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Abstract

An HMM-based speech synthesis framework is applied to both Standard Austrian German and a Viennese dialectal
variety and several training strategies for multi-dialect modeling such as dialect clustering and dialect-adaptive training
are investigated. For bridging the gap between processing on the level of HMMs and on the linguistic level, we add
phonological transformations to the HMM interpolation and apply them to dialect interpolation. The crucial steps are
to employ several formalized phonological rules between Austrian German and Viennese dialect as constraints for the
HMM interpolation. We verify the effectiveness of this strategy in a number of perceptual evaluations. Since the HMM
space used is not articulatory but acoustic space, there are some variations in evaluation results between the phonological
rules. However, in general we obtained good evaluation results which show that listeners can perceive both continuous
and categorical changes of dialect varieties by using phonological transformations employed as switching rules in the

HMM interpolation.

Key words:

speech synthesis, hidden Markov.model, dialect, sociolect, Austrian German

1. Introduction

Statistical parametric speech synthesis based on hidden
Markov models (HMMSs) (Yoshimura et al., 1999) has be-
come established and well-studied, and has an ability to
generate natural-sounding synthetic speech (Black et al.,
2007; Zen et al., 2009)« In'recent years, the HMM-based
speech synthesis systems have reached performance lev-
els comparable to state-of-the-art unit selection systems
(Fraser and King, 2007; Karaiskos et al., 2008). In this
method, acoustic features such as the spectrum, excitation
parameters, and segment duration are modeled and gener-
ated simultaneously within a unified HMM framework. A
significant advantage of this model-based parametric ap-
proach 'is that speech synthesis is far more flexible com-
pared to conventional unit-selection methods, since many
model] adaptation and model interpolation methods can be
used to control the model parameters and thus the charac-
teristics of the generated speech (Yoshimura et al., 2000;
Yamagishi et al., 2009a). In fact, these methods have al-
ready been applied to generating transitions between dif-
ferent speakers (Yoshimura et al., 2000), different types of
emotional speech, and different speaking styles (Tachibana
et al., 2005).
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These techniques are also useful for achieving wvary-
ing multi-dialect voices in text-to-speech (TTS) synthe-
sis. They may be used for personalizing speech synthesis
systems and have several potential benefits. For example,
if the TTS system is used to provide an alternative voice
output for patients who have progressive dysarthria (Creer
et al., 2009), some patients will desire a TTS system that
has the same dialect as themselves.

However, it is not always feasible to prepare pronuncia-
tion dictionaries separately for every possible language va-
riety in advance, since writing dictionaries is an extremely
time-consuming and costly process. Often one variety is
taken as a standard, and the linguistic resources such as
pronunciation dictionaries are only available for this stan-
dard variety. Thus, to flexibly model as many varieties as
possible, some acoustic and linguistic control based on this
standard or typical dialect is required.

Although one might regard dialect control! as conceptu-
ally equivalent to the emotional control mentioned above,
there is a significant difference in the requirements for the

IIn this paper we use the notion of ‘dialect’ in a broad sense as
referring to non-standard language varieties. In the case at hand, it
would be more accurate to speak of Viennese sociolect, since language
varieties in Vienna are discerned by social criteria and not (or no
longer) identified by association to a certain geographical region. We
use the term ‘dialect control’ as shorthand for ‘control of dialectal or
sociolectal language variety’.
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control of dialectal varieties. The speaker or emotional in-
terpolation mentioned above implicitly assumes that the
target models use the same pronunciation dictionary, and
therefore phone strings, within the same language and lin-
ear interpolation is applied just to the relevant models,
which results in acoustic transitions within the same phone
or sub-word unit. For dialect control, we need to addition-
ally consider linguistically-motivated transitions. In other
words, we need to include not only the HMMs but also
the pronunciation dictionary as targets of the interpola-
tion process. That is, the HMMs to be interpolated may
represent different phone sequences derived from different
dictionaries. Moreover, these sequences may also consist
of a different number of phones.

A major premise for dialect control is that dialects,
as varieties of languages, form a “continuum” (Saussure,
1983): the varieties are related to one another in terms of
being linguistically close, which makes it possible for us to
hypothesize the existence of varieties on that continuum
of fine-grained subtleties that lie between two different va-
rieties already defined by linguistic resources. In addition
to geographical transition of the dialect varieties, that is,
regiolects, we may apply the same logic to other varieties
of languages such as sociolects, which are categories of lin-
guistic varieties defined by the social level of speakers.

The proposed dialect interpolation aims to produce syn-
thetic speech in a phonetically intermediate variety from
given models and dictionaries for adjacent typical varieties.
For the phonetic control, we simply use linear interpola-
tion of HMMs that represent the acoustic features simi-
lar to speaker or emotional interpolation. Since relations
between articulatory and acoustic features are non-linear
(Stevens, 1997), the phonetic control that can be achieved
using acoustic features alone is noisy and might sometimes
exhibit unexpected behavior: However it is worthwhile to
investigate the basic performance of acoustic interpolation
because proper acquisition of articulatory features requires
specialized recording equipment such as electromagnetic
articulography (EMA) (Schonle et al., 1987) and also be-
cause phonetic knowledge such as vowel height or backness
and place or manner of articulation can be used in clus-
tering the acoustic HMMs via manually-defined linguistic
questions:

A closer inspection of potential phonetic transitions be-
tween language varieties reveals several exceptional cases.
From phonetic studies of Viennese dialects (Moosmiiller,
1987) we know that some gradual transitions are well mo-
tivated (e.g., spirantization of intervocalic lenis plosives),
while some other transitions between phones are strong
markers for that specific variety, and thereby categorical.
In the latter case, either the standard form of a given phone
is produced, or its dialectal counterpart, with no possible
in-between variants. One example of such a transition is
the phone [a:] in the Standard Austrian German variety
which is realized as [3:] in the Viennese dialect (mentioned
in detail later in Table 5). For such a case, the use of
interpolation (e.g., model interpolation between [a:] and

[o] phone HMMs) is not appropriate. For this reason,
we introduce several knowledge-based switching rules that
allow for overriding acoustic interpolation in such cases.
Since it is known from psycholinguistics that continuous
transitions between phones are often only perceived cate-
gorically (Liberman, 1970), the knowledge-based switching
rules should improve the perception of dialects compared
to acoustic interpolation alone. Hence, we include interpo-
lations with and without switching rules in the subjective
evaluation to measure the effect of the proposed dialect
interpolation and switching rules.

In addition we investigate efficient clustering strategies
for the dialect varieties in‘HMM-based speech synthesis.
In general there are insufficient speech resources for non-
standard dialect varieties. This situation might be even
more severe for minorlanguages. Thus we compare several
clustering algorithms for a practical case where the amount
of speech data for dialects is limited, but there is sufficient
speech data for the standard. We also include speech data
from speakers that are able to speak standard and dialect.

This paper is organized as follows. Section 2 gives an
overview of modeling strategies of HMM-based speech syn-
thesizers for dialect varieties and an associated evaluation.
In Section 3 we show how to generate speech that forms
a continuous transition between one variety and another.
The two varieties we are considering in this paper are Stan-
dard Austrian German and Viennese dialect. Apart from
continuous interpolation of HMMs, we also define specific
switching rules. We then present the results of a series
of listening tests. Section 4 summarizes our findings and
discusses remaining issues.

2. Acoustic modeling of dialect varieties in HMM-
based speech synthesis

2.1. Overview of HMM-based TTS system

All TTS systems described here are built using the
framework from the “HTS-2007/2008” system (Yamagishi
et al., 2009b, 2008), which was a speaker-adaptive sys-
tem entered for the Blizzard Challenges in 2007 and 2008
(Karaiskos et al., 2008). The HMM-based speech synthe-
sis system, outlined in Fig.1, comprises four main com-
ponents: speech analysis, average voice training, speaker
adaptation, and speech generation.

In the speech analysis part, three kinds of parameters
for the STRAIGHT (Speech Transformation and Repre-
sentation by Adaptive Interpolation of weiGHTed spec-
trogram) (Kawahara et al., 1999) mel-cepstral vocoder
(Tokuda et al., 1991; Fukada et al., 1992) with mixed ex-
citation (Yoshimura et al., 2001; Kawahara et al., 2001)
(i.e. a set including the mel-cepstrum, log Fy, and band
aperiodicity measures) are extracted as feature vectors
for the HMMs. These features are described in (Zen
et al., 2007a). In the average voice training part, context-
dependent multi-stream left-to-right multi-space distribu-
tion (MSD) hidden semi-Markov models (HSMMs) (Zen



Table 1: Phone sets used in the experiments, represented with IPA symbols. The coding for ‘Austrian German’ is in accordance with the
phonetic analysis presented in (Muhr, 2007), the coding for ‘Viennese dialect’ reflects our own analysis. Phones in brackets indicate that

these are not really members of the native set.

Category Austrian German Viennese dialect

vowel aa:r (o) ere(ex)irioro aargoreergeriin:
wuylye: g ooruul vyy @ ce e

di- /monophthong/nasal ae ao oe (&) (@) (31) eer DI 1 OI OI Ur & D O it &r G

r-vocalized

ce ere ire ie o Qe
ue ue yre ye gre ge

Jr QI er eme i i
oe ore ue e (yre) ore

schwa ow oe
plosive bdgptk bdgpBoyptk
fricative fvssfz¢xh fvssif¢xh
liquid /nasal/glide rRlmnyj Rllmmnnyuyj
silence/pause/glottis ‘sil’ ‘pau’ ? ‘sil’ “pau’ ?
ceeding words;
MULTLSPEAKER | _Spesch signl | e the number of syllables in the preceding, current, and
DATABASE Excitation Spectral succeeding accentual phrases;
paramerer paramerer o the type of accent in the preceding, current, and suc-
Excitation—— ) Spectral ceeding accentual phrases;
parameters parameters oL .
Training of MSD-HSMM e the position of the current syllable in the current ac-
centual phrase;
— Training part e the number of accented syllables before and after the
,,,,,,,,,,,,,,,,,,,,,, — - o TTENT .
A A A Adaptation part current syllable in the current phrase;
A A A_JContext-dependent e the number of syllables in the preceding, current, and

Spectral &

multi-stream MSD-HSMMs

excitation
TARGET-SPEAKER | Parameters

SPEECH-
DATABASE
OO~ Adaptation part
TEXT A /\'—OZ\O—O—‘ Synthesis part
AN AL AN Context-dependent

multi-stream MSD-HSMMs

Text analysis

Labels | Parameter generation

from MSD-HSMM

Excitation Spectral
parameters parameters

Excitation Synthesis SYNTHESIZED
generation filter SPEECH

Figure 1: Overview of the HT'S-2007 speech synthesis system, which
consists of four main components: speech analysis and feature ex-
traction, average voice training on multi-speaker speech database,
speaker adaptation to a target speaker, and speech generation from
the adapted models (Yamagishi et al., 2009b, 2008).

et al., 2007b) are trained on multi-speaker databases in
order to simultaneously model the acoustic features and
duration. The phonetic and linguistic contexts we employ
contain phonetic, segment-level, syllable-level, word-level,
and utterance-level features as follows:

e preceding, current, and succeeding phones;

e acoustic and articulatory classes of preceding, current,
and succeeding phones;

e the part of speech of the preceding, current, and suc-

succeeding breath groups;

e the position of the current accentual phrase in the
current breath group;

e the number of words and syllables in the sentence;

e the position of the breath group in the sentence;

e the specific language variety in the case of clustering
of dialects (i.e. Viennese dialect or Standard Austrian
German).

Phonesets used for Standard Austrian German and Vi-
ennese dialect are shown in Table 1. Austrian German
and Viennese dialect have 58 and 75 phones, respectively.
A set of model parameters (mean vectors and covariance
matrices of Gaussian probability density functions (pdfs))
for the speaker-independent MSD-HSMMs is estimated us-
ing the feature-space speaker-adaptive training (SAT) al-
gorithm (Anastasakos et al., 1996; Gales, 1998). In the
speaker adaptation part, the speaker-independent MSD-
HSMMs are transformed by using constrained structural
maximum a posteriori linear regression (Yamagishi et al.,
2009a).

In the speech generation part, acoustic feature pa-
rameters are generated from the adapted MSD-HSMMs
using a parameter generation algorithm that considers
both the global variance of a trajectory to be generated
and trajectory likelihood (Toda and Tokuda, 2007). Fi-
nally, an excitation signal is generated using mixed ex-
citation (pulse plus band-filtered noise components) and
pitch-synchronous overlap and add (PSOLA) (Moulines



Table 2: Data sources used for training and adaptation of standard Austrian German (AT) and Viennese dialect (VD) HMM-based speech

synthesis systems.

Number of utterances

Speaker Gender Age Profession AT utterances VD utterances
HPO M ~ 60 actor 219 513
SPO M ~ 40 radio narrator 4440 95
FFE M ~ 40 engineer 295 -
BJE M ~ 50 actor 87 95
FWA M ~ 60 language teacher 87 95
CMI M ~ 35 singer - 95

Table 3: Definitions of modeling approaches used. SD and SI refer speaker-dependent and speaker-independent modeling. DD, DI, DC, DN,
and DM refer to dialect-dependent, dialect-independent, dialect clustering, dialect-adaptive training, and DC plus DN, respectively. X means

negative and / means positive for each factor.

Data Dependency

Dialect

Name Target # utt. Speaker Dialect . Clustering Normalization
SD-DD (AT) AT 219 Vv Vv X X
SD-DD (VD) VD 513 vV v X X
SD-DI AT/VD 732 vV X X x
SD-DC AT/VD 732 Vv X Vv X
SD-DN AT/VD 732/ x x v
SD-DM AT/VD 732 v X v v
SI-DD (AT) AT 5128 X Vv X X
SI-DD (VD) VD 892 X vV X x
SI-DI AT/VD 6020 X X X X
SI-DN AT/VD 6020 X X X vV

and Charpentier, 1990). This signal is used to excite
a mel-logarithmic spectrum approximation (MLSA) filter
(Fukada et al., 1992) corresponding to the STRAIGHT
mel-cepstral coeflicients and thus to generate the speech
waveform.

2.2. Speech database for Austrian German and Viennese
dialect

For training and adaptation of Austrian German and
Viennese dialect voices, a set of speech data comprising
utterances from 6 speakers was used. Table 2 shows de-
tails of the speakers and number of utterances recorded for
each. Here AT stands for Standard Austrian German and
VD for Viennese dialect. There are many differences be-
tween Standard Austrian German and Viennese dialect on
many linguistic levels, which we have described previously
in (Neubarth et al., 2008). All speakers are male speakers,
of which five are native speakers of the Viennese dialect.
As we can see from this table, the data sets widely vary
in terms of the number of utterances, and whether they
contain speech data from standard, dialect, or both. This
is simply because these speech data sources were recorded
for different purposes: some were recorded for unit se-
lection synthesis test voices (BJE, CMI, FWA), one data

set was recorded for a small unit selection voice (FFE),
one was recorded for a large unit selection voice (SPO),
and one was recorded for the adaptation and interpola-
tion experiments described here (HPO). Ideally we should
use a well-balanced larger speech database having equal
amounts of data from Standard Austrian German and Vi-
ennese dialect in terms of quantity and linguistic contexts
mentioned in the previous section. However since such a
well-balanced database is not available yet and there are
always fewer resources for non-standard varieties, we ex-
plore the best modeling for both AT and VD from the
available unbalanced database.

Our first goal was to evaluate which modeling approach
works best to train Austrian German and Viennese voices
for the speaker HPO since this speaker’s data is phoneti-
cally balanced for both AT and VD and this enables the
evaluation of several modeling strategies.

2.8. Modeling approaches

Table 3 defines the modeling approaches we used.
SD and SI refer to speaker-dependent and speaker-
independent modeling. Likewise we can consider dialect-
dependent and dialect-independent modeling. For dialect-
independent modeling, there are two possible approaches.



The first is to add dialect information as a context for
sub-word units and perform decision-tree-based clustering
of dialects in the training of the HMMs. The second is
to divide a set of speech data in both varieties uttered
by one speaker into two subsets of speech data in differ-
ent varieties uttered by two different pseudo speakers. In
similar way to SAT estimation (Anastasakos et al., 1996;
Gales, 1998) where acoustic differences between speakers
are normalized for better average voice model training, we
can normalize acoustical differences between varieties and
can train a more canonical dialect-independent model. We
call this training procedure “dialect-adaptive training”.
DD, DI, DC and DN refer to dialect-dependent, dialect-
independent, dialect clustering and dialect-adaptive train-
ing, respectively. DM refers to “DC plus DN”. In the
table, the first column gives a short name for each mod-
eling method, the second column gives the target dialect
of the adaptation, the third column gives the number of
utterances available, the fourth and fifth columns show
the dependency on speaker or dialect, in which x means
negative and / means positive for each factor, and the
sixth and seventh columns show training with or without
clustering of dialects and dialect-adaptive training.

In the clustering of dialects, a new question that dis-
tinguishes Viennese from Austrian German data is added
to a set of questions for the decision-tree-based clus-
tering (Young et al., 1994) and minimum description
length (MDL) based automatic node-splitting (Shinoda
and Watanabe, 2000) is performed. Dialect is treated
as a clustering context together with other phonetic and
linguistic contexts and it is included in"the single result-
ing acoustic model. Note that a decision tree was con-
structed independently for each combination of state index
and acoustic parameter (mel-cepstrum, log F, band ape-
riodicity) and duration. The'same idea has been reported
for multi-accented English average voice models (Yamag-
ishi et al., 2008). In the clustering we observe that the
question concerning the variety is used near the root of
the decision trees. Figure 2 shows part of the constructed
decision tree for the mel-cepstral parameters of the third
state and the corresponding duration parameter clustering
tree. “C-Vowel” means “Is the center phoneme a vowel?”,
“C-Fricative” means “Is the center phoneme a fricative?”,
“Is-Viennese-Dialect” means “Is the current utterance in
Viennese dialect?”, and so on. From this example, we
can see that separate Gaussian pdfs for vowel and frica-
tive models for the Viennese dialect are produced from
those for Austrian German. We can also see that separate
Gaussian pdfs are generated for Viennese vowel duration.

We applied model adaptation with AT and VD data
to all models except the first two. The adaptation rep-
resents dialect adaptation in the SD-DI, SD-DC, SD-DN,
and SD-DM systems. It represents speaker adaptation in
the SI-DD (AT or VD) systems. It represents simulta-
neous adaptation of speaker and dialect in the SI-DI and
SI-DN systems. Therefore we have 16 voices in total (8
Austrian German and 8 Viennese voices), where 14 are

Figure 2: Dialect clustering results. The left figure shows a part of
a decision tree built for mel-cepstral coefficients and the right figure
shows a part of a decision tree built for state duration. Both are for
SD-DM systems.

adapted voices and 2 are speaker- and dialect-dependent
voices.

2.4. Experimental conditions

Speech signals were sampled at a rate of 16 kHz and
windowed by an Fy-adaptive Gaussian window with a
5 ms shift. The feature vectors per frame consisted of
138-dimension vectors: 39-dimension STRAIGHT mel-
cepstral coefficients (plus the zeroth coefficient), log Fy,
5 band-filtered aperiodicity measures, and their dynamic
and acceleration coefficients. We used 5-state left-to-
right context-dependent multi-stream MSD-HSMMs with-
out skip transitions. Each state had a single Gaussian
pdf with a diagonal covariance matrix in each stream for
continuous features (mel-cepstra and band-limited ape-
riodicity) and MSDs consisting of scalar Gaussian pdfs
and discrete distributions in each stream for log FO (Zen
et al., 2007b) as emission probabilities, and also a Gaus-
sian pdf as a duration probability. For speaker adaptation,
the transformation matrices were triblock diagonal corre-
sponding to the static, dynamic, and acceleration coeffi-
cients.

2.5. Evaluation

In order to choose the best voice for each variety that
is used in the interpolation experiments in Section 3.2, a
listening evaluation was conducted with 40 subjects. The
listening evaluation consisted of two parts: in the first part
listeners were asked to judge the overall quality of syn-
thetic speech utterances generated from several models us-
ing the different training strategies from Table 3. The eval-
uation method used a 5-point scale, where 5 means “very
good” and 1 means “very bad”. In the second part, after
hearing a pair (in random order) of synthetic speech sam-
ples generated from the models, the listeners were asked
which synthetic speech sample they preferred. The same
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Figure 3: Box-plots for 5-point scale evaluation for the overall quality
for the AT (a) and VD (b) varieties. 5 means “very good” and 1
means “very bad”.

synthetic speech utterances were used for both the evalu-
ation tests. A Mann-Whitney-Wilcoxon test ‘was used to
identify significant differences.

Figure 3 shows the results of the first‘part of the evalu-
ation. For AT, there are three voicesthat are significantly
better than other voices (p < 0.05); namely SI-DN, SI-DD
(AT), and SD-DD (AT). For VD, the evaluation results for
overall quality are less clear than those for the AT voices.
Here we have only a clear loser with SI-DD, which is sig-
nificantly worse than most-other voices (p < 0.05) because
of the low performance of the average voice model that
was trained on a limited amount of VD speech data only.
These results are simply due to the amounts of data used
for training the HMMSs, rather than linguistic issues. In
general, training of average voice models requires O(103)
utterances. (Yamagishi et al., 2009a) but SI-DD (VD) has
only about 900 utterances.

Figure 4 shows the evaluation results for the pairwise
comparisons of AT and VD voices. For the AT voices,
the SI-DN voice is significantly better than all others ex-
cept SD-DD (AT) (p < 0.05). However the speaker- and
dialect-dependent SD-DD (AT') voice is significantly bet-
ter than only two other voices; thus, the SI-DN voice may
be considered the best. This is an interesting result: al-
though we have enough AT speech data (particularly com-
pared to VD speech data), the simultaneous use of both
AT and VD speech data leads to better performance. This
good performance of the adapted models is consistent with
previous results (Yamagishi et al., 2009b). Furthermore we
can see that the best training strategy is to divide utter-

SI-DN - - -
SD-DD (AT) [ 1T 4
SD-DI ~4 o b [ 1-+4
SD-DN bee--L [+
SI-DD (AT) et L o
SD-DC - T
SD-DM Fo-- [ F----- 1
SI-DI LR []--------- 4
T T I
-5 0 5
(a) Austrian German voices
SD-DD (VD) F-- - L 1731---- 4
SD-DI . [ C 1T 1---+
SDDM b ] ]
SOON o e T 4
siol o C 1 1
e I SPCES o I EEEEEESEEEEEEREEEES 4
S B B BN B bt |
SDD (VD) A k- [ ]---+
T T T T T
-4 -2 0 2 4

(b) Viennese dialect voices

Figure 4: Box-plots of pairwise comparison score for the AT (a) and
VD (b) varieties. The data for one voice ¢ comprise seven scores
85 = w;j — l;j, where j # i and w;; and I;; are the numbers of
comparisons won and lost, respectively, of voice ¢ against voice j.

ances by a single speaker into standard (AT) and dialect
(VD) utterances and treat them as two speakers in the
SAT process, which is done in the SI-DN voice.

For VD there are two methods, namely SD-DD (VD)
and SD-DI, that are significantly better than three other
methods (p < 0.05). Since the speaker HPO has a rela-
tively large amount of VD speech data but the amount of
VD speech data from other speakers is very small, speaker-
independent models do not perform well for VD.

From these results we chose SI-DN and SD-DD (VD)
systems for the AT and VD voices, respectively. The
mixed variety modeling approach is unfortunately not very
successful, although we did observe some intuitively rea-
sonable classes emerging from the clustering, such as a
separate vowel cluster for the Viennese dialect. We be-
lieve that these problems are due to the limited amount
of training data. We plan to repeat the experiments for
the mixed dialect modeling when we have more balanced
speech data available.

3. Dialect interpolation for HMM-based speech
synthesis

In this section we add new phonological aspects to
the model interpolation techniques for HMM-based speech
synthesis, then apply this to dialect interpolation based
on the concept of a dialect continuum. Specifically, we
consider phonological rules which transform the standard
variety to another variety. The rules between varieties



Table 4: Minor shifts between Austrian standard and Viennese dialect.

Phonological process | AT orthographic gloss AT IPA VD IPA
tense vowels Bett, offen bed, open bet, ofon bet, ofm
monophthongs Deutsch German doet/ deert
spirantization Leber, sorgen lwer, worry le:be, soegon le:fe, sueyy .

Table 5: Phonologically-manifested differences of the Viennese dialect.

Phonological process | AT orthographic gloss AT TPA VD IPA
input shift Schlag, lieb cream, mice [lak, lizp Jlo:k, lrep
l-vocalization-1 viele, Keller many, basement fizla, kele fy:lo, keele

Table 6: Differences affecting the segmental structure.

Phonological process | AT orthographic gloss AT TPA VD IPA
l-vocalization-2 Holz, Milch wood, milk holts, milg hoits, my:¢
. Hainde, liege hands, lie hendo, lizgo hent, litk
schwa-deletion K i T ) ’
Gewicht weight govict gvigt
Table 7: Applying processes selectively for the German word “Gefahr” (‘danger’)
AT TPA Process VD IPA
from AT to VD schwa deletion: [kfa:]
[gofa] [kfre]
from VD to AT input shift /a:/ [gofore]

determine which target phones are to be interpolated and
the interpolation modes. In-between variants are thus gen-
erated using HMM interpolation under phonological con-
straints.

Differences between several typical English dialects are
well-researched and well-formalized (e.g., (Fitt and Isard,
1999)). Certain differences between the standard variety
of Austrian German and the Viennese dialect can also be
formalized in phonological terms. Note that we are not
concerned about differences on higher linguistic levels such
as morphology — these have to be dealt with by generating
different inputs and no direct comparison may be applied
to them. We will first give an overview of the formal-
ized phonological processes between the standard variety
of Austrian German and the Viennese dialect.

3.1. Phonological processes between the standard variety
of Austrian German and the Viennese dialect

The phonological differences between the language va-
rieties under consideration can be classified according to
formal criteria that also have a significant impact on the
way one can interpolate between the models associated
with different phones or phone strings (cf. (Moosmiiller,
1987; Neubarth et al., 2008)):

1. Minor shifts between Austrian standard and
Viennese dialect that are phonetically close and
where these shifts are also observable in real life when
people use different registers between the standard
and some dialect variety (Table 4).

2. Phonologically-manifested differences of the
Viennese dialect that are attributed to an ‘in-
put switch’ between standard and dialect or differ-
ences that involve different phonological processes
(Table 5).

3. Differences affecting the segmental structure
by deleting or inserting phones from or into the phone

string (Table 6).

The first set of differences involve vowels that only
have a tense (closed, non-lowered) realization in the di-
alect variety, monophthongization, and the spirantization
of intervocalic lenis plosives. The examples in Table 4
exemplify these processes. Crucially, the differences be-
tween the respective phones are gradual in a phonetic
sense (Moosmiiller, 1987). To model this group of pro-
cesses and the transition between Austrian German and
Viennese dialect, only an interpolation between phone
models is necessary. Additionally, there are further com-
mon phonetically-motivated processes across word bound-
aries (hence post-lexical), which we did not consider in our
experiments (assimilation of homorganic vowels, absorp-
tion of homorganic plosives, simplification of consonant
clusters) (Moosmiiller, 1987).

The second group of differences involve either different
vowels (diachronically these phones have a different input
base, so the notion input shift applies here), or different
phonological processes apply to the input, while the seg-
mental structure remains the same (Table 5). The term
l-vocalization(-1) may be a little misleading here since the



phone /1/ is not vocalized itself, but rather remains un-
changed as an onset. However, it still spreads the feature
[round] onto the preceding vocalic segment, and there are
good reasons to view it as akin to the second version of
l-vocalization (see below). Since the segmental structure
is the same, it is unproblematic to apply a gradual in-
terpolation between the relevant models — at least in a
technical sense. For this kind of difference one normally
does not find intermediate stages of a gradual shift in real
life; rather, these differences are used to signal the use of a
different (dialect) variety of a language. They are taken to
be strong dialect markers. Depending on their presence or
absence in an utterance or word it is perceived as dialect
or not (Moosmiiller, 1987).

The third group of differences shown in Table 6 poses
a more difficult technical challenge, since the segmental
structure changes. Most prominently these are instances
of l-vocalization in non-onset position, where the phone
/1/ forms a secondary rising diphthong with the preceding
(round) vowel or is not realized at all, and various instances
of schwa-deletion.

These groups of phonological processes may be applied
in a combined fashion in order to achieve more complex
phonological transitions between standard and dialects.
Table 7: schwa-deletion can be applied from the stan-
dard AT variety in order to indicate a slight approxi-
mation to the dialect without committing the speaker to
strong dialect markers. Input shift for the vowel /a/ is
always a strong dialect marker, but leaving the schwa pro-
nounced indicates an approximation in the opposite di-
rection, namely from dialect towards the standard. With
this method it becomes possible also to model the direc-
tion of approximation between standard and dialect. In
other words, it is possible to model a speaker of a certain
variety who intends to speak ‘another variety without fully
committing him/herself to this variety.

3.2. Phonological comstraints for HMM interpolation

For the first group mentioned in the previous subsection,
we can straightforwardly apply HMM interpolation since
they have the same number of phones in Austrian and
Viennese. A good example is the distinction between di-
and monophthongs in the Austrian Standard vs. Viennese
dialect.

(1) AT doet [
VD deatf

For simplification of HMM-level processing we assumed all
phone HMMs have the same number of states and applied
state-level interpolation in these experiments. Duration
models for HSMM can also be interpolated. If the mod-
els had a different number of states, we would need to
perform a state alignment between the two phone HMM
sequences, based on some criterion (e.g., Kullback-Leibler
divergence).

For the second group, which does not have in-between
variants, we utilize simple switching rules which disable

Input text

AT pronunciation dictionary VD pronunciation dictionary

context-dependent
phoneme sequence

context-dependent
phoneme sequence

Context clustering
decision trees

Context clustering
decision trees

v 4

Sentence HMM Sentence HMM

Phoneme and state
alignment

Phonological rules
plus dictionaries

| HMM

. . . «— Interpolation ratio
linear interpolation

Parameter generatopm
from interpolated HMM

Figure 5: Flow of dialect interpolation

the HMM interpolation and switch the target phone for
one variety to the other variety at some intermediate point
(threshold). When such a threshold is given for the current
phone, and the interpolation ratio for the utterance is be-
low it, this phone is not interpolated, but rather the lower
extreme point is used, as if the interpolation ratio were
0.0. If the interpolation ratio exceeds the threshold, the
other extreme point (1.0) is used. Note that this is done
phone by phone, so for neighboring phones it is possible
that one is interpolated and the other is not.

This means that we can turn on or off the processes at
a different point in the shifting continuum. Although we
simply set this threshold to 0.5 in all our experiments, one
could adjust this point for each phone individually.

For the third group (having words consisting of differ-
ent numbers of phones in standard and dialect versions),
we introduce a null phone [], which simply corresponds to
a phone model with zero duration. Then, only the tar-
get phone’s duration model is interpolated with the zero
duration model.

(2) AT govigt
VD g[]vigt

The above example (2) shows the alignment for the phono-
logical process of schwa-deletion (Table 6) where the miss-
ing o is aligned to the null duration model [].

Although these three groups and their combinations are
not enough to automatically and completely reproduce the
VD variety from the standard AT variety in TTS systems,
we believe that they are sufficient to answer our scientific
questions and to form a basis for our next large-scale ex-
periments.

8.8. HMM linear interpolation and its underlying issues

From the above examples it should be clear that we can-
not perform offline interpolation on the level of HMMs,
since the same phone HMM may have several interpola-
tion modes depending on what kinds of word the phone
HMMs belong to and what kinds of phonological groups
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Figure 6: An interpolation example between Austrian German “Und mit Deutsch bitte” (And with German please) and Viennese “Und mit
Deidsch bitte”. Interpolation ratio between them increments from 0.0 to 1.0 in steps of 0.2.

the word belongs to. Hence the interpolation of HMMs
must be done on-line at synthesis time. We have therefore
chosen interpolation between observations for the HMM
interpolation, which was also used in (Tachibana et al.,
2005) and is the simplest interpolation method described
in (Yoshimura et al., 2000).

Figure 5 shows the overall procedure flow for dialect in-
terpolation. First we convert a given text into two context-
dependent phoneme label sequences based on AT and VD
pronunciation dictionaries.Then by consulting the con-
text clustering decision trees built for each state of each
feature in the HMMSs for AT and VD voices separately, the
context-dependent phoneme label sequences are converted
into two sentence HMMs having different state sequences.
Each state has several Gaussian pdfs for each of the acous-
tic features and a single Gaussian pdf for its duration. A
Gaussian pdf for state ¢ is characterized by a mean vec-
tor p; and a covariance matrix ¥;. The dimension of the
mean vector may vary depending on the acoustic features.
Then, based on the pronunciation dictionaries and phono-
logical rules adopted, the two state sequences are aligned
and linear interpolation between the sequences is applied.
Let pAT and p)P be mean vectors of Gaussian pdfs for
AT and VD voices, respectively, at aligned state i. Like-
wise BT and 3P are their covariance matrices. In the
interpolation above (Yoshimura et al., 2000), the interpo-
lated mean vector 1 and covariance matrix 3 at state i

are calculated as follows:
it = w4 (1 —w)p® (3)
3= w4 (1 - w)?s}P (4)

where w is an interpolation ratio between AT and VD
voices. After all the Gaussian pdfs for all the acoustic
features and their duration are interpolated in a similar
way, an optimal acoustic trajectory is generated from the
interpolated HMM sequence.

One obvious issue is that the HMMs represent acous-
tic features rather than articulatory features. Since the
relationship between articulatory and acoustic features is
non-linear (Stevens, 1997), it would be preferable to use
articulator positions for the phonetic transition. In fact
one of the authors and colleagues have already proposed
“articulatory-controllable” HMM-based speech synthesis
(Ling et al., 2008, 2009) based on this motivation. This
would require the use of articulator positions; the current
approach using only acoustic features is an approxima-
tion to this. Therefore it is expected that the current ap-
proach introduces some noise into the interpolation and
may exhibit unexpected behavior from time to time. On
the other hand, we emphasize that it is still worthwhile
investigating the performance of such an acoustic inter-
polation, since proper acquisition of articulator positions
requires specialized recording equipment. It is much easier
to introduce phonetic knowledge such as vowel height or
frontness and place or manner of articulation when clus-
tering the acoustic HMMs via manually-defined linguistic
questions.
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Figure 7: An interpolation example between Austrian German “Und mit Gewicht bitte” (And with weight please) and Viennese “Und mit
Qicht bitte” having different segmental structures. Interpolation ratio between them increments from 0.0 to 1.0 in steps of 0.2.

The success of the interpolation in the third group will
also depend on whether the segment is the only vocalic
portion of the syllable nucleus (as in the example schwa-
deletion case above) or not. If it is the sole vocalic portion,
intermediate stages may sound artificial because the vowel
duration approaches zero and is thus too short to establish
a phonetically-acceptable nucleus.

3.4. Interpolated examples

Figure 6 shows spectrograms of synthetic speech inter-
polated between the AT variety (top) and the VD variety
(bottom) in interpolation ratio increments of 0.2. In Fig-
ure 6 (a) only the HMM linear interpolation was used,
whereas in Figure 6 (b) a combination of the HMM inter-
polation and switching rules was applied. These samples
can be downloaded from http://dialect-tts.ftw.at. In Fig-
ure 6 (a) we can see the continuous transformation from
/OY/ [6€] to /3:/ [e:]. Interestingly, while categorizing
the sample utterances by experts, one intermediate stage
was always classified as “undefined”. This must be due to
the nonlinear relation between articulatory and acoustic
features. In the other setting (Figure 6 (b)) a switching
rule governs the application of either model for the relevant
phone. The upper three spectrograms were generated with
a model from Austrian Standard /OY/, the other lines
with a model from Viennese dialect /3:/. The remain-
ing parts of the utterance are interpolated linearly. This
results in appropriate categorical transitions of phones.
Figure 7 shows the spectrogram of synthetic speech for
the schwa-deletion case with and without switching rules.
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One can immediately see how the /@Q/ [o] gradually disap-
pears in Figure 7 (a). All the intermediate stages except
for the penultimate one are judged as sounding natural.
In the one exception, the duration of the /@/ segment is
too short to be either classified as completely missing or
present. In Figure 7 (b) we can see the categorical tran-
sition of schwa-deletion with switching rules, which delete
/@/. Gradual changes are possible for a set of phonological
processes like monophtongization or input shifts, but they
produce gaps in the acoustic perception with other pro-
cesses like schwa-deletion. Additional samples are shown
in Appendix A.

3.5. Ewvaluation

We designed a carrier sentence “Und mit . .. bitte” (And
with . .. please) whose slot was filled with the words shown
in bold in Tables 4-6. Each word represents a different
process, with the exception of I-vocalization-1 and schwa-
deletion which are used twice. The phonetic transcription
of the carrier sentence is provided in Example 5. This
sentence has virtually no differences in different dialects.
(5) AT/VD ?2unt mit ... bite

For this evaluation we again used 40 listeners that had
to answer two different questions after listening to synthe-
sized interpolated prompts. In the first type of question,
listeners were asked to give a rating as to what extent
they would associate a given prompt with Viennese di-
alect or with standard Austrian German. For the rating,
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Figure 8: Box-plot for all utterances. Interpolation (vertical axis)
ranges from 0.0 to 1.0 with or without switching rule. On the hori-
zontal axis, 1 means strongly VD, 6 means strongly AT.

we used a scale from 1 (‘strongly Viennese’) to 6 (‘strongly
standard’). Intermediate values were labelled ‘Viennese’,
‘rather Viennese’ etc. In the second type of question, lis-
teners were presented with two prompts and they were
asked to judge how similar or different these were with re-
spect to the differentiation between the dialect varieties.
The first type of question is an identification task, the
second type a discrimination task (Garman; 1990). The
same Mann-Whitney-Wilcoxon test was used for finding
significant differences.

Figure 8 shows the overall results for the identification
task. In the figure, a ratio of 0.0 corresponds to the VD
non-interpolated speech samples and 1.0 corresponds to
the AT non-interpolated speech samples. The interpola-
tion ratio between them increments in step of 0.2; figure
(a) shows results without switching rules and figure (b)
shows results with switching rules applied to the phono-
logical process. Overall we can see that a gradual change
was perceived for the interpolations without switching rule
and a categorical change was perceived with the interpo-
lations that applied a switching rule relatively. The grad-
ual change is underpinned by the significant differences
between 0.2 and 0.4, between 0.4 and 0.6, and between
0.6 and 0.8. The categorical change due to the switching
rules is supported by the fact that there is a significant
difference only between 0.4 and 0.6 (p < 0.05), and no
significant differences between 0.2 and 0.4 or 0.6 and 0.8.

Figure 9 shows the result of the discrimination task
(pairwise comparison), visualized using multi-dimensional
scaling (MDS) (Cox and Cox, 2001). From this figure, we
can confirm several findings from the identification task.
HMM interpolation generates continuous transitions: the
first dimension found by MDS (horizontal axis) corre-
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Figure 9: Evaluation of similarity in terms of dialect. Multi-
dimensional scaling is used for 2D visualization of evaluation results.

sponds to this. Adding the switching rule causes this con-
tinuous transition to become categorical: 0.0, 0.2, and 0.4
are clustered at the left side and 0.6, 0.8 and 1.0 are clus-
tered at the right side. There is a wide gap between 0.4 and
0.6 when the switching rules are applied. In fact, since the
switch threshold was set to 0.5, the switching rule is ap-
plied between 0.4 and 0.6. The second dimension found by
MDS (vertical axis) is related to the switching rules. Dis-
tances between switched and non-switched interpolations
are represented by this dimension. Interpolated samples
using a ratio of 0.6 with and without the switching rules
are far apart: these samples were judged by the listeners to
sound different. This is consistent with our earlier funding
that experts always classified one intermediate stage as an
undefined phoneme.

Figure 10 shows the “Viennese-ness” ratings for three se-
lected phonological processes, monophthongization, input
shift, and schwa-deletion chosen from the three groups in
Tables 4,5 and 6. We can clearly see the different behavior
of these processes as dialect markers. The monophthon-
gization process generates a relatively continuous transi-
tion between standard and dialect from both conditions.
The input shift process generates a continuum between
standard and dialect from the HMM interpolation, which
does not match real phenomena, and generates a cate-
gorical shift with the switching rules. The schwa-deletion
process creates a categorical shift at a certain point re-
gardless of the use of switching rules. This means that a
categorical change is perceived even if there is a continuous
interpolation of the signal (Liberman, 1970).

4. Discussion and conclusion

The HMM-based speech synthesis framework has been
applied to Austrian German and Viennese dialect. We
have investigated and evaluated several training strategies
for multi-dialect modeling such as dialect clustering and
dialect-adaptive training. Although the speech database
was unbalanced in terms of the amount of Austrian Ger-
man and Viennese dialect speech data, such a situation
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Figure 10: Box-plots for three different utterances chosen from three categories. Interpolation (vertical axis) ranges from 0.0 to 1.0 with or
without switching rule. On the horizontal axis, 1 means strongly VD, 6 means strongly AT.

frequently occurs for non=standard varieties and so our re-
sults will apply to other dialects. For the AT variety, av-
erage voice modelsusing dialect-adaptive training (where
speech data uttered by a single speaker is divided into stan-
dard and dialect speaker data sets, and they are treated
as different ’speakers’ in the SAT process) achieve the best
quality of synthetic speech. For the VD variety, speaker-
and dialect-dependent modeling achieves the best quality.
Although there was sufficient AT speech data, it did not
help to improve the quality of the VD voice. We presume
this is due to the linguistic differences between the AT and
VD varieties.

In addition, we have bridged the gap between HMM-
level processes and linguistic-level processes, by adding
phonological processes to the HMM interpolation and ap-
plying it to dialect interpolation. We employed several for-
malized phonological rules between Austrian German and
Viennese dialect as constraints for the HMM interpolation
and verified their effectiveness in a number of perceptual
evaluations. Since the HMM space used is not articula-
tory but simply acoustic, there are some variations in the
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effectiveness of each of the phonological rules. However, in
general we obtained good evaluation results, which demon-
strate that listeners can perceive both continuous and cat-
egorical changes of dialect variety in speech synthesised
using phonological processes with switching rules in the
HMM interpolation.

Our analysis results are obtained from relatively small-
scale experiments designed to answer our scientific ques-
tions and to form a basis for our future large scale exper-
iments. For large scale experiments on automatic dialect
interpolation, we need to identify and employ additional
phonological rules for each dialect. More sophisticated
models that use articulatory features may also bring im-
provements, especially for consonant transformation.

Our future work will also focus on an interpolation
method that applies switching rules hierarchically to intro-
duce the notion of direction into our modeling. Further-
more we wish to extend the interpolation strategy from
the approach that uses a null phone to more sophisticated
modeling approaches that use a distance metric on HMMs
and dynamic programming to align sequences of models.
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A. Additional interpolated examples

Figure 11 shows the l-vocalization-2 process (Table 6) with
and without switching rule. Without switching rule /L/ []
gradually disappears and /I/ [1] is gradually transformed into
/y:/ [y:]. When a switching rule is applied /L/ is deleted.

MUCH

(a) without switching rules

MIT MILCH BITTE

08
MUCH

(b) with switching rules

Figure 11: An interpolation example between Austrian German
“Und mit Milch bitte” (And with milk please) and Viennese “Und
mit Miich bitte” having different segmental structures. Interpolation
ratio between them increments by 0.2.
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Figure 12 shows the input shift process (Table 5), which is
very similar to monophtongization (Table 4) as shown in Fig-
ure 6 where one vowel is transformed into another vowel. There
is a continuous transformation when no switching rule is ap-
plied, whereas there is a categorical change when a switching
rule is applied.

SCHLAG

SCHLOG BIT

(a) without switching rules

MIT SCHLAG BITTE

SCHLOG

BIT

(b) with switching rules

Figure 12: An interpolation example between Austrian German
“Und mit Schlag bitte” (And with cream please) and Viennese “Und
mit Schlog bitte”. Interpolation ratio between them increments by
0.2.





