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Abstract. In this paper, we introduce a modified variational iteration method to solve
the homogeneous Smoluchowski’s coagulation equation. The approximate solutions are
compared with the exact ones. The obtained results derived from the proposed method
are shown graphically and discussed in detail. We conclude that the Laplace-variational
iteration method (LVIM)is a powerful and easy-to-use technique for handling partial dif-
ferential equations.
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1 Introduction

Nonlinear ordinary or partial differential equations arise in various fields of science, physics
and engineering. The wide applicability of these equations is the main reason why they
have gained so much attention from many mathematicians and scientists. Unfortunately
they are sometimes very difficult to solve, either numerically or theoretically. There are
many methods to obtain approximate solutions of these kinds of equations. The variational
iteration method (VIM) is powerful in investigating the approximate or analytical solutions
of the nonlinear ordinary and partial differential equations. This method is proposed by
the Chinese mathematician He in 1997, as a modification of a general Lagrange multiplier
method proposed by Inokuti et al. in 1978. It has been shown that this procedure is a
powerful tool for solving various kinds of problems [3][4]. The physical process of coagula-
tion or coalescence of particles is often modeled by Smoluchowski’s coagulation equation.
This equation is a mean-field model for the growth of clusters (particles, droplets, etc.)
by binary coalescence; that is, the driving growth mechanism is the merger of two par-
ticles into a single one. Analytical solutions for this equation are known only for a very
limited number of kernels (constant, additive or multiplicative)[2]. Therefore, numerical
methods have to be used to describe the time evolution of the cluster-size distribution. In
this work we present an analytical-numerical technique (LVIM) for the solution of the ho-
mogeneous Smoluchowski’s coagulation equation with both of constant and multiplicative
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kernels. The computations associated with the examples in this work were performed by
using the software Maple 13.

2 Preliminaries

In this section we recall briefly the basic concept of (VIM). We begin with considering a
differential equation in the general form,

Lf(x, t) +Nf(x, t) = g(x, t), (2.1)

where L is a linear operator, N a nonlinear operator and g(x, t) is the source term. Ac-
cording to the variational iteration method[3], one can construct a correction functional as
follow

fk+1(x, t) = fk(x, t) +

∫ t

0

λ(τ)[Lfk(x, τ) +Nf̃k(x, τ)− g(x, τ)]dτ, (2.2)

where λ is a general Lagrangian multiplier, the subscript k denotes the kth order approx-
imation, f0(x, t) is an initial approximation which can be known according to the initial
conditions or the boundary conditions, and the function f̃k is a restricted variation which
means δf̃k = 0. It is clear that the successive approximation fk, k ≥ 1 can be established
by determining a general Lagrangian multiplier λ, which can be identified optimally via
the variational theory. The successive approximations fk+1, k ≥ 0 of the solution f(x, t)
will be readily obtained upon using the obtained Lagrange multiplier and by using any
selective function f0(x, t). When λ is known, then other several approximations fk, k ≥ 1,
follow immediately. Consequently, the exact solution can be obtained by using

f(x, t) = lim
n→∞

fk(x, t) (2.3)

3 Applications and discussion.

The Smoluchowski’s coagulation equation without diffusion part [1, 5, 7, 9] is defined as
follows











∂f

∂t
= C+(f)− C−(f), (x, t) ∈ R+

2,

f(x, 0) = f0, x ∈ R+,

(3.4)

where

C+(f) =
1

2

∫ x

0

K(x− y, y)f(x− y, t)f(y, t)dy

C−(f) =

∫

∞

0

K(x, y)f(x, t)f(y, t)dy,

(3.5)

and f0 is a known initial data, f(x, t) is the density of cluster of mass x per unit volume
at time t.
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3.1 Example 1.

Consider the following Smoluchowski coagulation equation [1, 5, 9] with constant kernel
K(x, y) = 1

∂f

∂t
=

1

2

∫ x

0

f(x− y, t)f(y, t)dy −
∫

∞

0

f(x, t)f(y, t)dy, (3.6)

f0 := f(x, 0) = exp(−x). (3.7)

According to [5], eq.(3.6),(3.7) has an exact solution under the form

f(x, t) = N2(t) exp(−N(t)x), (3.8)

with

N(t) =
2M0

2 +M0t
and M0 = 1, (3.9)

for (x, t) ∈ R
2
+, where M(t) and N(t) are the total mass of clusters and the total number

of particles in time t ≥ 0 respectively, defined by:

N(t) =

∫

∞

0

f(x, t)dx and M(t) =

∫

∞

0

xf(x, t)dx. (3.10)

Applying the Laplace transform to eq.(3.6),(3.7) yields

∂F (ξ, t)

∂t
=

1

2
F (ξ, t)2 − F (ξ, t)

∫

∞

0

f(y, t)dy (3.11)

where F denotes the Laplace transform of the function f .
By the variational iteration method described in the previous section, we find that the
Lagrange multiplier λ = −1, then the iteration formula for equation (3.11) reads

Fk+1(ξ, t) = Fk(ξ, t)−
∫ t

0

[

∂F

∂s
(ξ, s)− 1

2
Fk(ξ, s)

2 + Fk(ξ, s)

∫

∞

0

fk(y, s)dy

]

ds, (3.12)

Accordingly, we obtain the following successive approximations

F0(ξ, t) =
1

ξ + 1
,

F1(ξ, t) =
1

ξ + 1
− t

ξ + 1
+

t

2(ξ + 1)2
,

F2 = (ξ, t) =
1

1 + ξ
− t

1 + ξ
+

1

2

t

(1 + ξ)2
− 1

24

(1 + 4ξ + 6ξ2 + 4ξ3)t3

(1 + ξ)4
− 1

16

(−4− 16ξ − 24ξ2 − 12ξ3)t2

(1 + ξ)4
,

.

.

.

(3.13)
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By applying the inverse Laplace we get from (3.13)

f0(x, t) = exp(−x),

f1(ξ, t) = exp(−x)
(

1 +
t(x− 2)

2

)

,

f2(ξ, t) = exp(−x)
(

2 +
t(x− 2)

2
+

t2

8
(6− 6x+ x2) +

t3

12
(
1

12
x3 − x2 + 3x− 2)

)

,

.

.

.

(3.14)

Where the fk are the terms of the decomposition of f(x, t), then the VIM solution for (3.6)
reads

f(x, t) = exp(−x)[2 + t(x− 2)

2
+

t2

8
(6− 6x+ x2) +

t3

12
(
1

12
x3 − x2 + 3x− 2) + ... (3.15)

3.2 Example 2.

we now consider equation 3.4 with a multiplicative kernel as K(x, y) = xy as the following

∂f

∂t
=

1

2

∫ x

0

(x− y)yf(x− y, t)f(y, t)dy −
∫

∞

0

xyf(x, t)f(y, t)dy, (3.16)

and

f0 := f(x, 0) =
exp(−x)

x
(3.17)

Following [5], eq.(3.16) has the following exact solution

f(x, t) = exp(−Tx)I1(2xt
1/2

x2t1/2
(3.18)

where T =







1 + t, for t ≤ 1,

2
√
t, otherwise

and I1 is the modified Bessel function of the first kind

I1(x) =
1

π

∫ π

0

exp(x cos θ) cos θdθ. (3.19)

In the present example, the total volume M1(t) defined by (3.10) satisfies

M1(t) =







1 for t ∈ [0, 1]

t−1/2, if t ≥ 1,

(3.20)
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(a) (b)

(c)

Figure 1: (a): The surface plot of f(x, t) solution of (3.6): (a) exact solution (b) the
approximate solution and (c) the absolute error |f(x, t)− fapp(x, t)|.
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and the gelation phenomenon takes place at t = 1.
In similar way, Applying the inverse Laplace transform to eq.(3.16),(3.17) gives f1 that
will give f2, the determination of f2 leads to find f3, and so on. This in turn will allows to
complete determination of the components of fk, k ≥ 0, until convergence of the obtained
series. The approximate solution is given by

f(x, t) =
1

261534873600
exp(−x)(726485760t3x2(2x3 − 25x2 − 60 + 80x)

+4324320t4x4(798x− 1050− 161x2 + 9x3) + ....

(a) (b)

(c)

Figure 2: The surface plot of f(x, t) solution of (3.16): (a) exact solution (b) the approxi-
mate solution and (c) the absolute erreur |f(x, t)− fapp(x, t)|.

From figures.1 and .2 We notice that the method presented by Yildirim [9] (homotopy
perturbation method), the maximum absolute error for example.1 is 14.10−3, while the
maximum absolute error can be less than 4.10−3 using the present method. For example.2
the maximum absolute error found in [9] is 14.10−3, while the maximum absolute error
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is less than 6.10−4 using the present method. We stress that only three terms of the
decomposition series were used for the approximate solutions.

4 Conclusion

In this paper, a combined form of the Laplace transform method with the variational
iteration method is presented, and used to find solutions to the homogeneous Smoluchoski
coagulation equation. The obtained solutions are compared to the exact solutions and
show the high accuracy of the proposed method. Consequently the (LVIM)is promising
and can be applied for other nonlinear equations that appearing in various scientific fields.
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