edge. 

 

Process of addition is again invoked at tcurr,R to add another valid 

edge (taR, lnext) into pcurr and to reach at lnext. The related edge of 

(taR, lnext) is included in Relpcurr. Process of deletion is then applied. 

At that point pcurr = {(lcurr, taR), (taR, lnext)}. The algorithm continues 

by alternating applying process of addition and process of deletion 

until pcurr is completed, i.e. the process of addition does not find 

any valid edge to be included in pcurr. At that point, pcurr and 

Relpcurr are included in the current partition Parcurr. 

While the partition is not regular (i.e. degree of valid edges at each 

read and write access time nodes is exactly dt’), the algorithm starts 

constructing another path by using the remaining edges of Gtmp. 

The algorithm starts constructing another partition on the 

remaining graph Gtmp = G - Parcur until Gtmp is not empty. 

 

Apply process of addition and 
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a. Partitioning Algorithm b. Coloring Algorithm 

Figure 4: Partitioning and Coloring Algorithms 

Step II, Coloring Algorithm:  

Our coloring algorithm (which flow chart is shown in Figure 4.b), 

colors each partition with at most two colors thanks to the construction 

of regular partitions. 

For each partition Parcurr, the algorithm starts by choosing any read 

access time vertex tinit,R whose edges are still not colored. First color is 

given to edge (tinit,R, l) and its related edge (l, tcurr,W). Since at most two 

edges exist at each time vertex thanks to the construction of regular 

partitions, the algorithm gives a second color to (tcurr,W, lnext) and its 

related edge (lnext, tcurr,R). After reaching at tcurr,R, the algorithm tests 

whether tcurr,R = tinit,R. If not, then algorithm gives first color to the 2nd 

edge at tcurr,R and its related edge until algorithm reaches at tinit,R. In case 

algorithm reaches tinit,R, it tests whether partition is completely colored. 

If not, then algorithm chooses another node as tinit,R and repeats the same 

process until Parcurr is completely colored.  

 

Partitioning and coloring algorithms are explained through a 

pedagogical example in the next section.    
 

 

 

6. PRACTICAL IMPLEMENTATION 

 

Let us present an example based on the mapping matrix in Figure 2. The 

first step is the construction of tripartite graph which is already depicted 

in Figure 3.a. This semi regular tripartite graph has each time vertex 

with degree dt = 3. Following Lemma 2, we will have after applying the 

partitioning algorithm two partitions: one partition in which each time 

vertex’s degree dt’ is 2 and one partition in which dt’ is 1.  

The algorithm starts by selecting data 1 and then invokes the process of 

addition which adds the first available edge (1, t1R) into the path p1, 

leading to p1 = {(1, t1R)}. The related edge of (1, t1R) that is (1, t6w) is 

also included in the current set Relp1. The selected read access edges 

and their related edges are represented by bold lines in Figure 5.a. The 

process of deletion is invoked but no invalid edge is found to be deleted. 

The process of addition continues by adding the edge (t1R, 2) into the 

path p1 and its related edge (2, t6W) into Relp1. We have now p1 = {(1, 

t1R), (t1R, 2)} and Relp1 = {(1, t6w), (2, t6W)}. At this point, the number of 

access at t1R and t6W increases to 2 and the other unselected edges at t1R 

and t6W becomes invalid edges. So the process of deletion removes the 

invalid edge (4, t6W) and its related edge (4, t3R) as shown in Figure 5.b. 

The algorithm continues by alternately invoking the two processes until 

the path p1 reaches at t6R. We have at that point p1 = {(1, t1R), (t1R, 2), (2, 

t4R), (t4R, 6), (6, t3R), (t3R, 1), (1, t6R)} and Relp1 = {(1, t6w), (2, t6W), (2, 

t1W), (6, t3W), (6, t2W), (1, t1w), (1, t3w)}. The edges of p1 and Relp1 are 

shown in Figure 5.c. At this point, the process of addition can choose 

either (t6R, 2) or (t6R, 4) to augment p1. But choosing (t6R, 2) makes (t6R, 

4) and its related edge (4, t5W) invalid because the number of edges at 

t5W becomes less than 2. So the process adds (t6R, 4) (the only available 

valid edge) into p1, (4, t5W) into Relp1 and declares (t6R, 2) and its related 

edge (2, t4W) as invalid as shown in Figure 5.d.  

At this stage, the algorithm finds that no more valid edges available at 

data vertex 4 to be added in p1 = {(1, t1R), (t1R, 2), (2, t4R), (t4R, 6),(6, 

t3R), (t3R, 1), (1, t6R), (t6R, 4)} and Relp1 = {(1, t6w), (2, t6W), (2, t1W), (6, 

t3W), (6, t2W), (1, t1w), (1, t3w), (4, t5W)} as shown in Figure 6.a. The 

algorithm adds p1 and Relp1 into Par1 but Par1 does not form a regular 

partition because t2R and t5R are not included in p1. So the algorithm 

starts to construct a new path p2 by again invoking the process of 

addition and deletion. The resultant path p2 = {(3, t5R), (t5R, 5), (5, t2R), 

(t2R, 6)} is shown in Figure 6.b. Now the partition Par1 is the union of 

all the paths and their related edge sets, Par1 = p1 +  p2 + Relp1 + Relp2. 

Again the algorithm tests whether Par1 constitutes a regular partition. 

This time the test is successful and the Par1 is declared as regular 

partition (see Figure 6.c).    

After the construction of Par1, the algorithm finds that the graph is not 

completely traversed. So the algorithm deletes Par1 to obtain the graph 

Gtmp = G - Par1 and applies again the processes on Gtmp to obtain the 

paths, p’1 = {(2, t6R)}, p’2 = {(3, t1R)}, p’3 = {(3, t2R)}, p’4 = {(4, t3R)}, 

p’5 = {(4, t5R)}, p’6 = {(5, t4R)}. 

Similarly partition Par2 is the sum of all the traversed paths and their 

related edges as given below,  

 Par2 =  p’1 + p’2 + p’3 + p’4 + p’5 + p’6 + Relp’1 + Relp’2 + Relp’3 + 

Relp’4 + Relp’5 + Relp’6  (see Figure 6.d). 



After the construction of Par2, the partitioning algorithm finds that 

the graph is completely traversed and is terminated. 
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Figure 5: Path construction through Partitioning Algorithm 

 

After the generation of the partitions, each partition is colored 

depending on the degree dt’ of its time node. For example, the Par1 

is colored with, dt’ = 2, colors and the Par2 is colored with, dt’ = 1, 

color. To color the partition Par1, the algorithm starts from any 

read access time vertex whose edges are still not colored. In this 

example, the algorithm begins from t1R and gives one color b0 to 

(t1R , 1) and its related edge (1, t6W) to reach at t6W. At t6W, the 

algorithm then gives different color b1 to the other edge (t6W, 2) and 

its related edge (t1R , 2) to reach at t1R as shown in Figure 7.a. In 

this figure, grey straight line represents color b0 and grey dotted 

line represents color b1.  

The algorithm finds that t1R is completely colored so it chooses 

another uncolored read access time vertex t2R and gives color b0 to 

(t2R , 5) and its related edge (5, t5W) to reach at t5W. At t5W, the 

algorithm gives different color b1 to the other edge (t5W , 4) and its 

related edge (t6R, 4) to reach at t6R as shown in Figure 7.b.  

The algorithm continues until the partition is completely colored. 

The complete coloring of Par1 is shown in Figure 8.a. The coloring 

of Par2 is easier: all the edges are colored with one single color b2 

represented by grey big dotted lines in Figure 8.b because dt’ = 1 as 

already mentioned.  

The complete coloring of G is shown in Figure 9.a. The 

corresponding mapping matrix is presented in Figure 9.b. 
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Figure 7: Conflict Free Edge Coloring of Par1 
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Figure 8: Conflict Free Edge Coloring of Par1 and Par2 
 

1

2

3

4

5

6

Read Access Data Elements Write Access

t1R

t2R

t3R

t4R

t5R

t6R

t1W

t2W

t3W

t4W

t5W

t6W

 

R W R W R W R W R W R W

1 b0 b1 3 b2 b1 6 b0 b1 5 b2 b0 4 b2 b1 2 b2 b1

2 b1 b0 5 b0 b2 1 b1 b0 6 b1 b1 3 b1 b2 1 b0 b0

3 b2 b2 6 b1 b0 4 b2 b2 2 b0 b2 5 b0 b0 4 b1 b2

t1 t2 t3 t4 t5 t6

 
a. Coloring of G b. Mapping matrix 

Figure 9: Conflict free edge coloring of G and corresponding mapping matrix 

 
 

7. CONCLUSION 

 

In this paper, we proposed an approach to solve the mapping problem 

that arises when designing parallel LDPC interleaver. The concept of 

tripartite edge coloring has been introduced to design hardware 

architectures supporting multiple read/write accesses. This approach can 

be used to solve the mapping problems in other signal processing, 

communication domains...  In future works, additional constraints will 

be added to take into account the complexity of interconnection 

network. 
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c. Regular partition Par1 d. Regular partition Par2 

Figure 6: Path construction through Partitioning Algorithm 


