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In this work a fractional Newell-Whitehead equation with initial condition is solved by Adomian decomposition method for two cases time-fractional order and time-space fractional order respectively. The fractional derivative are described in Caputo sense. The obtained solutions are presented in the form of convergent series then the numerical solutions are plotted and discussed in detail.

Introduction

Fractional differential equations have been the focus of many studies due to their frequent appearance in various applications in fluid mechanics, viscoelasticity, biology, physics and engineering [START_REF] Samko | Fractional Integrals and Derivatives: Theory and Applications[END_REF]. Consequently, considerable attention has been given to solve this kind of equations. Unfortunately, most of them do not have exact solutions. Recently, several numerical methods have been introduced for this purpose, such as: differential transform method (DTM) [START_REF] Odibat | A generalized differential transform method for linear partial differential equations of fractional order[END_REF], homotopy analysis method (HAM) [START_REF] Odibat | A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations[END_REF], homotopy perturbation method (HPM) [START_REF] Momani | Homotopy perturbation method for nonlinear partial differential equations of fractional order[END_REF], variational iteration method (VIM) [START_REF] Momani | Numerical approach to differential equations of fractional order[END_REF] and Adomian decomposition method (ADM) [START_REF] Al-Khaled | An approximate solution for a fractional diffusion-wave equation using the decomposition method[END_REF], etc. The Adomian decomposition method introduced in 1980 [START_REF] Adomian | A review of the decomposition method in applied mathematics[END_REF] by George Adomian, is one of the most frequently used for computing solutions of a large class of linear and nonlinear ordinary and partial differential equations. In this method the solution is considered as the sum of an infinite series, rapidly converging to an accurate solution without any need for linearization or discretization. In outline of this work is as follows. We begin by giving some preliminary definitions on fractional calculus, then we recall briefly the basic principle of the Adomian decomposition method. In section 4 the ADM is applied to the fractional Newell-Whitehead equation to obtain the exact solutions of it some concluding remarks are also given.

Preliminaries and notations

In this section, we describe some necessary tools of the fractional calculus theory (fractional integration and differentiation) required for the reminder of this work. We stress that there are many books and papers that develop fractional calculus and various related definitions, we refer the interested reader to [START_REF] Oldham | The Fractional Calculus[END_REF] [START_REF] Podlubny | Fractional Differential Equations[END_REF] and the references therein.

Throughout this paper, the derivatives are considered in the Caputo sens, taking the advantage that such definition allows traditional initial and boundary conditions to be included in the formulation of the considered problem.

Definition 2.1 A real function f (x), x > 0, is said to be in the space C µ , µ ∈ R if there exits a real number λ > µ such that f (x) = x λ g(x), where g(x) ∈ C[0, ∞) and it is said to be in the space C m µ if and only if

f (m) ∈ C µ for m ∈ IN . Definition 2.2
The Riemann-Liouville fractional integral operator of order α of a real function f (x) ∈ C µ , µ ≥ -1, is defined as

J α f (x) = 1 Γ(α) x 0 (x-t) α-1 f (t)dt, α > 0, x > 0 and J 0 f (x) = f (x). (1)
The operator J α has some proprieties, for α, β ≥ 0, γ, µ ≥ -1 :

• J α J β f (x) = J α+β f (x), • J α J β f (x) = J β J α f (x), • J α x ξ = Γ(ξ+1) Γ(α+ξ+1) x α+ξ .
Next we define the Caputo fractional derivatives D α of a function f (x) of any real number α such that m -

1 < α ≤ m, m ∈ IN , for x > 0 and f ∈ C m -1 in the terms of J α as D α f (x) = J m-α D m f (x) = 1 Γ(m -α) x 0 (x -t) m-α-1 f (m) (t)dt (2)
and has the following proprieties for m -

1 < α ≤ m, m ∈ IN , µ ≥ -1 and f ∈ C m µ • D α J α f (x) = f (x), • J α D α = f (x) -m-1 k=0 f (k) (0 + ) x k k! , for x > 0
In this paper, the Caputo derivative is taken as the following Definition 2.3 For m to be the smallest integer that exceeds α, the Caputo time-fractional derivative operator of order α > 0 is defined as

D α t u(x, t) =          1 Γ(m -α) t 0 (t -s) m-α-1 ∂ m u(x, s) ∂s m ds, for m -1 < α ≤ m ∂ m u(x, t) ∂t m for α = m ∈ N, (3) 
and the Caputo space-fractional derivative operator of order β > 0 is defined as

D β x u(x, t) =          1 Γ(m -β) x 0 (x -τ ) m-β-1 ∂ m u(τ, t) ∂τ m dτ, for m -1 < β ≤ m ∂ m u(x, t) ∂t m for α = m ∈ N, (4) 
3 The Adomian decomposition method

The principles of the Adomian decomposition method and its applicability for various kinds of differential equations can be found in [START_REF] Adomian | A review of the decomposition method in applied mathematics[END_REF][2][3] [START_REF] Shawagfeh | Analytical approximate solutions for nonlinear fractional differential equations[END_REF][15] and related references. We consider the general class of time-space fractional KPP equations of the form

D α t u = D β x u + φ(u) t > 0 0 < α, β ≤ 1 (5) with the initial condition u(x, 0) = f (x) ( 6 
)
Where φ is a nonlinear function of u, differentiable for 0 ≤ u ≤ 1, φ(0) = 0, φ(u) > 0 for 0 < u < 1, φ(0) = 0 and φ (0) > φ (u) for 0 < u < 1; of which the Fisher n the Newell-Whitehead equations are special cases. We recall that such equation has the same origin as the Zeldovich equation. The Adomian method is based on applying the Riemann-Liouville integral operator J α on both sides of the eq.( 5) which yields

u(x, t) = u(x, 0) + J α [ψ(u) + φ(u)], (7) 
where ψ(u) = D β x u. The method assumes a series solution for u(x, t) given by

u(x, t) = ∞ n=0 u n (x, t), (8) 
where th nonlinear term φ(u) is decomposed as the following

φ(u) = ∞ n=0 A n (u 0 , ..., u n ), (9) 
where A n are called Adomian polynomials, which can be calculated for all forms of φ(u) throughout the general formula given by Adomian [START_REF] Adomian | A review of the decomposition method in applied mathematics[END_REF]:

A n = 1 n! d n dλ n φ( n k=0 λ k u k ) λ=0 . (10) 
Substitution of ( 8) and ( 9) in ( 7) leads to

u(x, t) = u(x, 0) + ∞ n=0 J α A n + ∞ n=0 J α ψ(u n ). ( 11 
)
From the above equation, the terms of u n (x, t) follows immediately

u 0 (x, t) = u(x, 0) = f (x), u 1 (x, t) = J α A 0 + J α ψ(u 0 ), u 2 (x, t) = J α A 1 + J α ψ(u 1 ) . . . u n+1 (x, t) = J α A n + J α ψ(u n ) (12) 
Remark 3.1 The convergence of the series (8) has been investigated both theoretically and numerically in [START_REF] Cherruault | Decomposition methods: a new proof of convergence[END_REF].

Applications and discussions

In order to illustrate the efficiency of the method, the following two examples will be discussed. First we will consider a time-fractional Newell-Whithead equation, while the second deals with the same equation of both space and time fractional derivative.The obtained results are calculated using the symbolic calculus software Maple 13.

Exemple 1.

Consider the time-fractional Newell-Whitehead equation

D α t u = u xx + u -u 3 , (13) 
with the initial condition

u(x, 0) = u 0 (x, t) = sinh x √ 2 1 + cosh x √ 2 . ( 14 
)
The exact solution for eq.( 13), for the case α = 1, is given by

u(x, t) = e x √ 2 -e -x √ 2 e x √ 2 + e -x √ 2 + 2e -3 2 t , (15) 
Equation ( 13) when α = 1, called also amplitude equation, arises after carrying out a suitable normalization in the study of thermal convection of a

f 0 = u 0 , f 1 = -f 3 0 + f 0 + f 0 , f 2 = -f 2 0 f 1 + f 1 + f 1 , f 3 = -3f 0 f 2 1 Γ(2α + 1) Γ(α + 1) 2 -3f 2 0 f 2 + f 2 + f 2 , f 4 = -f 3 1 Γ(3α + 1) Γ(α + 1) 3 -6f 0 f 1 f 2 Γ(3α + 1) Γ(α + 1)Γ(2α + 1) -3f 2 0 f 3 + f 3 + f 3 . (19) 
Then the solution in series form is given by

u(x, t) = f (x) + f 1 t α Γ(α + 1) + f 2 t 2α Γ(2α + 1) + f 3 t 3α 3Γ(α + 1) + ... (20) 
We stress that only four terms of the decomposition series were used for the approximate solution (20). 

Exemple 2.

In this example we consider the Newell-whitehead equation both time and space fractional derivative, namely

∂ α u ∂t α = ∂ β u ∂x β + u -u 3 with 0 < α ≤ 1 and 1 < β ≤ 2, ( 22 
)
with a simple initial condition u(x, 0) = x 2 . In analogous way, the ADM analysis gives

u 0 = u(x, 0), (23) 
and

u n+1 = J α (A n + u n + D β x (u n )). ( 24 
)
With the aid of the above recursive relationship equations and the Adomian polynomials, the first three terms of u(x, t) follow immediately upon setting

u 0 (x, t) = u(x, 0) := f (x), u 1 (x, t) = J α (A 0 + u 0 + D β x u 0 ) = f 1 (x) t α Γ(α + 1) , u 2 (x, t) = J α (A 1 + u 1 + D β x u 1 ) = f 2 (x) t 2α Γ(2α + 1) , u 3 (x, t) = J α (A 2 + u 2 + D β x u 2 ) = f 3 (x) t 3α Γ(3α + 1) , (25) 
where the functions (f k ) k=0..3 are given by

f 0 = u 0 , f 1 = f 2 0 + u 0 + D β x f 0 , f 2 = -f 2 0 f 1 + f 1 + D β x f 1 , f 3 = -3f 0 f 2 1 Γ(2α + 1) Γ(α + 1) 2 -3f 2 0 f 2 + f 2 + D β x f 2 . (26) 
The solution in series form reads

u(x, t) = f (x) + f 1 t α Γ(α + 1) + f 2 t 2α Γ(2α + 1) + f 3 t 3α 3Γ(α + 1) + ... (27) 
For this example, only three terms of the decomposition series were used for the approximate solution. 

Conclusion

In this paper, the Adomian decomposition method was applied for solving time-and space-fractional Newell-Whitehead equation with initial conditions. The analytical results have been given in terms of a power series with easily computed terms. The fractional derivative was defined in the Caputo sense. The results show that the solution strongly depends on the fractional derivation order parameter.
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 1 Figure 1: The numerical solutions of u(x, t): (a) by ADM (20) and (b) the exact solutions given in (15).
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 12 Figure.1 shows the evolution result for the Newell-Whitehead equation when α = 1: (a) corresponds to the solution obtained by ADM (20) and (b) corresponds to the exact solution given in (15). It is easy to see that the two solutions look almost identical. Figure.2 (a) and (b) depict the evolution solution of the cases of α = 0.5 and α = 0.05 respectively. It is to be noted

Remark 4 . 1

 41 The case of a Newell-Whitehead equation with space-fractional derivative ∂u ∂t = ∂ β u ∂x β + u -u 3 with β ∈ (0, 1]. (21) can be handled similarly.
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 3 Figure 3: The numerical solutions of u(x, t): (a)α = 1 etβ = 1.2, (b): α = 0.75 et β = 1.75.
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 3 Figure.3 shows the evolution result for the Newell-Whithead equation with time-space fractional derivatives: (a) α = 0.20, β = 1.2 and (b) α = 0.75, β = 1.75. As it can be seen the profile of u(x, t) for small value of α (resp. β) is quite different from one of large values of α (resp. β).

fluid heated from below. Considering the perturbation from a stationary state, the equation describes the evolution of the amplitude of the vertical velocity if this varies slowly [START_REF] Gilding | Travelling waves in nonlinear diffusionconvection reaction[END_REF]. According to the previous section, we substitute the initial condition ( 14) into ( 12) and usig eq. ( 10) to get the Adomian polynomials, yields the following

Using the above to get the following first four terms of the decomposition series of u(x, t)

where the Adomian polynomials are defined

and the functions (f k ) k=0..4 are given by