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®ESAT - PSI, Katholieke Universiteit Leuven, Belgium
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Abstract

In this paper, we develop methods to identify aceents of native speakers.
Accent identification differs from other speaker classification tasks because
accents may differ in a limited number of phonemes only and moreover the
differences can be quite subtle. In this paper, it is shown that in such cases
it is essential to select a small subset of discriminative features that can be
reliably estimated and at the same time discard non-discriminative and noisy
features. For identification purposes a speaker is modeled by a supervector
containing the mean values for the features for all phonemes. Initial accent
models are obtained as elass means from the speaker supervectors. Then fea-
ture subset selection 4s performed by applying either ANOVA (Analysis of
Variance), LDA (Linear Discriminant Analysis), SVM-RFE (Support Vector
Machine - Recursive Feature Elimination), or their hybrids, resulting in a
reduced dimensionality of the speaker vector and more importantly a signifi-
cantly enhanced recognition performance. We also compare the performance
of GMM, LDA and SVM as classifiers on a full or a reduced feature subset.
The methods are tested on a Flemish read speech database with speakers
classified in 5 regions. The difficulty of the task is confirmed by a human
listening experiment. We show that a relative improvement of more than
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20% in accent recognition rate can be achieved with feature subset selection
irrespective of the choice of classifier. We finally show that the construction
of speaker based supervectors significantly enhances results over a reference
GMM system that uses the raw feature vectors directly as input, both in text
dependent and independent conditions.

Key words:  Accent Identification, Language Identification, Feature
Selection, Gaussian Mixture Model, Linear Discriminant Analysis, Support
Vector Machine




1. Introduction

Recognizing native and non-native accents has become an important is-
sue for many commercial applications such as information services over the
telephone. Clients of these applications often have strong accents resulting
in poor automatic speech recognition (ASR) performance (ten Boschy2000).
Accent identification (AID) may alleviate this problem as it would enablethe
system to use both speech models and pronunciation dictionaries speeific to
the accent. Simply adding pronunciation variants to the dictionary does not
solve the problem, since it increases the number of alternatives and tends to
generate additional confusion which may worsen performance (Adda-Decker
and Lamel, 1999; Cremelie and Martens, 1999). Another potential applica-
tion for AID is that it may be used in speaker adaptation when a speaker
model is adapted from an accent-specific acoustic model rather than a uni-
versal model due to the limited speech data forthe speaker (Liu et al., 2000).

In this paper, we will study automatic ways to identify accent differences
among native speakers, where a nativeaccent is defined as “a way of speaking
typical of a particular group of people and especially of the natives or res-
idents of a region” (Merriam-WebsterOnlineDictionary, 2008). Native AID
is similar to language identification (LID) and foreign accent identification.
Phonotactic approaches widely used in LID are not suitable to AID due to
the marginal differences between accent-specific phonetic language models.
On the other hand maximum likelihood (ML) based approaches are often
used in most current AID systems (Lincoln et al., 1998; Lamel and Gau-
vain, 1995; Chen et al., 2001; Huang and Hansen, 2006; Torres-Carrasquillo
et al., 2004).. These ML based approaches have in common that they treat all
phonemes and features uniformly. While these methods work well in identi-
fying native accents with non-trivial pronunciation variations, they may fail
to discriminate native accents with subtle differences, as we will show in the
experiments. We argue that not all phonemes contribute equally to identify
an_accent, and that certain phonemes only change in certain regions; for in-
stance, in Chinese Mandarin, a single pair of phonemes /n/ and /1/ plays
an important role to distinguish the southern accent from the northern ac-
cent. We also state that not all features of a certain phoneme differ between
accents. For example, in the Dutch word "vijf’ (five), the voiced fricative /v/
is devoiced by Dutch speakers and not by Flemish speakers. These phenom-
ena imply that the differences among accents do not widely spread over all
phonemes and all phoneme features. Accent irrelevant phonemes or features



may introduce noise and generate confusion in the modeling and the decision.
To focus on the salient differences between native accents, selecting accent
relevant features on a phoneme specific basis becomes crucial.

The usefulness of feature selection has been shown for many different clas-
sification problems especially when the number of training examples is small
with respect to the dimensionality of the feature vector (Kohavi and John,
1997; Guyon and Elisseeff, 2002). These are very much the circumstances
under which our accent classifier needs to operate. Hence this paper will
apply, adjust and tune general pattern classification solutions te the specific
problem of native accent classification.

The paper is structured as follows. In section 2 we explain the similarity
and difference between LID and AID, then introduee the motivation of using
feature selection in AID. Afterwards we discuss our methods for AID based
on feature subset selection within a speaker model based framework in sec-
tion 3. In section 4, we present the experimental results of our system in text
dependent and text independent conditions, and demonstrate the advantages
of feature selection in the tasks. Finally some accent issues are discussed and
conclusions are given.

2. Identifying Languages and Accents

Language identification is about recognizing the language a speaker speaks.
There are two popular techniques for doing this. One is based on phone
tokenization, which attempts to model the differences in phonotactics or
higher level linguistic information. Most related approaches are derived from
PRLM (phone recognizer followed by language model) or PPRLM (Parallel
PRLM) (Zissman, 1996; Zissman and Berkling, 2001), where the language
model is generated either by one or a parallel of phone recognizers, or a
GMM tokenization system (Torres-Carrasquillo et al., 2002). If specialized
language knowledge (i.e. phone labeling) is given, the PPRLM approaches
would be the ideal technique. But most of the time this knowledge is absent.
As a result, an alternative of phone labels is to use the tokens of Gaussian
mixtures generated by a GMM tokenizer. The other technique solely de-
pends on spectral similarity. By combining a discriminatively trained GMM
recognizer and the shifted delta cepstral (SDC) coefficients, this technique
obtains comparable performance with the phonotactic approaches (Matejka,
2006; Burget et al., 2006; Castaldo et al., 2007; Campbell et al., 2008). How-
ever, the best result reported on LID was obtained by a fusion of these two



techniques (Torres-Carrasquillo et al., 2008), probably due to their comple-
mentarity to each other.

The family of phone tokenization approaches in LID probably can not be
transplanted to the AID task directly since the variations of grammar and
morphology are marginal between different accents (Shriberg et al., 2008).
Oppositely, the acoustic information based LID techniques have been widely
used in accent/dialect classification (Lincoln et al., 1998; Lamel and Gauvain,
1995; Chen et al., 2001; Huang and Hansen, 2006; Torres-Carrasquillo et al.,
2004), most of which are applied in a maximum likelihood framework. These
studies, in terms of the nativity of speakers, can be further separated into two
types, namely foreign AID (Teixeira et al., 1996; Berkling et al., 1998) and
native AID (Hansen et al., 2004; Huang and Hansen, 2006; Shen et al., 2008).
The foreign AID is a task on either verifying the nativity /non-nativity of a
speaker or identifying the native language (L1) from non-native speech (L2),
whereas the native AID identifies the accent of a native speaker from his
speech. These two tasks, as well as their solutions, are quite similar, except
that some features useful in foreign AID may not work in native AID (For
example, Shriberg (Shriberg et al.; 2008) discovered pauses were particularly
efficient to detect low-proficiency non-native speakers, which is not the case
in the native AID).

In this paper, we focus on identifying native accents. The difficulty of na-
tive accent identification may vary considerably from case to case depending
on the granularity of the accent classes. For instance, Chen (Chen et al.,
2001) identified four Chinese Mandarin accents using brute force GMMs
and obtained-about 86% accuracy; when we apply the same straightfor-
ward GMM approach for distinguishing Dutch (as spoken in the Netherlands)
from Flemish (as spoken in Flanders, Belgium - sometimes also referred to
as 'Southern Dutch’) we achieve a 83.8% accuracy (Wu, 2009). However
when applying the same methodology to identify five subregions within the
Flemish region only a meager 27% accuracy is obtained, which is not much
better than the 20% chance level (see (Wu et al., 2005) and section 4.2). We
conjecture that the big gap between the above results is mainly due to the
different magnitude of pronunciation variations between the accents. Apart
from intrinsic differences, speaking style (spontaneous vs. read, formal vs.
informal) may play a role as well.

The magnitude of acoustic difference between accents also affects the hu-
man to distinguish accents. Concerning Dutch, Knops (Knops, 1984) inves-
tigated if listeners from Flanders and the Netherlands could identify whether
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semi-spontaneous speech fragments were spoken by a person from Belgium or
from the Netherlands, and, if possible, could specify the regional identity of
the speaker. Country identification was nearly perfect (96%). Identification
was mainly done on pronunciation (~ 90%), morphology (~ 42%) and on
intonation for the Dutch listeners (44%). Identifying the region (open choice,
10 regions) was much more difficult, only 16% of all speakers were classified
correctly by the Belgian listeners while 18% were classified correctly by Dutch
listeners. Results are significantly better (~ 45%) if Flemish listeners only
need to identify Flemish accents and Dutch listeners only Dutch accents.
These results are quite in line with the machine results we mentioned before
for Dutch/Flemish and confirm the huge performance gaps that are possible
for different accent identification tasks even within the same language group.

Much of the linguistic research on accents and‘dialects deals with phenom-
ena occurring in a specific phonemic context or word differences between two
small regions. For instance, Purnell (Purnell et al., 1999) showed that listen-
ers could identify a dialect with only one word as information (closed choice,
African American Vernacular English; Chicano English and Standard Amer-
ican English). Another study (Thomas; 2000) showed that a single segment
in a certain context might be enough to distinguish between non-Hispanic
whites from central Ohio and Mexican Americans from southern Texas.

While specific phenomena can be great indicators, their occurrence might
be too rare to be applied.in automatic systems and a focus on more system-
atic distinctions will'be more rewarding. A large study by Labov on regional
differences of American English (Labov, 1996) showed that there were two
major types of sound changes that affected the success rate in speech recog-
nition: mergers and chain shifts. Mergers occur if in a certain region the
differences between two sounds disappear. A first type of mergers are the
unconditioned mergers which affect the phonemes wherever they occur. On
the other hand, conditioned mergers occur in a particular phonetic context.
An example of the former is the distinction between the short /o/ (eg. cot)
and long open /oh/ (eg. caught). In about half of the United States and all
of Canada, these sounds are pronounced the same. The second major sound
changes are the chain shifts which rotate speech sounds. Two major patterns
of chain shifting, which rotate the vowels of English in opposite directions for
some dialects, have been identified. Labov made maps in the formant space
(Fy — Fy) that clearly showed these chain shifts.

All the above studies point to a few inherent difficulties that make the task
of native AID quite challenging and quite different from LID: only a fraction



of the speech contains discriminative (useful) information and the distinctions
may be quite subtle. Ghesquiere (Ghesquiére and Van Compernolle, 2002)
selected informative normalized formant frequencies and duration to identify
Flemish accents in a text dependent mode and an absolute improvement
of 20.2% was obtained; a similar experiment was done by Hansen (Hansen
et al., 2004), who showed that only using a few discriminative phonemes
based on the Fisher criterion could boost the system from 30% to 42% for
identifying seven American English dialects also in a text dependent mode.
These results imply that not all phonemes are discriminative among accents
and the existence of non-discriminative phonemes may heavily degrade the
performance. Even for accent-relevant phonemes, their contributions may be
different; some are more informative while others-are less. This motivates
us to systematically investigate the behavior of phonemes in the native AID
task and to focus on the most accent-relevant phonemes or features during
the recognition.

3. Method

3.1. Framework

A straightforward approach to automatic speaker classification - of which
accent identification is a particular case - is to train class specific GMMs
on the basis of all data for the class. In recognition mode the likelihood
of the input feature stream is computed for each of the models and the
highest scoring model is selected. Such a scheme has shown to reach quite
satisfactory results on identification tasks such as gender identification or
speaker recognition.

Although such system can achieve acceptable performance on native ac-
cents_with big differences, it performs poorly on discriminating subtle ac-
cents, as will be shown in the section 4.2. This indicates that the brute force
GMNMs are not capable of modeling tiny accent differences. As stated before,
many of the input frames correspond to sounds that do not contribute to
accent discrimination and ideally these frames should score identically on
all accent specific GMMs. However, in practice these segments will score
slightly different on the respective accent models due to random differences
in these models. Therefore it is plausible that significant improvements are
possible by limiting the scoring to relevant phonemes only and furthermore
to discriminative features for those phonemes.



To study the behaviors of phonemes and to select the prominent phoneme
features for different accents, we first build a text dependent system with the
assumption that a state-level segmentation of all phonemes is known a priori.
The segmentation is realized by a forced alignment of the speech with the
phonetic transcript. The proposed native AID system is shown in Figure 1.
The raw speech features, the building of the speaker model, the techniques
for feature selection and the selection of classifiers are described in more
detail hereafter.

Speaker Feature Build
model selection classifier

Speech
features

Options: ANOVA + GMM
ANOVA + SVM
LDA + Euclidean Distance
SVM-RFE + SVM

Figure 1: System overview

3.2. Speaker Models

3.2.1. The Raw Speaker Model

The initial speech feature set for a 30ms-length speech frame consists of 12
mean normalized Mel scaled cepstral coefficients and the mean normalized log
energy. After feature extraction, given the state-level segmentation, normally
there are two ways to organize the data. One is a frame-based model, where
the accents are represented by a collection of accent specific phoneme GMMs
and the likelihood of a test segment is computed as the sum of individual
frame likelihoods. The other is a speaker-based model, in which a speaker is
represented by a supervector consisting of the averages of the speech features
for each of the observed phonemes, or alternatively for the sub-phonetic
states of those phonemes. For example, suppose there are K phonemes in a
phonetic set, and three states per phoneme in the acoustic Hidden Markov
Model (HMM) based speech recognizer, a speaker-based supervector would
then be composed of D = K x 3 x (12 cepstra + 1 logEn) features.

A weakness of the frame-based model is that its performance depends
on the number of phoneme occurrences, especially for short segments. On
the other hand, the speaker-based model uses the average of the features of



each phoneme, which reduces the sensitivity of phoneme occurrences in our
modeling. Therefore unless stated, we adopt the speaker-based model in our
system setup. However we also present the results of the frame-based system
in both text dependent and independent modes in our reference experiments.

One concern for the speaker-based model is that some phonemes ‘may
not occur in a given segment, leading to missing elements in the speaker
supervector. Our fallback strategy is to replace the missing features by the
overall mean value estimated from all occurrences in the training set. Using
the global mean minimizes the impact of missing features. Given that for
short segment lengths the probability of a feature not appearing in a speaker
model is very high, using the class mean (instead of the global'mean) for miss-
ing features would greatly bias the transformation; especially for infrequent
phonemes.

3.2.2. Feature Selection
The introduction of the speaker-based model leads to the mathematical
expression for the native AID problem. Suppose that we have a set of n D-
X1 1
dimensional speaker models X = | ... with the class label Y =

Xn nxD nx1

,n = Zivzl ne, Ne the number of speaker models in the class ¢, N the number
of accent classes, and-Vie {1,...n}, x; = [x;1,...,x;p]. Then the feature
selection is to look for a subset B C {1,2,..., D} to minimize the generation
error of X givenY on a development set with respect to a classifier, where
X represents the columns of X with the indices in B.

3.3. Classifiers

A classifier is used to model the variations between the speaker models
of mative accents. In this paper we explore three classifiers: GMM, linear
diseriminant analysis (LDA) and support vector machine (SVM), based on
different modeling criteria.

3.3.1. GMM
The speaker models of an accent are modeled as linear combinations of a
few Gaussians. The posterior probability of a test sample x is calculated as

Fo3) = ANl 1y, 5), (1)

i=1



where x is the columns of the test sample x with the indices in B, and A.;,
i; and 33; are the weight, the mean and the covariance of the j-th Gaussian
in accent ¢. The vector x is classified to the accent ¢* by maximizing the
likelihood criterion:

¢* = argmax log(£.(%)) (2)

[

The covariance matrices of the Gaussian are restricted to be diagonal to
ensure that all parameters can be estimated reliably from the training data
by means of an iterative expectation maximization (EM) training algorithm.

3.3.2. Linear Discriminant Analysis

With LDA a speaker model is transformed to be optimal for classification,
under the assumptions of normal distributions-.and homoscedascity in all
classes. Formally, the aim of LDA is to maximize the ratio of the between-
class scatter, S,, to the within-class scatter, S,,. This approach uses the
optimizing criterion, S!S, to transform' the data sets irrespective of their
class identity. The two scatters are computed as:

N

S, =3 (pe — ) (pe — )" (3)

c=1

N
Sw - chzcv (4>
c=1

with 4., themean of the models of the training speakers X belonging to class
c and 1 the mean of the entire training set. The term p, refers to the prior
probability of class ¢ (p. = 1/N in our case), and ¥, to the covariance matrix
of class c. In ideal circumstances, the transformation matrix T is found as
the eigenvector matrix of the optimizing criterion.

The transformed data is now assumed to be distributed sufficiently normal
with equal variance per class such that a simple FEuclidean distance can be
used to classify data points. Hence a speaker is classified by searching the
accent, ¢*, which minimizes:

¢* = argmin| T7 (% — )| (5)
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3.3.3. Support Vector Machine

SVM (Burges, 1998) is one of the most popular supervised classifiers on
a wide range of data sets due to its superior performance. It looks for a
maximum-margin hyperplane to separate data from two categories. For a
two-class problem, suppose input speaker models x (or x) are mapped into
a higher dimensional space by a mapping function ¢(.): z = p(x), where z
denotes vectors in the high dimensional space. The optimal hyperplane f(.)
is of the form:

f(z) =wlz+b, (6)
where the weight vector w is a linear combination of training patterns, and
b is a bias value. SVM can be formulated in a primal and equivalent dual
form. An interesting property of the SVM solution'is that a sparsity pattern
in the dual variables is observed. The samples which correspond to non-
zero dual variables are called support vectors. To a non-linear classification
problem, the data can be projected onto a high dimensional space where the
maximum-margin hyperplane is found. The mapping function is implicitly
defined by a kernel function K(x;,x;) = ©(x;)T(x;). In this paper we focus
on the linear and the radial basis function (RBF) kernels as they are the
most commonly used kernel functions.

An important issue of the SVM approach is that the complexity of the
classifier is described by the number of support vectors and not by the di-
mensionality of thesewvectors. Thus, it is insensitive to the curse of dimen-
stonality. This property is suitable for our high dimensional native AID task.

The two-class SVM classifier can be extended to the multi-class case by
combining several binary SVMs with the one-versus-one (OVO) strategy or
the one-versus-all (OVA) strategy. Both strategies decompose the multiple
classification problem into a set of binary classification problems. The OVA
strategy is to build one SVM for each class, using as negative examples all the
patterns of the other classes ; while the OVO strategy trains one SVM for each
pair of classes and a voting decision is made to assign an unknown pattern to
the class with the maximum number of wins. In our experiments we found
no significant difference between both approaches; so only the results of the
OVA strategy are presented in this paper.

3.4. Feature selection and dimensionality reduction

As we stated, the features z; (1 < j < D) may contain different amounts
of accent relevant information. A feature selection is necessary to obtain
robust models.

11



Three feature selection and/or dimensionality reduction techniques are
studied. In the first method, we use an analysis of variance (ANOVA), to
rank features by conducting a series of statistical hypothesis tests, then we
select a desired number of features whose p-values are smallest in the fea-
ture set (see section 3.4.1). LDA is implemented as the second technique.
By multiplying the vector x with the transformation matrix T, the dimen-
sionality is reduced, as explained in section 3.4.2. As a last method; we use
SVM-RFE to evaluate subsets of remaining features and we eliminate the
least influential feature recursively with respect to an SVM eclassifier. This
procedure will be explained in more detail in section 3.4:3.

3.4.1. ANOVA

One-way ANOVA is used to determine the significance of each feature
in the speaker models. It assumes that the observations are normally dis-
tributed and that the variances are equal in all N groups.

The null hypothesis, i.e. that the means of a single feature are equal, is
rejected if the p—value:

p= P(FN—l,n—N > F—mtio) (7)
is smaller than a chosen level of significance, a. The F—ratio

Zivzl ne(Te —T)?’n— N
S (ne—1)02 N -1

c=1

(8)

F—ratio =

can be thought of as a measure of how different the means are relative to
the variability within each class, where T, is the average of a single feature x
within class ¢, 62 the variance and 7 the global mean. Fisher showed that,
under the given assumptions, this ratio follows an F-distribution with N — 1
and n—d4V degrees of freedom. The larger this value, the greater the likelihood
that the differences between the accent specific means are due to something
else than chance alone. So, the accent specific means of the features with
a small p-value are statistically unequal due to accent variation instead of
chance. The features with small p-values can be used as a feature set on
which a classifier is built to classify the accents.

ANOVA is a fast and efficient way to evaluate the importance of each
feature. The significances of all features can be ranked by sorting their cor-
responding p-values in an ascending order. However, there are two concerns
about this technique. One is that it requires the assumptions of normality

12



and equal variance for each feature. Fortunately, 88.4% of the features in our
speaker models satisfy this assumption as verified by a normal quantile test.
The other issue is that ANOVA evaluates the features independently. Con-
sequently some highly correlated features may obtain rather small p-values
and thus are selected into the feature subset simultaneously. Nevertheless,
if one of the correlated features exists in the selected feature set, the pres-
ence of other correlated features would not help to considerably improve the
discriminability.

ANOVA can also be used as a pre-selection procedure for other high
computational feature selection or dimensionality reduction techniques, such
as LDA and SVM-RFE, as long as the empirically pre-defined size of the
feature subset selected by ANOVA is large enough to aveid losing important
features.

3.4.2. LDA as dimensionality reduction

The between-class scatter matrix Sy is the sum of N matrices of rank one
or less, and because only N — 1 of these are independent, S is of rank N —1
or less. So for our N-class problem; multiple discriminant analysis primarily
provides a way of reducing the dimensionality from a D-dimensional space
to an (N — 1)-dimensional space.

The dimensionality of ‘a speaker model D can be much larger than the
number of speaker models'n. This results in difficulties in estimating the co-
variance matrices, which are required in the computation of the LDA trans-
formation matrix:’ The solution can be either to reduce the dimensionality D
or to increase the number of speaker models n, or both. We first use ANOVA
to make a rough selection of the most promising features to decrease D. Then
instead of building one speaker model per speaker, we split the data of all
training speakers in shorter segments, yielding multiple models per speaker.
While these multiple models are highly correlated, they will differ due to
differences in infrequent events and they will differ more for shorter segment
lengths. Then multiple speaker models obtained from short segments are
used to estimate a reliable LDA transformation matrix.

3.4.3. SVM-RFE

Recursive feature elimination based on SVM (SVM-RFE) (Guyon, 2002;
Rakotomamonyjy, 2003), derived from the classical SVM, is a feature ranking
algorithm to evaluate the contribution of each feature to the classification er-
ror in the sense of a maximum margin criterion. In Equation 6, the squared

13



weight w? of the i-th feature in the weight vector w is a measurement cali-
brating the contribution of this feature to the margin of the hyperplane. The
larger the margin is, the more discriminative this feature will be. The feature
with the smallest contribution to ||w||? is removed. The feature elimination
thus follows an iterative procedure that can be described as follows:

(1) Train the SVM classifier with the current feature set
(2) Compute the contribution of each feature

(3) Eliminate the feature with smallest contribution to/the norm of w from
the current feature set

(4) Start over again from the step (1) unless ardesired number of features
is reached

We followed the method by Duan (Duan; 2005) proposed to extend the
SVM-RFE from a binary classification to a multi-class case by re-organizing
the contribution criterion of features. Suppose some linear binary SVMs are
obtained by the OVO or the OVA strategy, the ranking score of each feature
is computed as:

mean(w?;)

j
Y wvariance(w$;)’ ©)
J

where wj; is the weight value associated with the i-th feature from the j-th
binary SVM.

For computational reasons, we also use ANOVA to coarsely pre-select
important features, as we did for LDA. We may also simultaneously remove
several features at each iteration to speed up the selection, without significant
loss of accuracy.

4. Experiments and Discussion

4.1. Ezxperimental Setup

Experiments are done on the read speech part of the CoGeN corpus'. The
CoGeN corpus contains 174 Flemish speakers of which 101 are male speakers.

IThe read speech part of CoGeN is a part of component o’ of the CGN corpus (Corpus
Gesproken Nederlands): http://tst.inl.nl/cgndocs/doc_English/start.htm .
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In the read speech part speakers were asked to read five paragraphs of stan-
dard Dutch, yielding about 200 seconds of speech per speaker. Paragraphs
are different from speaker to speaker.

The experiments are divided into a text dependent mode and a text inde-
pendent mode. In the text dependent mode, phoneme or state segmentations
are obtained from a Viterbi alignment using an in house large vocabulary
HMM system (Demuynck et al., 2008) with phonetic dictionary and ortho-
graphic sentence transcriptions as inputs. Although the text dependent mode
is not realistic in many circumstances, it helps us better understand the role
of features and phonemes in native AID. In text independént mode no knowl-
edge of what was said is assumed a priori, but it isdnferred from a phone
recognizer.

The phonetic dictionary is adopted from Fonilex (Mertens and Vercam-
men, 1998), a list of more than 200,000 Duteh word forms with their Flem-
ish pronunciation. Fonilex uses the YAPA (Yet Another Phonetic Alpha-
bet) phonemic encoding scheme. A description of the 38 symbols and their
sonorant,/ nonsonorant nature can be found in Appendix A. After having
discarded four phonemes (g, [, 3 and.@) with a low probability of occurrence,
the dimensionality of the speaker vector is D = 1326 = 34 x 3 x 13.

We use the five Flemish provinces as accent clusters as they correspond
fairly well to the dialect.regions mentioned in (Van Hout et al., 1999) and
we use the place of birth to assign a speaker to a province. Using this classi-
fication, we can not-expect a 100% identification accuracy as the class mem-
bership can not be justified for all speakers on the basis of acoustic-phonetic
properties. The following abbreviations are used in figures and tables to refer
to the provinees: Ant for Antwerp (42 speakers), Bra for Brabant (26 speak-
ers), Lim for Limburg (34 speakers), E-FI for East-Flanders (36 speakers)
and W-FI for West-Flanders (36 speakers). In order to increase the statisti-
cal'significance of the obtained results on the relatively small CoGeN corpus
a leave-one-out evaluation scheme is adopted. In this approach 174 sepa-
rate experiments are performed in which each time 173 speakers are used for
training and the excluded one for testing. The parameters used in the SVM
classifier are obtained by a 10-fold cross validation over the training set. The
95% confidence interval for the leave-one-out setup can be computed to be
+3.2% with a very slight dependency on the expected outcome.

In all experiments, unless claimed otherwise, the default segment length
for estimating the speaker models, both in training and test, is 200 seconds.
This is well within the region of convergence of the speaker models.
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number of
Gaussian mixtures

| AID accuracy (%) [ 270 20.1 23.6 253 236

1 4 16 64 256

Table 1: Accent identification rates for brute force GMMs

4.2. A difficult database

As Flanders is a small region, one might expect only small accent dif-
ferences. Traditionally, however, Flemish has been a very dialectal language
with extreme differences over small distances. Due to increased communi-
cation, dialects are disappearing quickly and most younger people speak (or
can speak) the standard language with only a minor accent. For the CoGeN
database, speakers were asked to speak the standard language in a read style,
hence accent differences are expected to be relatively small and challenging
to detect.

Indeed in informal listening tests with 8 untrained native listeners and
speaker segments of 30 seconds, an.average accent identification accuracy
of 45% was obtained with a maximum of 62% for the best listener and a
minimum of 36% for the worse one. In an automatic classification, the brute
force GMM without using any phonetic segmentation, shown to be effective
in identifying four Chinese accents (Chen et al., 2001) and distinguishing
Flemish and Dutch (with an accuracy of 83.8%), gives very poor performance
for discriminating the five Flemish accents, as shown in Table 1. The best
accuracy, 27.0% is only slightly higher than the 20% chance level. The failure
of the traditional GMM in acoustic modeling also indicates the difficulty of
the task-on-this database.

4.3 Speaker based accent identification

From this section on until section 4.5, we assume that the read text is
known and that the phoneme segmentation is obtained by forced alignment.
We first show the experimental results of accent identification without feature
selection. Then we demonstrate the benefits brought by the feature ranking
of ANOVA. The feature ranks given by ANOVA are analyzed afterwards, and
compared to those of the other two feature selection/dimensionality reduction
techniques we adopt. Finally we present a frame based GMM framework for
the AID incorporated with the feature selection.
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4.8.1. Accent identification without feature selection

A speaker based supervector is constructed by averaging the phoneme-
specific speech features for each speaker, as explained in section 3.2.1. GMM
and SVM with two different kernels, a linear kernel and a RBF kernel are
taken as the classifiers to discriminate the accents. We tested the perfor-
mance of GMM using different number of Gaussian mixtures and the best
performance was achieved when only a single Gaussian density (SGD) dis-
tribution is used to model an accent class. The number of speaker vectors
per class is probably not large enough in our database to accommodate more
complex models. The accuracies of SGD, linear SVM aand RBF-SVM are
50.6%, 63.2% and 62.6% respectively, as shown in Table 2.-The superiority
of the SVM classifiers is due to their insensitivity to the curse of dimension-
ality.

‘ Classifiers H SGD ‘ Linear SVM ‘ RBF-SVM ‘
| AID accuracy (%) || 50.6 | 632 | 626 |

Table 2: Accent identification rates for speaker-based models without feature selection

4.8.2. Accent identification with ANOVA ranking

Given the speaker models, features z; are evaluated by ANOVA and
ranked according to their p-values. The features with smallest p-values are
selected to be part of the feature set. The best accuracy is 71.8% achieved
by the RBF-SVM when 100 feautures are selected, compared to 62.6% with
the full feature set. For the GMM classifier, a single Gaussian density dis-
tribution still-performs better than GMM systems with multiple Gaussians.
Withithe ANOVA feature selection, the performance of SGD is boosted from
50.6% to 70.1% when the size of selected feature subset is 80. Figure 2
demonstrates the performance obtained by the RBF-SVM, the linear SVM
and the SGD respectively for different numbers of selected features. Note
that the end points of the curves represent the accent identification without
feature selection. We can also see that the best accuracies for all classifiers
are in the range of 40-120 features, indicating that 90% of the features in the
original speaker vectors do not help in discriminating the accents. Overall,
the RBF-SVM classifiers outperform the SGD classifiers with the same num-
ber of features. Moreover, the performance of SVMs degrades much slower
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with increasing number of features than that of the SGD classifier. Never-
theless, feature selection remains an essential ingredient for success for all
classifiers. Finally, there is only a marginal difference between the linear and
RBF kernel, with a small preference for the latter.

Comparison of RBF-SVM, Linear SVM and SGD on the native AID task
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—O— Linear SVM
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10 20 40 60 80100 140 180 250 400 600 800 1000 1200 1326
# of selected features by ANOVA

Figure 2: Comparison of RBF-SVM, linear SVM and SGD classifiers with the ANOVA
feature selection in the text dependent mode

Table 3 gives the confusion matrix when the number of selected features is
100 with the RBF-SVM classifier and ANOVA. We observe that the selected
features are able to discriminate relatively well between speakers from on
the one hand Ant and Bra, and on the other hand E-F1 and W-FI. Greater
confusion within these regions is expected because these are geographically
close and were politically tied in the middle ages, even when Flanders as a
whole was divided between France and Germany. The rather big confusion
between Lim and the cluster of E-FL and W-FI is still unclear, given that
Flemish listeners are quite good at discriminating Lim speakers from E-F1 or
W-F1. One possible explanation may be that human listeners make use of
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true class
% Ant Bra Lim E-FI W-Fl

Ant 92.8 26.9 29 83 2.6
Bra 7.2 61.5 29 83 111
Lim 0 0 73.6 2.8 2.8
E-F1 0 11.6 2.9 63.9 194
W-F1 0 0 147 16.7 61.1

Table 3: Normalized confusion matrix on a five forced-choice classification of Flemish
accents (global recognition rate is 71.8%) when the number of features is optimal. The
RBF-SVM is used as the classifier and ANOVA is used to select features. The columns
represent the true class, the rows the recognized class.

intonation, a feature which is not incorporated in our raw feature extraction.

We also investigate the performance of AID under different test lengths.
A fixed length speech segment is randomly selected from a test speaker and
a test speaker model is generated on the basis of this segment (missing
phonemes are represented by the average over all classes). The data seg-
mentation is repeated 10 times (except for the 200-second test length case)
and the average accuracies.are plotted in Figure 3 with 5, 10, 30, 60 and 200
seconds test lengths. As‘can be seen, the performance of the AID improves
as the test length grows: Moreover, the ranges of the best accuracies in dif-
ferent test times are quite different; short test lengths seem to require more
features, or are less sensitive to feature selection. This is probably because
in short lengths some very informative features are not available, or may not
occur often emough, thus other less reliable but maybe correlated features
are included and helpful.

4.3.3. Discriminative phonemes, states and features

Figure 4 shows which features contribute most to the identification task.
To avoid overloading, the contributions of the three states of each phoneme
are taken together because if one state is selected, the other two are mostly
selected too. Next to the cepstra and energy, we also show the most useful
formants by the ANOVA selection, although the AID result of the formants
is not presented since it is absolute 15% worse than that of the cepstra (Ghes-
quiére and Van Compernolle, 2002). The darkness corresponds to the number
of times a feature is selected. As can be seen, most of accent differences
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Comparison of the performance of the BRF-SVM classifier at different test lengths

75 5 o B S B B B S S B ———
—+—5sec
—6—10 sec
70 —+—30 sec ||
60 sec
65 —*— 200 sec|]
60 =
S
< 55 i
%)
g
5
8 50+ g
<
451 ]
40f ]
35- g
30 T N R T e B R T S N i

L L L L
10 20 40 60 80 100

Figure 3: Comparison of the performance of the RBF-SVM at different test lengths.
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Figure 4: Number of times a feature is used at the optimal number of features. Speech
features shown here include 12-order Mel cepstra, log energy and the first three formants

(only applicable for sonorants)
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come from vowels, although some consonants, like /p/, /t/ and /x/, etc, also
contribute a little. A boxplot analysis? of each distinctive feature shows that
most vowels contribute to the distinction between the cluster Ant - Bra, and
the cluster E-F1, W-FIl and Lim. The vowels /e/ and /a/, are responsible for
a correct identification for speakers of Ant. The voiceless plosives, /p/, /t/
and /k/, and the fricative /x/, mainly contribute to differentiate between the
cluster E-F1 and W-F1 and the cluster consisting of Ant, Bra and Lim. The
correct identification of the speakers of Lim is mainly due to the phonemes
/r/ and /y/. The latter phoneme also contributes to the identification of
speakers of W-F1.

Besides of the different contribution of phonemes and features to accent
classification, the states of a discriminative phoneme also behave differently.
Figure 5 shows the phoneme states that are used at least once when the
optimal number of features is selected by ANOVA. The darkness indicates
the number of features selected from a state. Having 3 states per phoneme
allows for more detailed discriminative modeling as certain differences may
only pertain to beginning or end of a phoneme. For example, speakers from
Ant usually tend to pronounce diphthongs as monophthongs by neglecting
the second vowel in the diphthongs, resulting in the importance of the last
two states in the diphthongs. Modeling such detailed differences was only
possible by using three states per phoneme instead of using one state.

In Figure 6, we show how many phonemes and cepstral coefficients appear
as a function of the size of the selected feature subset. As can be seen, at the
optimal number . of selected features (100 for RBF-SVM and 80 for SGD),
about 22 phonemes are involved, indicating the remaining 12 phonemes do
not contribute to the accent discrimination at all. Although all 13 cepstral
coefficients (including 12 cepstra and 1 log-energy) show up in the first 100
features, their importance is quite unbalanced: the second and the third
cepstral-coefficients represent 53% of selected features. The importance of ¢,
and ¢3is also revealed by the dark cells in Figure 4.

2A boxplot (Tukey, 1977) is a convenient way to graphically depict groups of numerical
data. It helps to find out the degree of dispersion for a discriminative feature in different
accents
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Figure 5: Contribution of phoneme states at the optimal number of features. S; is the
i-th state of a phoneme.
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Figure 6: The number of phonemes (top) and dimensions (bottom) that are selected at
least once as a function of the size of the reduced feature set

4.4. Feature selection: ANOVA, LDA and SVM-RFE
In this experiment we will compare three feature selection/dimensionality
reduction techniques, ANOVA, LDA and SVM-RFE. The main reason to look
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for alternative techniques is that ANOVA handles the features independently,
without taking the correlation between the features into account. On the
contrary, the other two methods start with a large candidate feature set.
LDA transforms this high-dimensional feature space to a 4-dimensional space
in order to achieve the maximum inter-class separation; SVM-RFE eliminates
the feature whose absence influences the decision hyper-plane the least from
a present feature set.

However, because of the expensive calculation burden, it ds impractical
for LDA and SVM-RFE to start with the whole feature set. Thus, ANOVA
is used first as a pre-selection to reduce the full set of features to a reasonable
size of 500. This reduced feature set is presumed to cause noloss of important
information and an acceptable computational cost.

4.4.1. LDA as dimensionality reduction

Comparson of AID accuracy when LDA is trained on speech segments of different lengths
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Figure 7: Comparison of identification accuracy when LDA is trained on speech segments
of different lengths. ANOVA is adopted to select the most important features (500 or less)
as the initial set. The length of the test segment is always 200 seconds.
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LDA requires many training speaker models, preferably more than the
size of the dimensions; therefore we split the data of a training speaker in
shorter segments to construct multiple speaker models using the method
described in section 3.4.2. A problem is that there is a trade-off between
the number of training speaker models and the accuracy of a speaker model.
Thus the segment lengths are arbitrarily set to be 5, 15, 60 and 200 seconds.
We still keep the test length, 200 seconds unchanged to generate the test
speaker model. The identification rates are shown in Figure 7. The horizontal
axis indicates the number of features ranked by ANOVA. As a reference, we
also give the accuracy of RBF-SVM identically in Figure 2. Typically the
accuracy for the 200-second model is 63.8% optimal at 20 features while for
the 15-second model 70.1% at 140 features.

The optimal segment length in our experiments is 15 seconds. For shorter
segment lengths the performance is uniformly-worse, which is caused by poor
estimates of the speaker models. For longer segment lengths the results are
slightly better when working with a small number of selected features. This
improvement may be attributed to a better estimation of the speaker models.
As the number of retained features increases, the size of the transformation
matrix (thus the number of parameters that needs to be estimated) increases
as well. This transformation matrix will be better estimated as the number
of (pseudo) speakers increases, i.e. as the segment length gets shorter. This
optimum of 15 seconds s hence very much a database dependent compromise
between optimizing speaker model estimates (better with longer segments)
and optimizing the estimate of the transformation matrix (better with more
speakers).

4.4.2. SVM-RFE

SVM-RFE is performed to evaluate the contribution of each feature to
the margin of the classifier. As long as the remaining number of features
is larger than 250, the five features that contribute the least are eliminated
simultaneously. From then, only one feature is eliminated at each step. The
accuracies along with the remaining number of features are plotted in Fig-
ure 8, together with the RBF-SVM classifier using the ANOVA selection and
the LDA based dimensionality reduction using 15-second segment length.
Note that except for the initial 500 features, the feature set for SVM-RFE
could be different from ANOVA and LDA even for the same test speaker.

At a moderate number of features, there appears to be no significant dif-
ference between ANOVA, SVM-RFE and LDA; however, when only a small
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Comparison of ANOVA selection, SVM-RFE selection and LDA transformation
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Figure 8: Comparison of the ANOVA selection, SVM-RFE selection and the LDA dimen-
sionality reduction. ANOVA is‘adopted to select the most important features (500 or less)
as the initial set for the SVM-RFE selection and the LDA. The length of the test segment
is always 200 seconds.

number of features are being selected, SVM-RFE is superior to the other two.
This phenomenon can be explained by the fact that the p-values emerging
from ANOVA do not take the correlation between potential feature can-
didates into account, while the SVM-RFE does. For example, the second
coefficient of Mel cepstrum of phoneme I, denoted as /I/5, whose p-value is
extremely small, seems to be highly discriminative for the accents Ant, Bra
against the accents Lim, E-FI and W-F1. In our speaker modeling, the three
correlated /I/5’s from three HMM states are all highly ranked by ANOVA,
implying they have a high chance to be selected even when the desired num-
ber of features is limited. But selecting more than one of /I/5’s features does
not largely increase the discrimination, as long as the set already holds one
/I/5. As a backward elimination method, SVM-RFE would throw away two
of these correlated features in an earlier elimination and just keep the most
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important one.

4.5. Frame based accent identification

In order to show the general applicability of the feature subset selec-
tion concept for difficult classification tasks such as accent identification, the
method is incorporated in a GMM accent classifier in which the cepstral fea-
ture stream is used directly as input, i.e. without the preliminary step of
speaker modeling. The diagram of the system is illustrated in‘'Figure 9. We
refer to this approach as the frame based system and to our speaker modeling
approach as the speaker based system.

e —

Frame based model 1,

PH — SGDy,

pH SGDg Feature
Frame base reduction
— phone model PH — SGD, y
Training PH — SGDg
™

speaker x;

Phonetic Speakgrlbased/ Feaft‘@
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speaker X,

Feature Max
Test . classifier
speaker reduction

Figure9: The diagram of frame based accent recognition

Frame based model K|N

We progressively eliminate the less relevant cepstral coefficients for some
or all phonemes and eventually the full contribution of certain phonemes in
the likelihood computation. Which features and phoneme states to eliminate
is derived from the speaker based system. The training procedure is text
dependent in the same way for both systems. For each phoneme in each
accent a single Gaussian model is built. Frame based log-likelihoods are
added and a simple max-classifier is used. Eliminating dimensions in this
frame based system may be interpreted as follows: eliminated features in
specified phonemes are modeled by a global mean and variance instead of a
class (accent) based one. As the contribution to the likelihood is the same in
all accent models, they do not contribute to the discrimination and do not
need to be computed.

In Figure 10 we compare the results for 5-class forced accent identification
using a frame based classifier and a speaker based system with SGD as the
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Comparison of the performance of the frame based system and the speaker based system
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Figure 10: Identification accuracy of the speaker based versus the frame based SGD system
as a function of the size of reduced feature set dimension.

classifier for different numbers of selected features. The number of model
parameters in the two systems is the same. The effect of feature subset
selection is highly similar for the frame based and speaker based systems,
i.e. the optimal performance is achieved when 60-200 features are retained
from the‘original 1326. On average the speaker based system is about 10%
relative better than the frame based system.

Incorporating phonetic knowledge into the system significantly enhanced
results‘over using one large brute force GMM per accent with the same num-
ber of parameters. Without phonetic information and without any feature
selection a brute force GMM based classifier only obtains a performance of
less than 30% (see Table 1). The best frame based system with feature se-
lection and phonetic supervision reaches an accuracy of less than 65% while
the best speaker based system achieves an accuracy above 70%. As in both
the frame based system and the speaker based system, only a single Gaus-
sian distribution is used to model accent dependent phonemes, or speaker
vectors, the models are very similar. The means are almost identical in both
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systems, while the variances are quite different. However this is not the cru-
cial difference between the frame and speaker based systems. The better
performance of the speaker based system comes from the embedded tempo-
ral normalization. In the speaker based systems phones are weighted equally
(assuming there were enough observations), while in the frame based sys-
tems phones will contribute proportional to the number of observed frames
for each phoneme. We verified this by following simple experiment: When
weighting the score of each phoneme in the speaker based system according
to their observed number of frames we obtained results that were fully in line
with the frame based system.

4.6. Text independent experiments

In order to go from a single brute force GMM per aceent without phonetic
knowledge to a frame based system or to our elassifier using a speaker model,
we rely on a phonetic annotation of the incoming speech obtained in a text
dependent manner. This may only be possible under very specific circum-
stances. Therefore we should investigate how good the system performs in
a text independent way for a fairer ecomparison with the brute force GMM
classification system. The best phonetic segmentation will then be obtained
from a large vocabulary speech recognition system. If speech recognition is
the goal, such a system is obviously available. In other situations the over-
head involved in running such a system may not be acceptable. Therefore
as an alternative to'supervision we obtain the phonetic segmentation from
a phoneme recognizer for both the training set and the test set, including
apart from the‘acoustic model only a phoneme trigram. The phoneme recog-
nition rate on‘our database was 69.9%. As illustrated in Figure 11, the
degradation from a reference text dependent SGD system to a speaker based
text independent SGD system is about 10%, but the speaker based system
still substantially outperforms the frame based system. The feature selection
done by ANOVA consistently boosts the accuracies of accent identification
with about a 50% relative improvement.

5. Final Discussion and Conclusions

In this paper, we have shown that feature subset selection significantly
improves accent identification. The best performance is obtained when only
10% of the parameters in the raw models are retained for classification. Under
these conditions of optimality, about one third of the phonemes are not taken

28



Comparison of the frame-based system and the speaker-based system in the text independent mode
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Figure 11: Identification accuracy of the speaker based versus a frame based SGD system
as a function of the reduced feature set dimension in the text independent case.

into account in the classification process. Low order cepstral coefficients also
seem to be much/more discriminative than high order ones.

We found that ANOVA is a quick and efficient method to evaluate the
significance ‘of each feature individually. Therefore it is ideally suited as an
initial feature filter independent of the back-end classifier. However its inabil-
ity to take dependencies between features into account makes it suboptimal
forfeature selection when a very small number of features is desired. In this
case embedded feature selection methods, such as SVM-RFE, lead to higher
performance, be it at a high computational cost. When the number of se-
lected features increases, there is no significant difference between the three
feature selection techniques. Among the different classifiers tested (GMM,
LDA and SVM) the latter is to be preferred due to its inherent lower sen-
sitivity to dimensionality and implicitly making it less sensitive to feature
selection.

While feature selection is a critical component of our AID classifier, nu-
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merous other system design options play an important role as well. For
example, in previous work (Ghesquiére and Van Compernolle, 2002), for-
mants of sonorant phonemes were used as features. Although formants have
the advantage of being robust against disturbances, they can not be reliably
estimated and they are bad descriptors for non-sonorant phonemes. Their
performance is therefore 15%-20% worse than that of cepstra. In our exper-
imental designs, we also considered the first and second order derivatives of
the cepstra. But as they only caused a marginal improvement for significantly
increased computational complexity, we did not present their perfermance in
our experiment section. In Table 4 we summarize the observed contribution
of each of these choices for our problem. We believe that similar dependencies
and trends will be observed on other tasks and databases in other languages.
However the exact numbers may differ substantially, mainly depending on
three aspects: the difficulty of the task, the amount of training data and the
back-end classifier.

usage of feature selection 20-50%
cepstra on all phonemes vs. formants on sonorants 15-20%
speaker vs. frame based 10%

3 states per phonemewvs. 1 state per phoneme 5-10%
inclusion of delta-cepstra < 2%
text dependent vs: text independent 10-20%

Table 4: AID performance degradation by different experiment’s setups

Finally we want to address the question to what degree the feature se-
lectionis.due to limited training data or to the presence of truly irrelevant
features. From a Bayesian perspective there is no need to remove features
under the assumption of infinite amounts of training data. In practical cir-
cumstances finite amounts of data lead to estimation errors and irrelevant
features will have different values for different classes hence inducing noise
into the classifier. In the case of accent identification we spread our speakers
over the different accent classes. Moreover we have argued that only part of
the available speech will contribute to accent recognition. Hence, if speech
recognition in general is plagued by sparse data problems, accent recognition
will fare significantly worse. Therefore our belief is that the effect of larger
databases will be as follows: more features might be discovered as being rel-
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evant and the net result of feature selection may be less dramatic than for
the database that we used as the estimation variance of irrelevant features
gets smaller with more training data. Nevertheless we believe that feature
selection will be beneficial, especially for highly confusing accents as their
recognition is more hampered by small amounts of classification noise than
in cases when the intrinsic differences are larger.
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APPENDIX A

phoneme | Dutch example | Close corresponding | sonorant
77 /En/glish1 example

p p/aars p/urple

b /b/al /b/all

t /t/afel /t/able

d /d/ansen /d/ance

k /k/iel /k/eel

g za/k/doek /g/un

f /f/ilm /f/ilm

v ?V//eel fv//ery

S s/inds s/ome

z /7 eel /z/eal

il /sj/aal /sh/ort

3 gara/g/e mea/s/ure

X a/ch/ter lo/ch/

¥ /g/eval

h /h/uren /h/orse

m /m/es /m /ess X

n /n/acht /u/ight X

1 ri/ng/ ri/ng/ X

1 /1/eef /1/ive X

r /r/ond a/r/ound X

] /i/ij /y/ou X

W /w/andel Jw/alk X

I p/i/t b/i/t X

€ p/e/n p/e/n X

a n/a/t X

6) 1/o/g b/ou/ght X

Y n/u/t X

9 d/e/ /a/bout X

i d/ie/r /ea/se X

e v/ee/l X

a m/aa/n X

o v/oo/r X

y m/uu/r X

u d/oe/n p/u/t X

; N N X

€1 ij/s h/a/te X

ol k/ou/s b/oa/t X

el h/ui/s X

Table 5: The Dutch phonemes. A Dutch example and, if possible, a close corresponding
English example is given.
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