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On dynamo action produced by boundary

thermal coupling

Binod Sreenivasan

School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United

Kingdom.

Abstract

Rotating dynamos controlled by laterally varying thermal conditions at the bound-

ary are investigated in this paper. A quasi-stationary, locked dynamo solution is

obtained when the thermal winds produced by the non-axisymmetric lateral varia-

tions come into an approximate balance with the Coriolis forces. This force balance

is verified numerically for both equatorially symmetric and antisymmetric bound-

ary variations. The introduction of lateral variations at the boundary can excite

dynamo action in a weakly convective regime that does not otherwise sustain a

magnetic field with homogeneous boundary heating. A sufficiently large lateral vari-

ation drives strong radial and axial fluid motions near the equatorial plane; these

flows in turn generate the helicity required for dynamo action. It is shown that a

boundary-locked dynamo operates in a state of equipartition between the velocity

and magnetic fields. The departure from equipartition in a partially locked dynamo

allows the magnetic energy to be greater than the kinetic energy. As the balance

of forces in a locked dynamo is different from that in a convection-driven dynamo,

lower-mantle coupling could have a marked effect on the structure and dynamics of

convection in the Earth’s core.
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1 Background

Rotating convection and dynamos with fluid-boundary coupling have attracted

considerable attention in recent years. The problem is of interest in geophysics

where convection in the Earth’s outer core is thought to be affected by lateral

inhomogeneities in the lower mantle. As the convective turn-over time in the

lower mantle is considerably larger than that in the underlying molten core,

these lateral variations constitute an approximately static outer boundary

condition that could organize core convection in a preferred pattern. Labora-

tory experiments on rotating, nonmagnetic convection (Sumita & Olson, 1999)

showed how a multicolumnar, westward-drifting convection pattern gives way

to a locked downwelling front, when a section of the outer boundary is cooled.

Numerical studies of rotating convection indicated that a lateral variation in

heat flux at the boundary can lock a flow that would otherwise drift (Zhang

& Gubbins, 1993). Several dynamo calculations with variable boundary heat-

ing (Sarson et al., 1997; Glatzmaier et al., 1999; Olson & Christensen, 2002;

Aubert et al., 2007) have presented evidence for a correlation between the mag-

netic field and boundary thermal anomalies, at least in a time-averaged sense.

Recent studies produced, for the first time, dynamos where the magnetic field

was nearly locked to lateral variations in heat flux defined by seismic tomog-

raphy (Gubbins et al., 2007; Willis et al., 2007), enabling direct comparison

of a model magnetic field to the present-day geomagnetic field. Although the

solution was not stationary, the characteristic four main magnetic flux lobes

persisted for many diffusion times at the same sites as the main lobes of the

geomagnetic field. These high-latitude magnetic flux concentrations are found

to be relatively stationary during the historical period (Bloxham & Gubbins,

Email address: binod@earth.leeds.ac.uk (Binod Sreenivasan).
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1985; Jackson et al., 2000) and appear to persist in the time-averaged paleo-

magnetic field from the past few million years (Johnson & Constable, 1995).

The magnetohydrodynamic (MHD) regime that produces quasi-stationary flux

lobes in a dynamo model is significant in two respects: First, it can give in-

sights into the MHD regime that exists in the Earth’s liquid iron core. Sec-

ondly, lower-mantle effects in the Earth and in different dynamo simulations

can be understood with reference to a basic, locked solution. The present

paper therefore examines the dynamics of boundary thermal locking in a ro-

tating dynamo. It is shown that the balance of forces in a locked dynamo

is fundamentally different from that in a classical, convection-driven dynamo

with homogeneous boundary heating. The role of lateral thermal variations

in supporting dynamo action under weak buoyancy-driven convection is also

investigated for the first time in a computational experiment.

This paper is organized as follows. In Section 2 the governing equations and

operating parameters in the model are presented. In Section 3 the dynamics

of the locked dynamo are investigated. This includes the behaviour of the

energies and lengthscales, the principal force balances and the possible role of

the lateral variations in supporting dynamo action. Comparisons with classical

dynamos with homogeneous boundary heating are made where appropriate.

Finally, in Section 4 the main results of this paper and their implications for

the Earth are discussed.
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2 The dynamo model

2.1 Governing equations

We consider a thermal convection-driven dynamo where an electrically con-

ducting fluid is confined between two concentric, co-rotating spherical surfaces.

The radius ratio ri/ro is chosen to be that in the Earth, 0.35. In the Boussi-

nesq approximation, the time-dependent, 3D MHD equations for the velocity

u, the magnetic field B and the temperature T are solved numerically. The

governing dimensionless equations are,

E

Pm

(

∂u

∂t
+ (∇× u)× u

)

+ ẑ× u =−∇p? +Ra q T r +

(∇×B)×B + E∇2u, (1)

∂B

∂t
=∇× (u×B) +∇2B, (2)

∂T

∂t
+ (u · ∇)T =PmPr−1∇2T +Qs, (3)

∇ · u =∇ ·B = 0, (4)

where p? is an augmented fluid pressure that includes the irrotational part of

the nonlinear inertial forces and Qs is a uniform volumetric heat source/sink.

The dimensionless groups in Equations (1)–(3) are the Ekman number, E =

ν/2ΩL2, the Prandtl number, Pr = ν/κ, the magnetic Prandtl number,

Pm = ν/η and the ‘modified’ Rayleigh number Ra, whose definition depends

on the basic state temperature profile and the thermal boundary condition

in the problem. (The various cases considered in this paper are described in

Section 2.2.) In the above dimensionless groups, ν is the kinematic viscosity,

κ is the thermal diffusivity, η is the magnetic diffusivity, L is the gap-width

of the spherical shell and Ω is the angular velocity of rotation. The Roberts

number is given by q = PmPr−1. The Ekman number is a measure of the
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rotation rate and the Rayleigh number represents the strength of convective

buoyancy in the problem. As velocity is scaled by η/L, the volume-averaged

dimensionless velocity in the model directly gives the magnetic Reynolds num-

ber, Rm. The standard numerical method used here involves expanding T and

the poloidal and toroidal components of u and B in spherical harmonics and

then timestepping the spectral coefficients (Sreenivasan & Jones, 2006a). No-

slip boundary conditions are imposed on the flow. The inner core is considered

to be at a fixed temperature and electrically conducting. The outer boundary

is maintained electrically insulating and subject to a lateral variation in tem-

perature or heat flux (see Section 2.2). The variation at the outer boundary

is proportional to the spherical harmonic g(θ, φ) = Pm
l (cos θ) cosmφ, where l

and m are chosen.

2.2 Basic heating modes and boundary variations

In Cases 1–4 of Table 1, convection is driven by the basic state temperature

profile T0(r) = βi(r
2

i − r2)/2, where ri is the inner radius and βi is related to a

uniform, dimensional heat source, Q′

s by βi = Q′

s/3κ. A Y 2

2
harmonic variation

in heat flux is imposed on the outer boundary. The modified Rayleigh number

for these cases is given by Ra = gαβiL
3/2Ωκ, where g is the gravitational

acceleration and α is the coefficient of thermal expansion. The ratio of the

maximum (peak-to-peak) variation in heat flux to the mean heat flux at the

outer boundary gives the lateral inhomogeneity factor, denoted by f .

In Cases 5 & 6 of Table 1, the basic state temperature distribution is one

of pure basal heating, T0(r) = βb/r, where βb = riro. A lateral variation in

temperature is imposed on the outer boundary. The Rayleigh number for these

cases is given by Ra = gα∆TL/2Ωκ, where ∆T is the basic state temperature
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difference across the layer. The ratio of the maximum variation of temperature

across the outer boundary to the temperature difference across the layer gives

the inhomogeneity factor, f .

In Case 7, a temperature profile that represents a combination of basal heating

and intrinsic cooling is considered: T0(r) = −βir
2/2+βb/r, where βb = riro and

βi = −0.25. A Y 2

2
variation in temperature is imposed on the outer boundary.

The Rayleigh number is defined based on the temperature drop across the

layer from basal heating alone, and the inhomogeneity factor has the same

definition as in Cases 5 & 6.

3 Results

3.1 Flow structures, energies and lengthscales

We begin the study with Cases 1–4 in Table 1 where a Y 2

2
variation in heat flux

is applied at the outer boundary. The Ekman number is fixed at E = 10−4,

for which the onset of thermal convection occurs at Rac ≈ 22.8, where Rac is

the critical Rayleigh number. The Rayleigh number is fixed at a marginally

supercritical value (Ra ≈ 1.5Rac). Since the convective Rayleigh number is

small, the ratio of thermal to magnetic diffusivities, q is set to 10 for possible

magnetic field generation. For a lateral inhomogeneity factor f ≤ 0.6, a mul-

ticolumnar flow is present as shown in Fig. 1(a); however, there is no dynamo

action. Fig. 2 shows the kinetic and magnetic energies, given by

Ek =
1

2

∫

u2dV ; Em =
Pm

2E

∫

B2dV. (5)
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For f = 0.9 dynamo action is produced with the magnetic energy being greater

than the kinetic energy. As f is increased to 1.6, the amplitude of oscillations

in the energy is reduced. The kinetic and magnetic energies are found to be

approximately equal (see Fig. 2 and also Table 2). The dominant structure of

the flow for 0.9 < f < 1.6 consists of two static downwellings near φ = ±π/2,

as shown in Fig. 1(b) and Fig. 3(a). These strong, narrow downwellings are

produced by the azimuthal inhomogeneity in absolute temperature, i.e. the

sum of the mean temperature and the lateral variation. For Case 3 in Table 1

(f = 1.6) the absolute equatorial temperatures on r = ro (measured relative

to the fixed temperature on r = ri) at φ = [0, π/2] are [−0.18,−1.18]. In

Case 7 a Y 2

2
variation in temperature is applied on the outer boundary. The

respective absolute temperatures for this case are [0.449,−1.95]. The narrow

downwellings in Fig. 3(a) concentrate the radial magnetic flux in four distinct

lobes that are symmetric with respect to the equator, as shown in Fig. 3(b).

Now, the azimuthal lengthscales of the velocity and magnetic field, lu and lB,

may be estimated from a weighted average of the respective wavenumbers, m,

as follows:

mu =

∑

m<u2

m>
∫

u2dV
; mB =

∑

m< B2

m>
∫

B2dV
, (6)

where the angled brackets represent time averages and the sum is over all m.

The lengthscales lu and lB are given by 2π/mu and 2π/mB. An alternative,

‘dissipative’ lengthscale for u and B is also defined based on the ratio of

kinetic energy to viscous dissipation and the ratio of magnetic energy to Ohmic

dissipation. The ratio of lB to lu in the runs, obtained from (6), is given in

Table 2 and the ratio of dissipative lengthscales is given in brackets. It is

evident that the lengthscales of u and B are approximately equal in the locked

regime. Indeed, we find from Fig. 4(a) that the spectra of kinetic and magnetic

energies have identical peaks at the boundary-imposed wavenumber m = 2 and

7
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its large-scale multiples. The congruence between the lengthscales of u and B

may further be verified from a contour plot of the radial magnetic field near

the equator, which has a structure similar to that of the radial velocity shown

in Fig. 1(b). The approximate equivalence of the lengthscales lu and lB and

the energies Ek and Em in (5) indicates an equipartition state.

Increasing the inhomogeneity factor, f to > 1.6 causes the magnetic field to

weaken considerably, and when f ≈ 2 the field decays rapidly to zero. For

f = 2.4 (see Fig. 1(c) and Case 4, Table 1) strong azimuthal flows are pro-

duced by the lateral variation, causing the downwellings to be distorted from

a radial into a spiral structure, similar to that observed at large f in a labora-

tory experiment of thermal convection (Sumita & Olson, 1999). Although the

precise numerical value of f that results in dynamo failure would depend on

the parameters chosen in the model, the above result is significant: where the

applied inhomogeneity is either too small or too big, the dynamo fails. From

Table 1 we note that the volume-averaged root mean square value of the ve-

locity in the model, <u>rms (which gives the magnetic Reynolds number for

a dynamo calculation) increases as f is increased from 0.6 to 2.4 and all other

parameters are kept fixed. Yet, dynamo action is lost at f ∼ 2. We note from

Figs. 1(b) & (c) that the transformation from a radial to spiral structure as

f is increased is accompanied by a significant decrease in fluid velocity within

the downwelling. As we shall see below in Section 3.3, the axial (z) velocity

at f = 2.4 is also significantly lower than that at f = 1.6. This suggests that

dynamo action is determined by the magnitude of the velocity within the fluid

rolls, rather than the rms value of the velocity.

8
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3.2 Force balances in locking

The spherical surface plot of the azimuthal velocity, uφ for f = 1.6 (Fig. 3(c);

Case 3 in Tables 1 & 2) may be understood from the temperature distribution

imposed by the Y 2

2
boundary variation. At φ = ±π/2, ∂T/∂θ is negative in

the northern hemisphere, and uφ changes sign from positive (cyclonic) near

the equatorial plane to negative (anticyclonic) at high latitudes. The opposite

effect is seen beneath warm regions, φ = 0, π. An similar pattern of uφ is

obtained at every radius of the spherical shell except near the inner boundary

(r = ri), indicating that the boundary thermal variation has penetrated the

fluid down to the inner boundary. For f = 1.6 the equatorial symmetry of the

boundary condition is mapped on to the velocity field. The symmetry of the

locked state forces the net kinetic helicity of the dynamo, H =
∫

u · (∇×u)dV

to decrease by 8 orders of magnitude from its value at f = 0.9, as shown in

Fig. 3(d). This suggests that, while the equatorial symmetry of the dynamo

solution at f = 0.9 is approximate, the symmetry at f = 1.6 is exact. (In

near-complete locking, the helicities in the two hemispheres are approximately

equal in magnitude and of opposite sign.) As the boundary condition appears

to control the flow structure in Fig. 3, we first examine the validity of the

following thermal wind-type balance in the curl of the momentum equation:

∂u

∂z
= −Ra q∇× (T r), (7)

where the temperature gradients are dominated by the non-axisymmetric lat-

eral variations at the boundary, rather than free convection. In Fig. 5 the φ-

components of the forces in (7) are plotted at longitude φ = π/2. For f = 1.6

the velocity gradient ∂uφ/∂z follows the local thermal wind Ra q (1/r) ∂T/∂θ,

and the two forces are of the same order of magnitude except in the Ekman

9
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layer at the upper boundary where ∂uφ/∂z is one order of magnitude higher

than that in the interior. (The Ekman layer region could not be shown in the

same plot because of this large difference in magnitude.) For a weaker inho-

mogeneity (f = 0.6) the thermal wind term is markedly smaller; see Fig. 5(b).

The steep gradient ∂T/∂θ produced by the Y 2

2
variation for f = 1.6 is absent

for f = 0.6.

The θ-component of (7) in spherical polar coordinates relates the latitudinal

velocity, uθ to the azimuthal gradient in boundary temperature:

∂uθ

∂z
= −Ra q

sin θ

∂T

∂φ
. (8)

For an equatorially symmetric Y 2

2
variation, a positive ∂T/∂φ should be cor-

related to a negative uθ above the equatorial plane (z > 0). This prediction is

confirmed in plots of ∂T/∂φ and uθ versus longitude φ, shown in Fig. 6(a) for

Case 3 in Table 1. The dotted vertical line in this figure gives the longitude at

which temperature is minimum. The profiles of uθ and ∂T/∂φ are subject to a

small, finite eastward shift from φ = π/2 as seen in Fig. 6(a). This azimuthal

shift shows up in plots of the radial velocity at a horizontal section near the

equator [e.g. Fig. 1(b)]. The correlation between uθ and ∂T/∂φ is strongly ev-

ident for a Y 2

2
variation in temperature (Case 7 in Tables 1 & 2). Here ∂T/∂φ

has a smooth sin 2φ variation at the outer boundary, but its profile is trans-

formed into a spiked structure by the profile of uθ beneath the boundary [Fig.

6(b)].

Table 2 summarizes the relative magnitudes of three forces in the momen-

tum equation. We have a rotationally dominant regime in all calculations as

the nonlinear inertial forces are small in comparison with the Coriolis forces.

This is also confirmed by the small value of the local Rossby number, Ro`

10
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(Christensen & Aubert, 2006; Olson & Christensen, 2006) defined based on a

characteristic lengthscale of the flow. (Here the lengthscale is derived from a

typical spherical harmonic degree, `u obtained as a weighted average from the

kinetic energy spectrum). Inertia does play a role in the momentum equation

as thermal locking results in an approximate balance between the nonlinear

inertial and Lorentz forces:

E

Pm
(∇× u)× u ≈ (∇×B)×B, (9)

which admits the equipartition solution (see Chandrasekhar, 1961, p 157).

The equivalence of the kinetic and magnetic energies in (5) and that of the

lengthscales lu and lB are consistent with (9). Note that the inertial term

increases from 20% to 75% of the Lorentz force term as f is increased from

0.9 to 1.6 for the Y 2

2
variation (compare Cases 2 & 3, Table 2). This result

indicates that the balance in (9) is enforced in the locked dynamo regime.

The global inertia-Lorentz force balance also holds for the locked solutions

subject to Y 8

8
and Y 4

5
variations in temperature at the outer boundary (see

Cases 5 & 6, Table 2). The above force balance is absent in convective dy-

namos with thermally homogeneous boundaries that produce stable, dipolar

magnetic fields – for Cases 8 & 9 the inertial forces are much weaker than the

Lorentz forces. These dynamos operate in an approximate balance between

the magnetic, Archimedean (buoyancy) and Coriolis forces, or the MAC bal-

ance (also see Sreenivasan & Jones, 2006a). The magnetic energy for these

dynamos is typically higher than the kinetic energy, and the lengthscale of the

magnetic field is larger than that of the velocity field. The main differences

between boundary-locked dynamos and convection-driven, dipolar dynamos

are summarized in Table 3.

To test whether strong thermal coupling can be achieved in a regime of large

11
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Ra and q ∼ 1, a basic state temperature profile incorporating basal heating

and uniform intrinsic cooling is considered in Case 7. (The basic state for this

case is given in Section 2.2). Here, thermal convection is weakened as we move

from the inner to the outer boundary, allowing the imposed Y 2

2
temperature

variation to penetrate into the fluid. Locking is not as rigid as in Case 3, but

persistent downwellings similar to those in Figs. 1(b) and 3(c) are recovered.

The velocity and magnetic field structures for this case are given in Fig. 5 of a

recent paper by the author (Sreenivasan & Gubbins, 2008). While the flow is

dominated by the two downwellings, convection rolls tend to migrate towards

φ = ±π/2 and clump together near these longitudes. The formation of roll

clusters indicates that free convection is not negligible in the thermal wind.

The wavenumber of free convection therefore appears in the solution with the

wavenumber of the imposed lateral variation. (Also see the discussion on low

Ekman numbers in Section 4). From Table 2 we note that the solution in

Case 7 departs from equipartition as the ratio of inertial to Lorentz forces is

0.543. Nevertheless, this ratio is much higher than that for a dynamo with

homogeneous boundary heating (Case 8).

Table 2 also gives the relative magnitudes of the inductive and diffusive terms

in the ‘uncurled’ induction equation. We find that (∇ ×B) is systematically

smaller than (u × B) in the locked solution, as found for dynamos with ho-

mogeneous boundaries (Cases 8 & 9).

3.3 The role of boundary thermal anomalies in dynamo action

To focus on the role of the boundary thermal inhomogeneity in dynamo action,

a computational experiment is performed with the equatorially symmetric Y 2

2

boundary heating condition. The calculation begins with the locked state at

12
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f = 1.6 (see Fig. 7). At time td = 1, the magnitude of the lateral inhomogene-

ity is reduced to f = 0.6, following which the magnetic energy, Em falls by

three orders of magnitude over one diffusion time. If left to evolve freely, the

magnetic field would decay to zero in this phase. However, by setting f = 1.3

at td = 2 and keeping all other parameters the same as before, Em increases

rapidly from its low value and stabilizes at a value comparable to that at

td = 0. The eventual structure of the flow is identical to that in Fig. 1(b),

and the locked regime is similar to the one reported in Case 3, Table 1. If the

inhomogeneity factor, f is set to 1.6 at td = 2 [see the dashed curve in Fig.

7(a)], rigid locking is not obtained and Em saturates at a lower value than

at td = 0. Although the precise value of f at which near-locking is realized is

subject to hysteresis, the two locked states obtained in this simulation produce

the same energies and lengthscales. It is evident from Fig. 7 that the thermal

inhomogeneity at the boundary acts like a “switch” for dynamo action. The in-

homogeneity acts on the flow by changing both the axial velocity and vorticity

distributions. A sufficiently large lateral variation drives strong axial fluid mo-

tions: on azimuthal average, the axial kinetic energy at f = 1.6 is concentrated

in regions near the equatorial plane which are shown magnified in Fig. 8(a).

For too small and too large lateral variations (f = 0.6 and f = 2.4) the axial

energy is distinctly weak. The above effects are reflected in the axial kinetic

helicity plotted in Fig. 8(b). While the strong helicity produced for f = 1.6

is consistent with dynamo action for this case, the weak helical motions for

f = 0.6 and f = 2.4 do not support dynamo action. The injection of axial

energy (and helicity) by the lateral variation is also observed in a nonmag-

netic calculation at f = 1.6, which indicates that the dynamo magnetic field

is mainly supported by boundary-induced helicity. The back-reaction of the

magnetic field on the velocity field is small. The effect of the lateral variation

13
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on the sign of vorticity is evident from the behaviour of the axial vorticity

skewness, S =
∫

ω3

zdV/[
∫

ω2

zdV ]3/2, a diagnostic commonly used in rotating

turbulence (Bartello et al., 1994). The value of S in Fig. 7(b) suggests that

anticyclonic (negative) vorticity is dominant for f = 1.6, while cyclones and

anticyclones are of comparable strength for f = 0.6. The source of the pre-

ferred negative vorticity for f = 1.6 is the Ekman layer at the upper boundary

where viscous diffusion of vorticity is fed by the strong axial gradient in ve-

locity. Since anticyclonic z-vorticity is strongly correlated to magnetic field

generation in Fig. 7, the vorticity skewness could be a useful flow diagnostic

for the onset of dynamo action.

3.4 Different patterns of boundary inhomogeneity

In Cases 5 & 6 of Tables 1 & 2, thermal convection is produced solely by basal

heating (see Section 2.2). In Case 5 (Y 8

8
boundary variation) dynamo action

is lost for f < 0.5. The kinetic and magnetic energy spectra have coinciding

peaks at the wavenumber m = 8 and its harmonic multiples [Fig. 4(b)], con-

sistent with the approximate equivalence of lengthscales of u and B reported

in Table 2. In Case 6 the initial state has an equatorially symmetric velocity

field and a weak dipolar magnetic field. The equatorially antisymmetric Y 4

5

boundary condition produces a velocity field that locks the magnetic flux lobes

beneath cold regions at the boundary, which do not lie at the same longitude

in the two hemispheres; see Figs. 9(a) & (b). As the imposed temperature pat-

tern is equatorially antisymmetric, both ∂T/∂θ and ∂uφ/∂z have equatorially

symmetric distributions at φ = π/2 [Fig. 9(c)]. It is also confirmed that the

magnitudes of the forces in the thermal wind balance (7) are comparable in the

interior of the flow. In Fig. 9(d) the magnetic energy increases continuously

14



Page 15 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

over 5 diffusion times and saturates to within 1% of the kinetic energy, whose

variation is small during the calculation. In addition, we note from Table 2

that the lengthscales of u and B are approximately equal. In short, the main

force balances and the equipartition solution hold regardless of the equatorial

symmetry of the applied inhomogeneity.

4 Discussion

In this paper we have looked at the dynamics of boundary-locked dynamos. A

quasi-stationary, locked solution is obtained when the thermal winds driven

by lateral variations at the boundary are in approximate balance with the

Coriolis forces in the fluid. The dimensional force balance in the curl of the

momentum equation is given by

2Ω
∂u

∂z
= −gα∇× (T r), (10)

which has the same form as the classical thermal wind equation for rotating

thermal convection in a Boussinesq fluid (e.g. Sreenivasan & Jones, 2006b),

except that the temperature gradients are prescribed by non-axisymmetric

(e.g. Y 2

2
) lateral variations. This regime may be simulated numerically in a

low-Ra, high-q parameter space where buoyancy-driven convection is weak.

Equation (10) is significant in that it allows fluid motion of any wavenumber to

be produced by a prescribed temperature variation at the boundary. Previous

studies had suggested that locking occurs when the wavenumber of convection

is similar to the wavenumber of the boundary anomalies (Zhang & Gubbins,

1993); and that a small-scale flow could be converted to a large-scale flow by

a self-generated magnetic field to make locking possible (Willis et al., 2007).

Clearly, neither the matching of wavenumbers nor the presence of a magnetic
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field is required for locking produced by the balance in (10).

The secondary force balance in a locked dynamo is between the nonlinear

inertial and Lorentz forces, realized approximately in all locked solutions in

this paper but generally absent in buoyancy-driven dynamos with homoge-

neous boundary heating. The inertia-Lorentz force balance is a consequence

of locking produced via Equation (10). By virtue of this balance, the locked

dynamo operates in a state of equipartition between the velocity and mag-

netic fields. The equivalence of scaled u and B fields has been obtained in

several astrophysical dynamo models; e.g. Dorch & Archontis (2004); Mininni

et al. (2005). These models differ from the present model in two respects:

they are non-rotating; and they incorporate a forcing term in the momentum

equation that corresponds to a prescribed, globally non-helical, initial velocity

field. The analogy between the locked model and the astrophysical models is

apparent if we note that the thermal forcing at the boundary acts to create

a u field which, in turn, brings the B field into equipartition. If Ek ≈ Em

and lu ≈ lB, the ratio of viscous to Ohmic (resistive) dissipation rates may be

shown to be of order WV /WR ∼ ν/η = Pm (see Table 2 for comparison). As

Pm = qPr ∼ 10 in the locked model, Ohmic dissipation is approximately one

order of magnitude smaller than viscous dissipation.

The introduction of lateral variations at the boundary can excite dynamo

action for a givenRa–q combination that does not otherwise produce a dynamo

with homogeneous boundary heating. While this effect was first noted in Willis

et al. (2007), here we have looked at the role of lateral variations in supporting

dynamo action. As shown in Figs. 1 & 8, the variations drive strong radial and

axial motions which, in turn, can inject the helicity required for amplification

of a seed magnetic field.
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A locked dynamo driven by lateral variations at the boundary cannot be ap-

plied directly to the Earth for two reasons: the geomagnetic field is not rigidly

locked to lower-mantle inhomogeneities; and the Earth’s dynamo is thought

to be powered by thermal and compositional buoyancy in its fluid core. Nev-

ertheless, the locked model provides a useful starting point in understanding

core-mantle interaction in Earth-like conditions. How is locking affected by a

high convective Rayleigh number and a low Ekman number? If the buoyancy-

driven temperature gradients are stronger than the boundary-driven gradients,

the velocity field is “decoupled” from the boundary inhomogeneity and free

to drift azimuthally. In other words, the thermal wind term in Equation (10)

must contain a dominant non-axisymmetric, boundary-driven component to

lock the velocity field. This would explain why a weakly convective parameter

regime is crucial for obtaining a boundary-locked dynamo.

For Ekman numbers lower than the ones used in this study, locking becomes

progressively difficult. Since the critical Rayleigh number for onset of non-

magnetic convection increases with decreasing Ekman number (Rac ∼ E−1/3),

even a marginally supercritical convective state would generate strong thermal

winds that compete with the boundary-driven thermal winds in balancing the

Coriolis forces. A preliminary exploration into low Ekman numbers suggests

that the flow structure is different from that at higher Ekman numbers: for

a sufficiently large Y 2

2
variation in temperature, the flow at E = 10−5 is or-

ganized in clusters of small-scale rolls near φ = ±π/2, rather than isolated

downwellings. For the higher Ekman numbers investigated in this paper, fluid

motion is organized into two isolated downwellings as shown in Fig. 1(b). The

above difference between high and low-Ekman number flows can be under-

stood as follows. As the contribution of free convection to the thermal wind

can be kept small in high-E simulations, the convective wavenumber is to-
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tally suppressed by the boundary wavenumber in the locked solution. On the

other hand, as free convection becomes significant in the thermal wind in

low-E simulations, the convective wavenumber will show up in the solution

in addition to the boundary wavenumber. In short, numerical models with

relatively large Ekman numbers are needed to demonstrate the validity of the

boundary-driven force balance in (10). A systematic study of low-Ekman num-

ber dynamos controlled by lateral variations should be possible when faster

computers are available.

The calculation in Case 7 produces a partially locked solution even when free

convection is not small. This is achieved by suppressing convection in the outer

regions through a volumetric heat sink so that boundary-driven thermal winds

are allowed to balance the Coriolis forces. [The thermodynamic implications of

a heat sink in a model of Boussinesq convection are discussed in Sreenivasan &

Gubbins (2008).] The above regime could be relevant to the Earth’s dynamo

because the departure from equipartition does allow the magnetic energy, Em

to be greater than the kinetic energy, Ek. A comparison of the dynamo in

Case 7 with a purely convective, dipolar dynamo suggests that mantle coupling

could increase the magnitude of inertial forces in the fluid core. Note, however,

that the inertial forces must be much smaller than the Coriolis forces for the

Rossby number in the core to be ∼ 10−6.

Finally, while the results in this paper are valid for individual equatorially

symmetric and antisymmetric boundary heating modes, the effect of complex

combinations of these modes on the dynamo needs to be investigated. Such

a study would give an insight into the effects of the tomographic boundary

condition (Masters et al., 1996) constructed based on the Earth’s lower-mantle

shear wave velocity variation.
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Case Y m
l f Ra/Rac Pr q E `max Nr Rm (<u>rms) Dynamo?

1 Y 2
2

0.6 1.5 1 10 1× 10−4 37 60 128.2 No

2 Y 2
2

0.9 1.5 1 10 1× 10−4 37 60 177.2 Yes

3 Y 2
2

1.6 1.5 1 10 1× 10−4 37 60 212.8 Yes

4 Y 2
2

2.4 1.5 1 10 1× 10−4 37 60 240.0 No

5 Y 8

8
0.5 2.3 1 8 5× 10−5 64 60 128.4 Yes

6 Y 4

5
1.0 1.5 1 16 5× 10−5 64 60 180.6 Yes

7 Y 2

2
2.5 15 5 1 5× 10−5 64 60 213.0 Yes

8 – – 8 10 1 5× 10−5 84 96 128.3 Yes

9 – – 5 1 1 5× 10−6 128 128 122.0 Yes

Table 1

Summary of the calculations studied in this paper. Here f is the inhomogeneity

ratio, `max is the highest spherical harmonic degree and Nr is the number of radial

grid points used in the computation. Where dynamo action is absent, the volume-

averaged root mean square value of the velocity is given in place of the magnetic

Reynolds number, Rm. The boundary inhomogeneity is in heat flux for Cases 1–

4 and in temperature for Cases 5–7. Convection is produced by internal heating

in Cases 1–4, by basal heating in 5 & 6 and by a combination of basal heating

and internal cooling in 7. Runs 8 & 9 are dynamos with pure basal heating and a

homogeneous (constant temperature) outer boundary condition.
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Case Em/Ek WV /WR lB/lu
Inertia
Coriolis Ro`

Inertia
Lorentz

<∇×B>rms

<u×B>rms

2 3.675 2.89 1.01 (1.031) 0.049 4.45 × 10−3 0.21 0.177

3 1.351 7.45 0.85 (1.003) 0.07 5.96 × 10−3 0.746 0.145

5 0.908 14.6 1.46 (1.287) 0.018 3.19 × 10−3 1.307 0.235

6 0.99 24.67 1.24 (1.235) 0.011 1.82 × 10−3 0.785 0.145

7 3.56 1.98 1.56 (1.327) 0.117 10.4 × 10−3 0.543 0.143

8 25.36 0.885 2.14 (1.51) 0.02 3.26 × 10−3 0.06 0.191

9 6.79 0.60 2.84 (2.016) 0.02 4.82 × 10−3 0.02 0.251

Table 2

A summary of the diagnostics investigated for the dynamos in Table 1. Here Ek

and Em are the global kinetic and magnetic energy densities given by (5), WV is

the viscous dissipation given by Pm
∫

(∇ × u)2dV , WR is the Ohmic (resistive)

dissipation given by (Pm/E)
∫

(∇ × B)2dV , lu and lB are the lengthscales of the

velocity and magnetic fields and Ro` is the local Rossby number. The inertial forces

are given by (E/Pm) <(∇×u)×u>, Coriolis forces by < ẑ×u> and the Lorentz

forces by <(∇×B)×B>, where the angled brackets represent rms values.
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Property Boundary-locked Convection-driven

(i) Time dependence Quasi-steady ( ∂
∂t ≈ 0) In general, time-varying

(ii) Primary force balance Boundary-driven ther-

mal wind balance

MAC balance (e.g.

Sreenivasan & Jones,

2006a)

(iii) Ratio of nonlinear iner-

tia to Coriolis forces

<< 1 << 1

(iv) Ratio of nonlinear iner-

tia to Lorentz forces

≈ 1 << 1

(v) Energies Em ≈ Ek Em > Ek

(vi) Lengthscales lB ≈ lu lB > lu

Table 3

A comparative study of (a) locked dynamos controlled by inhomogeneous bound-

ary heating and (b) convection-driven dynamos producing stable, dipolar magnetic

fields.
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(a) (c)(b)

φ = 0π
−π

π/2

−π/2

Fig. 1. Equatorial section plots of the radial fluid velocity, ur for a Y 2
2

heat flux inho-

mogeneity at the boundary. The three cases studied are (a) f = 0.6, (b) f = 1.6 and

(c) f = 2.4. The model parameters are kept fixed for all three cases (Ra = 1.5Rac,

E = 10−4, Pr = 1 and q = 10.) The dimensionless maximum and minimum values

for the three cases are [−284.8, 200], [−654.6, 281.6] and [−215.06, 103.2]. Positive

values of ur are shown in red and negative values are in blue. Dynamo action is

obtained only in (b).
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0 0.05 0.1 0.15 0.2 0.25
0
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(i)

(iii)

(iv)

(ii)

td

Ek, Em

Fig. 2. Kinetic and magnetic energies, Ek and Em, shown in blue and red curves

respectively, over one-fourth of a magnetic diffusion time. Curves (i) and (ii) are for

f = 0.9 and curves (iii) and (iv) for f = 1.6. The model parameters are Ra = 1.5Rac,

E = 10−4, Pr = 1 and q = 10 (Cases 2 & 3 in Table 1).
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−5000

0

5000

0 0.2 0.4 0.6 0.8 1
−5

0

5

10
x 10

−4

(a) (b)

(c) (d)

H

H

td

f = 0.9

f = 1.6

Fig. 3. (a)-(c) are spherical surface plots with longitude φ in the range [−π, π] from

left to right on the horizontal axis and colatitude θ in the range [0, π] from top to

bottom on the vertical axis. (a) ur(r = 0.8ro) with surface flow arrows superposed;

(b) Br(r = ro); (c) uφ(r = 0.8ro), all for a Y 2

2
heat flux variation at f = 1.6. Positive

values are shown in red and negative values in blue. (d) Global kinetic helicity for

f = 0.9 and f = 1.6. The model parameters are Ra = 1.5Rac, E = 10−4, Pr = 1

and q = 10.
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m
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m

Fig. 4. Spectra of the kinetic and magnetic energies, shown in blue and red curves

respectively, as a function of the azimuthal wavenumber, m. (a) Y 2

2
heat flux in-

homogeneity (Case 3, Table 1). (b) Y 8

8
temperature inhomogeneity (Case 5, Table

1).
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(b)

Fig. 5. Meridional plots at azimuthal angle φ = π/2 of Ra q (1/r)∂T/∂θ (left panel)

and ∂uφ/∂z (right panel). Two cases are presented for the Y 2
2

heat flux variation:

(a) f = 1.6 with peak values of the two forces being [±478.1,±542.8]; (b) f = 0.6

with peak values [±55.5,±218.9]. The fixed model parameters are Ra = 1.5Rac,

E = 10−4, Pr = 1 and q = 10. Positive values are shown in red and negative values

in blue.
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Fig. 6. (a) Dynamo with an imposed Y 2
2

variation in heat flux (Case 3, Table 1)

is considered. Latitudinal velocity, uθ at a horizontal section z = 0.15 above the

equator and on the spherical surface r = 0.9ro (black line) and ∂T/∂φ at r = ro

(red line) are shown in the range 0 < φ < π. (b) Dynamo with an imposed Y 2
2

variation in temperature (Case 7). Profiles of ∂T/∂φ are shown at r = ro (dashed

line) and r = 0.9ro (solid line). The dotted vertical lines in the two plots correspond

to the longitude where T is minimum at the outer boundary.
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td td

SEm

Fig. 7. (a) Variation of the magnetic energy, Em with magnetic diffusion time. At

td = 1, the inhomogeneity factor, f is switched from its initial value of 1.6 to 0.6.

At td = 2, f is set to 1.3 (solid curve) and 1.6 (dotted curve) in two separate

runs. (b) The corresponding variation of the axial vorticity skewness, S. The model

parameters are kept fixed at Ra = 1.5Rac, E = 10−4, Pr = 1 and q = 10.
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f = 0.6 f = 1.6 f = 2.4

Fig. 8. (a) Meridional contour plots of the axial kinetic energy density, 1

2
<u2

z >,

where the angled brackets indicate averages over both azimuthal angle, φ and time.

The region near the inner boundary on either side of the equatorial plane is shown

in focus for clarity. The cases presented (from left to right) are f = 0.6, f = 1.6

and f = 2.4 for the Y 2

2
heat flux inhomogeneity. The maximum values of energy for

the three cases are 1.3, 19.5 and 2.75 respectively. (b) Contour plots of the axial

helicity, < uzωz >. The helicity values in either hemisphere are ±23.9 (f = 0.6);

±218.3 (f = 1.6); ±64.8 (f = 2.4). Positive values are shown in red and negative

values are in blue. The model parameters are kept fixed at Ra = 1.5Rac, E = 10−4,

Pr = 1 and q = 10.
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Fig. 9. (a) Spherical surface plot at r = ro of the applied Y 4
5

temperature variation

(Case 6, Tables 1 & 2). The longitude φ is in the range [−π, π] from left to right on

the horizontal axis and colatitude θ is in the range [0, π] from top to bottom on the

vertical axis. Solid lines show positive values and dashed lines show negative values.

(b) The locked radial magnetic field distribution at the outer radius. (c) Meridional

plots at φ = π/2 of Ra q (1/r)∂T/∂θ (left panel) with minimum and maximum

values [−884.4, 471.1]; ∂uφ/∂z (right panel) with minimum and maximum values

[−701.1, 473.0]. Positive values are shown in red and negative values in blue. (d)

Evolution of the kinetic energy (solid line) and magnetic energy (dashed line) with

magnetic diffusion time.
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