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Abstract: This paper deals with the controller design for systems described by Partial
Differential nonlinear Equation (PDE) of Saint-Venant. The proposed approach is based on
Multi-Models concept which takes into account Linear Time Invariant models defined around
a set of operating points. This method allows to describe the dynamic of this nonlinear system
over a wide operating range. By the means of an Internal Model Boundary Control (IMBC), the
design of a Proportional Integral (PI) feedback is performed through Linear Matrix Inequality
(LMI). The method is applied to simulation and also compared to previous experimentations
on a micro-channel, illustrating the new theoretical results developed in the paper.

1. INTRODUCTION

Regulation of open channels represents an economic and
environment interest and many research are done in this
area. Indeed, water losses in open channels, due to ineffi-
cient management and control, may be large. In order to
deliver water, it is important to ensure that the water level
and the flow rate in the open channel remain at certain
values [21]. The difficulty of this control system is that
only the gates positions are able to meet performance
specifications so a specific design with boundary control
laws satisfying the control objectives is required.

This problem has been previously considered in the liter-
ature using a wide variety of technics see [20, 29]. Some of
them take into account the uncertainties and apply robust
control approach (see [16, 17] e.g.). Studying directly the
nonlinear dynamics is also possible as in [30, 15, 9]. Recent
approaches consider the distributed feature of the system.
Using the Riemann coordinates approach on the Saint-
Venant equations, stability results are given in [13] for a
system of two conservation laws, and for system of larger
dimension. Lyapunov technics have been used in [5, 9].

In practice, process industries as chemical, water treat-
ment processes are characterized by complex processes
which often operate in multiple operating regimes. It is
often difficult to obtain nonlinear models that accurately
describe plants in all regimes. Also, considerable effort
is required for development of nonlinear models. An at-
tractive alternative to nonlinear technique is to use a
multi-linear model strategy. Multi-linear models methods
are based on the partitioning of the operating range of
a system into separate regions and applying local linear
models to each region [22]. The Multi-Models structure is
well adapted for nonlinear systems because this structure
allows to determine a set of linear models defined around
some predefined operating points. Each local model (sub-
model) is defined as a LTI dynamic system defined for
a specific operating point. The Multi-Models philosophy
is based on weighting functions which ensure the transi-

tion between the different locals models. These functions
represent the degree of validity of each local models and it
depends on the system inputs and outputs which vary with
time. The multi-model approach has been often used in
recent years for modelling and control of nonlinear systems
[27, 24, 2] and for fault diagnosis [3, 11, 26]. In the Multi-
Models concept, some authors speak about gain scheduling
strategy which is well detailed in [14] or for interpolated
controllers or switching controllers [23, 1].

The use of Multi-Models representation for stability study
of systems described by nonlinear PDE is not present
in the literature. More generally, common approaches
are based on a finite dimensional approximation of the
nonlinear PDE and adaptive control. The stability for such
systems is still an open problem. In this paper, an analysis
of the stability of the nonlinear PDE of Saint-Venant is
proposed by the use of the Multi-Models and IMBC [28]
structures. A previous work from the authors has been
published with the use of an Integral control. The goal of
this paper is to extend the theory with the use of a PI
Control. The stability in Multi-Models framework is often
performed by Linear Matrix Inequality (LMI) due to the
effectiveness for calculating a gain solution for multiple
models [18, 25].

The paper is organized as follows: firstly, the Saint-Venant
equations are presented as well as the control problem.
The Internal Model Boundary Control is explained and
the physical constraints are given. Secondly, the linearized
systems are developed around equilibrium sets which de-
pend on the space variable. Their insertion into the LMI
formalism are also described into this second part. The
third part of the paper is dedicated to the design of the
feedback gain by LMI which ensures the stability of the
system: a Proportional Integral (PI) controller is imple-
mented using a LMI approach and the local stability of
each systems. The last section is dedicated to the simu-
lations and comparison with previous experimentations.
Comparisons between initial experimental results using
a PI-controller (done some years ago) and simulations



with the new PI-controller using the LMI gain calculated
through this paper, are realized.

2. PROBLEM STATEMENT ABOUT CHANNEL
REGULATION

Let us consider the following class of water channels
represented on the figure (1), i.e. a reach of an open
channel delimited by underflow and/or overflow gates
where:

• Q(x, t) is the water flow rate,
• Z(x, t) is the height of water channel,
• L is the length of the reach taken between the

upstream x = 0 and the downstream x = L,
• U0(t), UL(t) are the opening of the gates at upstream

and downstream.

Fig. 1. Channel scheme: two underflow gates

The regulation problem concerns the stabilization of the
water flow rate and/or the height of the water around an
equilibrium for a reach denoted by (ze(x), qe(x)). A linear
model with variable coefficients can be deduced from the
nonlinear PDE, in order to describe the variation of the
water level and flow on an open channel. Let recall these
models of [6].

2.1 A model of a reach

We suppose that the channel has a sufficient length L
such that we can consider that the lateral movement is
uniform. Nonlinear PDE of de Saint-Venant which describe
the channel are the following [12, 19]:

∂tZ =−∂x
Q

b
, (1)

∂tQ =−∂x(
Q2

bZ
+

1

2
gbZ2) + gbZ(I − J), (2)

Z0(x) = Z(x, 0), Q0(x) = Q(x, 0), (3)

where I is the slope, b is the channel width, g is the gravity
constant.
J is the friction slope from the formula of Manning-
Strickler and R is the hydraulic radius. J and R are defined
such that:

J =
n2Q2

(bZ)2R4/3
, R =

bZ

b + 2Z
. (4)

The different limits conditions bring us to consider 2
control cases (mono or multi variable control). Here, the
control of two underflow gates is considered.
Multi-variable control :

The equation of the upstream condition of the reach
(x = xup) is given by Q(xup, t) = Uup(t)Ψ1(Z(xup, t)),

with Ψ1(Z) = K1

√
2g(zup − Z). The other control at

downstream of the reach, i.e. in x = xdo (Fig. 1) is given
by: Q(xdo, t) = Udo(t)Ψ3(Z(xdo, t)), where Ψ3(Z) =

K2

√
2g(Z − zdo) and Udo(t) is the downstream control of

the reach, zdo is the water height on downstream of the
gate (cf. figure 1).

Remark 1. Upstream and downstream depend of the con-
sidered reach, it is the same thing for abscissa and gates.

2.2 A regulation model

An equilibrium point of the system verifies the following
equations:

∂xqe = 0

∂xze = gbze

I + Je + 4
3Je

1
1+2ze/b

gbze − q2
e/bz2

e

, (5)

Remark 2. The fluvial case is considered and it follows
that:

ze > 3

√
q2
e/(gb2). (6)

Let denote that qe is constant but that ze depends of vari-
able space. The linearized model around an equilibrium
point (ze(t) qe(t))

t is, with

ξ(x, t) = (z(x, t) q(x, t))t,∀t > 0, x ∈ Ω =]0, L[

the linearized state variables:

∂tξ(x, t) = A1(x)∂xξ(x, t) + A2(x)ξ(x, t) (7)

ξ(x, 0) = ξ0(x)

q(xup) = uup,e∂zΨ1(ze(xup))z(xup) + uupΨ1(ze(xup)),

q(xdo) = udo,e∂zΨ3(ze(xdo))z(xdo) + udoΨ3(ze(xdo))

∀t > 0, where uup,e, udo,e are the openings gates for the
upstream and downstream at the equilibrium and uup(t),
udo(t) are the variations of these openings gates to be
controlled. The matrices A1(x), A2(x) are given by:

A1 =

(
0 −a1

−a2 −a3

)
, A2 =

(
0 0
a4 −a5

)
, (8)

with a1(x) = 1/b, a2(x) = gbze(x)−
q2

e

bz2
e
(x) , a3(x) = 2qe

bze(x) ,

a5(x) = 2gbJe(x)ze(x)
qe

, a4(x) = gb(I + Je(x) +
4

3
Je(x)

1+2ze(x)/b ).

The control problem is to find the variations of uup(t) at
extremity x = xup and udo(t) at the extremity x = xdo

of the reach such that downstream water level, z(xdo, t) =
z(L, t) (measured variables), track a reference signal r(t).
The reference signal r(t) is chosen for all cases or constant
or non-persistent (a stable step answer of a non-oscillatory
system).
In this paper, the control scheme based on the Internal
Model Boundary Control (IMBC) [8, 10] is adopted as
illustrated on figure (2). This control strategy integrates
the process model in real time and allows to regulate the
water height in all the points of the channel by taking into
account the error between the model and the system.

• Mf is the linear filtering model of finite dimension.



• Mr is the pursuit model which allows to set a dynamic
in regards of the fixed instruction r(t).

Fig. 2. IMBC structure: Internal Model Boundary Control

In order to control the water level over a wide operating
range, we consider a set of models established around
judicious operating points: each model is an approximation
of the process in a small interval of the operating range
and it should be activated to synthesize a control on this
interval. The idea is to construct a set of predefined models
in order to control the system over all the operating range.

2.3 A Multi-Models representation

The Multi-Models structure [26] allows to control the
system over a wide operating range because it takes into
account the different sub-models which can be activated
under different operating regimes [22, 26]. The represen-
tation of Saint-Venant’s PDE around N operating points
by the Multi-Models approach is defined by the following
equations:

∂tξ(x, t) =

N∑

i=1

µi(ζ(t))Ai(x)ξ(x, t),∀t > 0, x ∈ Ω (9)

Ai(x) = A1,i(x)∂x + A2,i(x) (10)

ξ0(x) = ξ(x, 0)

Fbξ(t) = Bbu(t) on Γ = ∂Ω,∀t > 0 (11)

• Ai(x) is the operator which corresponds to the ith

equilibrium state.
• ζ(t) is a function depending of some decision variables

directly linked with the mesurables states variables
and eventually to the input.

• µi(ζ(t)) is the weighting functions which determines
the sub-model for the control law synthesis depending
of the output height of the process zL.

The equation (9) describes the system dynamic in open
loop. In this representation, the state vector ξ(x, t) is not
explicitly linked with the boundary control. In order to
design an output feedback and to study the stability in
closed loop, an operator D of distribution of the boundary
control is introduced, it is a bounded operator such that
Du ∈ Ker(A), [8]:

ξ(x, t) = ϕ(x, t) + Du(t). (12)

This operator is naturally null in the domain of A(x) as it
is active only on the boundary of the domain. This change
of variables allows to get a Kalman representation of the
system:

∂tϕ(x, t) =

N∑

i=1

µi(ζ(t))
[
Ai(x)ϕ(x, t) − Du̇

]
(13)

ϕ(x, 0) = ϕ0(x) = ξ0(x) − Du(0). (14)

A Multi-Model approach can be developed and made
possible the study of the stability by the second theory
of Lyapunov.

In the following paragraph, we will focus on the synthesis
of a control law by LMI technics. An output feedback is
considered under a hypothesis of an integral control, so
as to do a synthesis of a gain by LMI which ensures the
stability of the system.

3. STABILITY STUDY BY LMI

In this part, the closed loop structure (Fig. 2) is studied
under a proportional integral feedback. The pursuit model
(Mr) and filtering model (Mf ) are not considered.

3.1 Closed-loop structure for a Proportional-Integral feedback

For a control with an output feedback, Ki and Kp are
defined as the gains, u (t) = Kp ε(t) + Ki

∫
ε(t)dt , it

follows that [8]:

ε(t) = r(t) − y(t) (15)

u(t) = Kp [r(t) − y(t)] + Ki

∫
[r(τ) − y(τ)]dτ (16)

with y(x, t) = Cξ(x, t) and equation (12), one deduce:

y(x, t) = Cϕ(x, t) + CDu(t) (17)

To clarify equations, the index i of the i-th equilibrium is
omitted in the following (e.g. A replace Ai). By replacing
y(x, t) into the control equation:

u = Kp [r − Cϕ − CDu] + Ki

∫
[r − Cϕ − CDu] dτ

⇒ u̇ = Kp [ṙ − Cϕ̇ − CDu̇] + Ki [r − Cϕ − CDu]

= Kp [ṙ − CAϕ] + Ki [r − Cϕ − CDu]

using the change of variables (12) and the fact that
Im(D) ⊂ Ker(A) (See [8]). Then u̇ is introduced into
the equation (13) and, the closed-loop expression is then

∂tϕ(x, t) =

N∑

i=1

µi(ζ(t))
[
DKi (CDu(t) − r(t)) − DKpṙ(t)

+ (Ai(x) + DKp CAi + DKiC) ϕ(x, t)
]

(18)

Let define:

K̃in = DKi K̃pr = DKp (19)

The equation (18) can be written as

∂tϕ =
N∑

i=1

µi(ζ)
[ (

Ai + K̃pr CAi + K̃inC
)

ϕ

+K̃in (CDu − r) − K̃pr ṙ
]
. (20)

The conditions which ensure the stability are ensured by
using a quadratic Lyapunov function [25, 4], in order
to guarantee the convergence of the water height to the
reference r(t), over the widest operating range.



3.2 Stability study with a quadratic Lyapunov function

Let us consider:

V (ϕ(x, t), t) = ϕT (x, t)Pϕ(x, t). (21)

The Multi-Models representation of the linearized PDE of
Saint-Venant defined by equation (20) is asymptotically
stable if there exists a matrix P > 0 such that 1 :

V̇ (ϕ, t) = ϕ̇T Pϕ + ϕT Pϕ̇ < 0, (22)

Then, it follows this inequality

[
N∑

i=1

µi(ζ)
[ (

Ai + K̃pr CAi + K̃inC
)

ϕ (23)

+K̃in (CDu − r) − K̃pr ṙ
]]T

Pϕ

+ϕT P

[
N∑

i=1

µi(ζ)
[ (

Ai + K̃pr CAi + K̃intC
)

ϕ (24)

+K̃in (CDu − r) − K̃pr ṙ
]]

< 0 (25)

The development of this inequality leads us to consider an
inequality for each i such that:

ϕT
[
Ai + K̃pr CAi + K̃inC

]T

Pϕ

+ϕT P
[
Ai + K̃pr CAi + K̃inC

]
ϕ

+[K̃in(CDu − r)]T Pϕ + ϕT P [K̃in(CDu − r)]

−(K̃pr ṙ)
T Pϕ − ϕT P (K̃pr ṙ) < 0 (26)

Remark 3. In a first approach, the particular case Kprop =

Kint is taken and so one get K̃pr = K̃in = K̃. Then
equation (26) become:

ϕT
[
Ai + K̃ CAi + K̃C

]T

Pϕ + [K̃(CDu − r)]T Pϕ

+ϕT P
[
Ai + K̃ CAi + K̃C

]
ϕ + ϕT P [K̃(CDu − r)]

−(K̃ṙ)T Pϕ − ϕT P (K̃ṙ) < 0 (27)

In the inequality (27), which defines the stability condition
of the system, the control parameter u appears in this
inequality and it is a difficulty for the design of the gain
K̃. Let us consider the following equality deduced from
(17):

CDu(t) − r(t) = Cξ(x, t) − r(t) − Cϕ(x, t) (28)

Proposition 1. If there exists a matrix P positive definite,
a matrix W and a scalar α such that the following state-
ments hold true:

a) ϕT PK̃ (CDu(t) − r(t)) ≤ αϕT PK̃Cϕ, (29)

b) AT
i P + PAi + WCi + CT

i WT < 0, with K̃ = P−1W
and with Ci = CAi + (1 + α)C
c) r is constant by piecewise,
then the system (13) with a proportional integral control
input (16) is stable. �

1 We suppose that ∂tψ = ψ̇ whatever the function ψ.

Proof 1. Only a sketch of the proof is given here. For the
integral case, one can found it in [7].

Let consider the quadratic Lyapunov function

V (ϕ(x, t), t) = ϕT (x, t)Pϕ(x, t)

then one can wrote V̇ (t) < 0 such that (27) can be upper
bounded. Indeed, the use of inequality (29) implies that
(the same is done for the transposed expression)

ϕT P
[
Ai + K̃ CAi + K̃C

]
ϕ + ϕT P [K̃(CDu − r)]

−ϕT P (K̃ṙ) < ϕT P
[
Ai + K̃ CAi + (1 + α)K̃C

]
ϕ

−ϕT P (K̃ṙ) < ϕT P
[
Ai + K̃Ci

]

= ϕT [PAi + WCi]ϕ < 0 (30)

with Ci = CAi + (1 + α)C, W = PK̃ and using the
condition a) firstly, the third c) and the second condition
b) of the proposition.

The gain K̃ has been implemented into the model of
simulations so as to verify the stability of the system.
The results have been obtained for a single reach with two
underflow gates. The aim is to compare the simulations
and experimental curves obtained with this method and
the ones obtained experimentally by Dos Santos Martins
in this works [8, 10].

4. SIMULATIONS RESULTS

Firstly, let describe the benchmark used for the simula-
tions and the experimentations, described in the second
and third subsections respectively.

4.1 Configuration and data of the channel

For this study, the following set of parameters from the
practical Valence’s channel (Fig.3) is considered where the
data are defined such that:

Fig. 3. Valence channel scheme

• L = 64.5dm is the length of the channel,
• b = 1dm is the width of the channel,
• N = 20 is the number of the discretizated points,
• ZL is the water height to regulate, such that

zmin < Z < 2 dm; where zmin is the minimum
critical fluvial water level, 2dm is the canal height.

In this single reach with two gates, the regulation of the
water height ZL at x = L, is done by controlling the
openings U0(t) and UL(t) of the gates at upstream and



downstream respectively: it is a multi-variable control (cf
Fig. (1)).

The equilibria profiles have been chosen such that the
calculated control law from the local models can be ef-
ficient over all the operating range of the water height [8].
Let notice that it has been experimentally verified that a
local model is valid around ±20% of an equilibrium profile.
In order to assign references which are included between
0.6dm and 2dm, the operating points at x = 0 are the
following:

Table 1. Initial set points for the simulations

Simulations

ze1(x = 0) ze2(x = 0) ze3(x = 0)
0.625dm 0.9375dm 1.40625dm

In this application, the weighting function µi(ζ(t)) is equal
to 1 if the output’s height is included into the validity
domain of the model and 0 in the other case for each
operating state. The parameter ζ(t) exclusively depends
on the output which is the only one variable of decision in
this precise case.

4.2 Simulations

These results are obtained from an IMB Control and a
Multi-Models approach with a LMI gain previously cal-
culated. The figure (4) shows that the output converges to
the reference even if this one strongly varies (variations>
100%). The reference tracks a slow dynamic and one can
see that the convergence of the output is good.
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Fig. 4. Variations of the reference along the valued domain

The curves that describe the upstream and downstream
gates openings of the reach are given by the figure (5).
The convergence of the output to the reference is ensured
even when the reference is decreasing or increasing.

The following simulations compare an integral and a PI
controllers which gains have been calculated by the LMI
approach, Fig (6)-(7). The PI performs better than the
integral control as expected.

Next simulations are a comparison between simulations
using the theoretical gain obtains through LMI approach
(I and PI control) with the first tests realized some years
ago by [10], using an experimental Multi-Models gain,
without any theoretical study. The figure (8) represents
the dynamic evolution of the simulated system and the
experimental data obtained with the quite same references.
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Fig. 6. Comparison of a PI and an integral which gains are
simulated with the LMI approach
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The figure (9) compares the dynamic of the gate openings.

This study is based on the previous works of Rodrigues
[26] and from works of Dos Santos [8, 10].

Experimentations have been realized into the Valence
channel (Fig.3) with a Multi-Models approach and a gain
calculated via the LMI approach. For these experimen-
tations, the wide range of the accessible water level is
attempt for an integral controller, but authors did not
get time to implement their PI controller. For the integral
case, relevant experimentations have been included into an
article, which is actually under revision.

5. CONCLUSION

The first results trough the use of multi-models approach
dedicated to irrigation channels control, under an IMBC
structure, have been realized some years ago [8]. These
good experimental results, but without stabilizable theo-
retical approach, were obtained. In this paper, the authors
have formalized and extended their LMI approach of this
regulation problem by the synthesis of a PI Controller.
Simulations have shown the improvements realized to-
wards the initial multi-models approach trough this new
PI feedback controller designed by LMI.
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