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1. Introduction 

Let (CI, £F„  P) be a probability space with an increasing right continuous 
family of (£?„, P)-complete cr-algebras (2r

/), and let $ be the predictable o-
algebra induced on ClxR+ by the family (3",). 

For / / e £ P, we write Hs for the random variable co—*lII(s, co). If Z— 
N-\-B is a semi-martingale such that N is a square integrable martingale and 
B an adapted process with square integrable variation, the mapping 

(1) H^[°H,dZs 
Jo 

defines a <r-additive vector measure on (CIXR+, iP) with values in L2(Cl, 3M, 
P). I t has been shown by several authors that conversely if /J, is a a-additive 
measure from <P to L2(Cl, $*,, P) given on the elementary predictable sets H 
of the form 

H=hx]s, t] 0<s<t, Ae£Fs 

by 

(2) fi(H) = \k{Z-Zs) 

for a mean square right-continuous adapted process Z, then there is a modi-
fication of Z which is a semi-martingale [2]. 

Nevertheless, if we consider an other probability space (W, 'W, Q), an 
adapted process (co, i)-*Z t(co, w) depending on weW, and a measure /i which 
satisfies (2) for elementary predictable sets, and if we replace o-additivity in 
L2(P) for each w^W by o-additivity in L2(PxQ), it becomes possible that 
Z, fails to be a semi-martingale for fixed w. 

In the example that we give, Zt is, for fixed w, the sum of a martingale 
and a process of zero energy similar to those considered by Fukushima [3] 
in order to give a probabilistic interpretation of functions in a Diiichlet space. 
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2. Random mixing of semi-mart ingales 

Let (UjMj)ama D e a second order process on (W, 'W, Q) which is right con-
tinuous in L2, with orthogonal increments and <B(R) X °W measurable and let 
m be the positive Radon measure on R associated to Ua by 

m(]a, £]) = EQ(UP- Uaf , a</3 . 

Let (Ml(co))asR be a family of right continuous and left limited martin-
gales, and (A*(co))ae=R a family of continuous increasing adapted processes on 
(n, SF„ P) such that the maps (a, co, s)^-M*(co) and (a, co, s)-^-A1(co) are 
$(R)xSFtx<B(R+) measurable on RxClX [0, t]  and such that 

(3) ( EP[(MiY+(AZ)2]dm(a)< + <™ . 
Ja&R 

Then we set Zf(co) = M* t{to)-\-A*,{co) and 

Z%to) dUa(w) 

where the stochastic integral is of Wiener's type and exists for P almost all co 
since by (3) Z"t{co) belongs to L\R, -®(JK), dm(x)) for P-almost all co. 

For P-almost co the process Z,{co, w) is right continuous and left limited 
in L\W, <W, Q). 

If G is an elementary predictable process on (D,, SF„ P) given by: 

Gs(co) = G0(co) l ]0.,:(*)+-+G„(cB) 1],..,„+I](* ) 

for 0<t1<---<t n+1, where G, is a 2r
(i-measurable bounded random variable, it 

follows immediately 

G„(Z, - Z 0 ) + - + G „ ( Z ( „ + -ZJ = ( (\"G, dZ*) dUa . 
J a & R Jo 

And we have: 

Proposition 1. The map H^S?-*] Hs dZs defined by 
Jo 

\H.dZ.= \ ( ( ' HsdZf)dUa 
JO J neR Jo 

is a tr-additive L?{PxQ) valued measure on (£lxR+, i?). 

Proof. Let Hw be a sequence of disjoint predictable subsets of D, X R+, 
we have 

EPEQ[\  ( [ ' ±H^dZ1)dUa]
2 

J » e « Jo "=JV 

( EP([  £ H™ dZ*)2 dm(a) 
J » e ( ! Jo " = i f 
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which can be made arbitrarily small for N large enough because 

Jo *=& 

tends to zero and remains bounded by 

2EP[(Mi) 2+(Atf]<  + ^. •  

Set 

Z<P = \ Ml dUa and ZP = I A", dUa . 

Lemma 2. There is a PxQ-modification ZP of ZP which is a (D,, 3?„  P) 
right continuous and left limited martingale for Q-almost all w. 

Proof. Let GGSFS, the following equalities hold in L\W, ty, Q) for s<t: 

EP[\G ZP] = \ EP[\G Ml]  dUa = \ EP[\G Ml]  dUa 

= EP[l GZP], 

therefore, if we choose a £F, X W-measurable element zP(a>, w) in the L2(PxQ) 
equivalence class of ZP, for w outside a Q-negligible set 32, zP is a (£FS, P)-
martingale for rational J. 
Then, if we put Zp= lim zP, for w&Jl, ZP is P-almost surely a right 

' rational 
• I' 

continuous and left limited (S^-martingale and 

ZP = ZP PxQ-a.e. 

because ZP is right continuous in L\Px Q). D 
As concerns ZP, it is a zero energy process: 

Lemma 3. Let T„  be a sequence of partitions of [0, t]  with diameter tending 
to zero, then 

EQEP[^{Z?l-Z?m^-

Proof. The expression is equal to 

EP \ S (A1M-AW dm(a), 
J aeR r„ 

and 5J (-*4*+1~~^*)2 tends to zero, because A* is continuous, and remains 

majorized by (At)2, which gives the result by (3). 
Nevertheless, in general ZP has no modification with finite variation, as 

shown by the following example: 
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Let X be a continuous martingale on (D,, £F„  P) such that 

EP Xl< + oo. 

Let 

M ? = \ l{Xs>a) dXs 
Jo 

1 
and Al = -*-L1 

where La, is the local time of X at a. Condition (3) is satisfied as soon as the 
measure m is finite. If we put 

Zt=\ MUUa+[  AUUa 

we have, from Meyer-Tanaka's formula: 

Z, = ( [(X -a)+-(X0-a)+] dUa = [*'  U> dx PxQ a.e. 

J »G8 J x0 

If Z, had a PxQ-modification such that, for fixed w^W, Zt were a (£2, 

SFt, P) semi-martingale, then, since Zt and I U^dX are both right continuous, 
rx, 
\ U^dX would be a semi-martingale. So, from ([1], theorem 5, 6), if we 
Jx0 
took for X a real stopped brownian motion starting at 0, the map 

* - * \ Ux(w) dx 
Jo 

would be the difference of two convex functions. But, if for example, U it-
self is a stopped brownian motion, that can be true only on a Q-negligible set 
because almost all brownian sample paths have not finite variation. So, in 
this case, the PxQ-modifications of Z, are Q a.e. not semi-martingales. 

References 

[1] E. Cinlar, J. Jacod, P. Protter and M.J. Sharpe: Semimartingales and Markov 
processes, Z. Wahrsch. Verw. Gebiete 54 (1980), 161-219. 

[2] C. Dellacherie and P.A. Meyer: Probabilites et potentiel, theorie des martingales, 
Hermann, 1980. 

[3] M. Fukushima: Dirichlet forms and Markov processes, North-Holland, 1980. 

Ecole Nationale des Ponts et 
Chaussees 
28, rue des Saints-Peres 
75007, Paris 
France 


