Geodynamics of the France Southeast Basin
Résumé
We investigate the geodynamics of the Southeast Basin with the help of maps of the basement and of major sedimentary horizons based on available seismic reflection profiles and drill holes. We also present a study of the seismicity along the Middle Durance fault. The present seismic activity of the SE Basin cannot be attributed to the Africa/Eurasia shortening since spatial geodesy demonstrates that there is no significant motion of Corsica-Sardinia with respect to Eurasia and since gravitational collapse of the Alps has characterized the last few millions years. Our study demonstrates that the basement of this 140 by 200 km Triassic basin has been essentially undeformed since its formation, most probably because of the hardening of the cooling lithosphere after its 50% thinning during the Triassic distension. The regional geodynamics are thus dominated by the interaction of this rigid unit with the surrounding zones of active deformation. The 12 km thick Mesozoic sediment cover includes at its base an up to 4 km thick mostly evaporitic Triassic layer that is hot and consequently highly fluid. The sedimentary cover is thus decoupled from the basement. As a result, the sedimentary cover does not have enough strength to produce reliefs exceeding about 500 to 750 m. That the deformation and seismicity affecting the basin are the results of cover tectonics is confirmed by the fact that seismic activity in the basin only affects the sedimentary cover. Based on our mapping of the structure of the basin, we propose a simple mechanism accounting for the Neogene deformation of the sedimentary cover. The formation of the higher Alps has first resulted to the north in the shortening of the Diois-Baronnies sedimentary cover that elevated the top of Jurassic horizons by about 4 km with respect to surrounding areas to the south and west. There was thus passage from a brittle-ductile basement decollement within the higher Alps to an evaporitic decollement within the Diois-Baronnies. This shortening and consequent elevation finally induced the southward motion of the basin cover south of the Lure mountain during and after the Middle Miocene. This southward motion was absorbed by the formation of the Luberon and Trévaresse mountains to the south. To the east of the Durance fault, there is no large sediment cover. The seismicity there, is related to the absorption of the Alps collapse within the basement itself. To the west of the Salon-Cavaillon fault, on the other hand, gravity induces a NNE motion of the sedimentary cover with extension to the south and shortening to the north near Mont Ventoux. When considering the seismicity of this area, it is thus important to distinguish between the western Basin panel, west of the Salon-Cavaillon fault affected by very slow NNE gliding of the sedimentary cover, with extension to the south and shortening to the north; the central Basin panel west of the Durance fault with S gliding of the sedimentary cover and increasing shortening to the south; and finally the basement panel east of the Durance fault with intrabasement absorption of the Alps collapse through strike-slip and thrust faults.