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In many biological tissues as well as in some technical materials we find nano-sized rod-shaped
particles embedded in a relatively soft matrix. Loss of stability of equilibrium, i.e. buckling,
is one of the possible failure modes of such materials. In the present paper different kinds
of load transfer between matrix and reinforcing particles, which are typical for rod-shaped
nanostructures in biological tissues, are considered with respect to stability of equilibrium.
Two regimes of matrix stiffnesses leading to different modes of buckling, and a transition
regime in between, have been found: soft matrix materials leading to the so-called “flip mode”
(also called “tilt mode”) and hard matrix materials resulting in “bending mode” buckling.
The transition regime is of particular interest for biological tissues.

Numerical and semi-analytical as well as asymptotic concepts are employed leading to re-
sults for estimating the critical load intensities both in the form of closed form solutions
and diagrams. The analytical solutions are compared with results of finite element analyses.
From these comparisons indications are gained for deciding, which of the different analyti-
cal approaches should be chosen for a particular nanostructure configuration in terms of the
associated buckling modes.

Keywords:

nanoparticulate materials; biological application; stability; embedded fibres; load transfer

1. Introduction and Motivation

This paper is motivated by studying the behaviour of mineralized plate-like or rod-
shaped inclusions in biological tissues, as treated, e.g., by Baohua et al. [1], Gao [7],
Jäger and Fratzl [10], as well as Siegmund et al. [19]. The size of such inclusions is
typically in the nano-range. For instance, platelets in the nanostructure of bone are
2 to 4 nm thick and 20 to 100 nm long. Thus, we are talking about nanoparticles.

Load transfer between the organic matrix and the crystallic inclusion as well as
stability considerations of such systems are of particular interest. Such situations
can be modeled by a stiff elastic rod embedded in a soft elastic matrix leading to
an elastically supported beam model. Analytical and numerical treatments of such
systems were published already 30 years ago, see, e.g., [15]. With the upcoming
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of composites reinforced by collinear short fibres or whiskers the solution of the
stability problem of those reinforcements has obtained a revival within the last
decade, see, e.g., the papers by Dekret [3], [5], [4], and Guz and Dekret [9] as well
as the literature cited in these papers. It is interesting to note that the problem of
magnetic buckling as it occurs due to phase transformations in micromagnetic dots,
see [17], can be seen as a special case of the more general situations considered here.
Furthermore, a similar behaviour is found in [13], where, in particular, instability in
the form of the “flip mode”, i.e., the rigid body rotation (tilting) mode, is presented
from experiments.

In Fig. 1 the wavy buckling mode of a thin strip embedded in a soft matrix is
shown. Similar experiments are reported in [13], where fibre microbuckling during
the cure of a fibre reinforced thermosetting polymer is considered.

Strong efforts have been directed to understand the buckling behaviour of fibres
both interacting with their bedding and neighbouring fibres by analytical as well
as numerical methods.

A similar problem as the one, which was outlined above for composites, is the
interaction of slender mineral crystals within biological materials (e.g., mineralized
nanoparticles in a protein or collagen matrix) subjected to compressive loading. An
excellent overview both on the (staggered) arrangement of those mineral crystals
(which can be considered as elastic rods or beams) and the load transfer was given
by [10]. Gao [7] and Baohua et al. [1] have investigated the stability behaviour
of such nanoparticles by employing the concept of hinged slender plates loaded
in the longitudinal direction, as the solution procedure exists since more than 50
years for the stability analysis of rectangular steel plates. The buckling mode shapes
documented later in the present paper indicate, however, that a slender hinged plate
model may not be the proper mechanical model for thin, elastic plates embedded in
a soft matrix. Due the boundary conditions assumed in [7] and [1] the ends are not
allowed to move transversally during buckling and, thus, the above mentioned “flip
mode” is completely excluded. Since the considered nanoparticles are assumed to be
freely embedded in the surrounding matrix and axially loaded, plate-like particles
can, within sufficient accuracy, be treated as beams in the context of the presented
considerations. This is the reason why in the present paper the considerations
are performed for particles of beam shape, having in mind that the results are
applicable to platelets, too.

Due to the relevance of the stability analysis of plate- or rod-shaped nanoparticles
in biological tissues, represented by non-uniformly axially loaded beams on elastic
foundations, the authors are motivated to provide a physically and mathematically
sound concept to further the understanding of this particular buckling problem.
Although, from the viewpoint of structural mechanics, the problem of buckling of
beams on elastic foundation appears to be rather classical, the solutions presented
in this paper for the load transfer typical for nanoparticles in soft biological matrices
are original.

2. Formulation of the Mechanical Problem

Mineral crystals embedded in a biological matrix (compare, e.g., the nanostructure
of bone) can, like short fibres in composites, be considered as beams which are
deformed both in longitudinal direction and by bending. Taking this fact into
account the following observations and assumptions must be reflected in a proper
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Figure 1. Model experiment showing the post-buckling configuration of a foil strip that is glued between
two polymer foam blocks. Compression of the block leads to shear stresses along the interface
between foil and foam. The resulting compressive normal force distribution leads to buckling.

physical model:

• The beam is only supported by an elastic bedding. This means that, in contrast
to [7] and [1], no essential or geometrical boundary conditions are imposed on
the beam.

• The bedding may consist of a matrix to which usually averaged elastic prop-
erties (Young’s modulus E, Poisson’s ratio ν) are assigned. Using a continuum
approach for modelling the bedding leads to a dependence of the bedding (or
foundation) stiffness on the wavelength of the deformation pattern of the beam,
in particular, if short-wave buckling is concerned; see, e.g., [21], Vonach and
Rammerstorfer [22], Vonach and Rammerstorfer [23], and [20]. Because of the
fact that for not too stiff beddings the buckling pattern of the embedded beams
does not show very short wavelengths, the common concept of a constant foun-
dation stiffness k is followed here relating the reaction of the bedding, p, as a
transversal force, i.e., acting in the y-direction, per unit length of the beam to
the according displacement w by the prominent Winkler relation as

p = −kw. (1)

The unit of the foundation stiffness [k] is [Force]/[Displacement]/[Length], i.e.
[k] = [F ]/[L]2. Here and in the following [“. . . ”] stands for unit of “. . . ”. Thus,
[F ] and [L] stands for unit of force and of length, respectively.
It is not trivial to define an appropriate value for k. Therefore, estimates of k are
usually applied in the literature. In biological structures the elastic properties of
the beams and the bedding may differ significantly, see, e.g., [10], [12], or [14].
Gao [7] and Baohua et al. [1] considered nanostructures in which the stiff
nanoplates are arranged in staggered configuration. Such configurations can be
found, e.g, in the nanostructure of bone. In such situations and under the as-
sumption that the weakest nanoparticle buckles first and, thus, independently
from the others, the following estimate for the bedding stiffness k can be used

k =
2Ebb

hb
, (2)

where Eb is the effective Young’s modulus of the bedding, i.e. the soft matrix
(e.g., collagen), hb is the thickness of the matrix layer, and b is the width of the
beam. .
For bone typical values of these nanostructural parameters are: For the miner-
alized nanoparticles (hydroxyapatite) E ≈ 0.1µN/nm2, h = 2 to 4 nm, and l =

3
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20 to 100 nm. For the matrix (collagen) typical values are Eb = 1. × 10−3 to 7. ×
10−3 µN/nm2 and hb = 2 to 5 nm, leading to k = 0.4× 10−4 to 7.× 10−3 µN/nm2

for a width of b = 1.0 nm. (Regarding the choice of b as unit width see Remark 1
below.)
For other situations, in which the beam-like nanoparticles are sparsely dis-
tributed within the soft matrix (as, e.g., shown in Fig. 1), the determination
of the bedding stiffness k is a bit more complicated. It has to be determined
depending on the buckling mode, see, e.g., Vonach and Rammerstorfer [22] and
Fischer and Gamsjäger [6].

• With respect to the load transfer we assume a unit cell of the composite or
the biological structure compressed in the axial x-direction. Since the load must
be transmitted from the matrix to the fibres, or plates, the assumption of a
constant normal force in the longitudinal direction of the beam is generally not
justified. Details about the load transfer are reported in the literature, see, e.g.,
[10, 11]. However, a very sophisticated model developed by Siegmund et al. [19]
shows clearly that also the recently reported concepts, e.g. in [10] and [11], are
too simplified, mainly due to the fact that in the matrix (in case of bones) slip
planes occur, and that the fibres are connected to the matrix only in distinct
pinning points. Therefore, the authors have decided to demonstrate solutions for
various types of distributions of the axial load, introduced as load per unit length
t(x) with the unit [t] = [F]/[L].. As found by Siegmund et al. [19] at least the
load cases of a linearly increasing and a linearly decreasing axial load distribution
must be studied. Consequently, load cases with different distributions of the axial
loads are documented herein.

Remark 1: It should be mentioned that the width b can be chosen as unit width
without loss of generality. In this case the calculated bedding stiffness can be seen
as spring stiffness per unit length and unit width. Since the axial load per unit
length, t, can be assumed to be constant along the width of the nanoparticle, b, the
choice of b = 1.0 leads to the fact that t becomes an axial force per unit length and
unit width, i.e., a shear stress loading. This consideration applies to both beam-like
and plate-like nanoparticles.

In order to describe the mechanical problem we first fix a coordinate system in
the middle of the beam, compare Fig. 2; the longitudinal coordinate x can assume
values of −l/2 ≤ x ≤ l/2, with l being the length of the beam. Furthermore,
dimensionless coordinates ξ, defined as ξ = x/ [l/2], are introduced, having a range
of −1 ≤ ξ ≤ 1. The beam is only supported by a Winkler bedding, so no kinematical
boundary conditions appear at ξ ± 1.

A distributed axial force t(ξ) is applied as loading according to Fig. 2. Per definition,
this force has a positive sign, if it acts towards the middle of the beam (x = ξ = 0).
More specifically, three load cases are investigated:

(1) A constant distributed axial load along the beam, denoted as load case
‘CO’, compare Fig. 3(a),

t(ξ) = t̄. (3)

(2) A distributed axial load, which is increasing linearly towards the centre of
the beam, with t = 0 at ξ = ±1, and t = t̂ at ξ = 0,

t(ξ) = t̂ [1 − |ξ|] . (4)

4
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We shall refer to this load case as the centre-dominated load case ‘CD’,
compare Fig. 3(c).

(3) A distributed axial load which is decreasing linearly towards the centre of
the beam, where it vanishes, that is, t = 0 at ξ = 0, and t = ť at ξ = ±1,

t(ξ) = ť |ξ|. (5)

We shall refer to this load case as the end-dominated load case ‘ED’, com-
pare Fig. 3(e).

The axial force distribution yields a compressive normal sectional force distribution
N(x), or N(ξ), with

N(ξ) = l tmax T (ξ) . (6)

The dimensionless function T (ξ) describes the distribution of the normal force
N as a function of the position along the beam axis. The maximum axial load
tmax corresponds to t̄, t̂, or ť depending on the load case. For a given axial load
distribution t

(
ξ̄
)
, T (ξ) can be calculated as

T (ξ) =
1

2

∫ 1

|ξ|

t
(
ξ̄
)

tmax
dξ̄. (7)

For the three load cases we obtain

(1) load case ‘CO’: T̄ (ξ) = 1
2(1 − |ξ|), compare Fig. 3(b),

(2) load case ‘CD’: T̂ (ξ) = 1
4 [1 − |ξ|]2, compare Fig. 3(d),

(3) load case ‘ED’: Ť (ξ) = 1
4

[
1 − ξ2

]
, compare Fig. 3(f).

For the described loading settings we are now looking for equilibrium displacement
states w(x), which are non-trivial (w(x) 6≡ 0) and fulfill the differential equation for
the deflection w(x) of a beam with a non-constant, compressive normal sectional
force N(x). In the most general case, this differential equation takes the form

d2

dx2

(
EJ

d2w

dx2

)
+

d

dx

(
N

dw

dx

)
+ kw = 0, (8)

where the product EJ of Young’s modulus E and the sectional moment of inertia
J defines the bending stiffness of the beam and k is the foundation stiffness.

Equation (8) is a linear ordinary differential equation of fourth order with non-
constant coefficients for which no general solution exists. For this reason, approxi-
mative solution techniques are applied for finding critical loads.

3. Methods

3.1. Finite Element Model

The Finite Element method was used for providing numerical reference solutions
over a wide range of geometrical and stiffness parameters. The commercial finite el-
ement code ABAQUS R©[http://www.simulia.com] was employed. The embedded

5
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Figure 2. The elastic beam of length l and bending stiffness EJ in the undeformed configuration on a
linear elastic foundation with stiffness k; loading by distributed axial loads t(x) is indicated.
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Figure 3. Normalized intensity of distributed axial load (left column) and resulting normalized normal
force distributions (right column) for the three considered load cases.

beams were discretized with Euler-Bernoulli beam elements with cubic interpola-
tion functions, thereby implicitly assuming the treatment of slender beams, and —
in accordance with the analytical models — effectively neglecting shear deforma-
tion.

The beams were composed by 1000 beam elements, each. A convergence study
revealed that adding more elements did not increase the practically achievable ac-
curacy of the solution, even for those eigenmodes that had the shortest wavelength
of all investigated configurations.
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Results of the finite element simulations will be discussed in Chapter 4.

3.2. Energy Method (Ritz Approach)

For the determination of those critical load intensities, which lead to buckling of the
beam, first a necessary condition for stable equilibrium has to be defined. According
to the Lagrange-Dirichlet theorem, a system containing only conservative forces is
stable if the total potential energy Πtot of the system has a strict minimum. This
implies also the positive definiteness of the total potential energy, which is an
energy function of the structure-load system (see, e.g., [2]).

The elastic beams considered here are treated as discrete elastic systems, their
deflection being described by a finite number of n degrees of freedom q1, . . . , qn.
Including also a load multiplier λ, we obtain Πtot = Πtot(q1, . . . , qn;λ). We now
impose a small, geometrical variation on an equilibrium deformation state, which
we describe by the variations δq1, . . . , δqn of the kinematic degrees of freedom. The
corresponding variation δΠtot of the total potential energy may be expanded into
a Taylor series about the equilibrium state,

δΠtot = δ1Πtot + δ2Πtot + . . . (9)

with the first and the second variations given by

δ1Πtot =
n∑

i=1

∂Πtot

∂qi
δqi, (10)

δ2Πtot =
1

2

n∑

i=1

n∑

j=1

∂Πtot

∂qi∂qj
δqi δqj . (11)

The conditions for mechanical equilibrium are δ1Πtot = 0 for arbitrary variations
δqi, which corresponds to the condition ∂Πtot/∂qi = 0. The condition for stable
equilibrium is given by δ2Πtot > 0 for arbitrary variations of the degrees of freedom
according to the Lagrange-Dirichlet theorem. On the other hand, loss of stability
is predicted as soon as the second variation δ2Πtot of the total potential energy
ceases to be positive definite during a loading process. According to the Trefftz
criterion, this requires that the variation of δ2Πtot turns to zero, leading to the
following conditions for the stability limit:

n∑

i=1

∂
(
δ2Πtot

)

∂(δqi)
δqi = 0, or:

∂
(
δ2Πtot

)

∂(δqi)
= 0 (12)

for all i.

This study is concerned with linear structural systems, for which the second varia-
tion of the potential energy coincides with the potential energy itself, δ2Πtot = Πtot

(as it holds for homogeneous functions of order 2). Consequently, the critical state
condition (12) reduces to a condition that takes the form of an equilibrium condi-
tion, namely

∂Πtot

∂qi
= 0 (13)

7
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for all degrees of freedom qi.

For the present problem the total potential energy Πtot is the sum of the strain
energy stored in the beam and in the foundation, ΠB and ΠF, respectively, as well
as the potential ΠL of the distributed load:

Πtot = ΠB + ΠF + ΠL. (14)

The axial shortening of the beam due to the compressive normal force will be
neglected in the following. Consequently, only the transverse displacement w(x)
enters the potential energy ΠB.

The individual contributions are detailed as

• the strain energy due to elastic bending of the beam

ΠB =
EJ

2

∫ l/2

−l/2

[
d2w

dx2

]2

dx =
EJ

2[l/2]3

∫ 1

−1

[
d2w

dξ2

]2

dξ, (15)

• the energy stored in the elastic foundation

ΠF =
k

2

∫ l/2

−l/2
w2 dx =

kl

4

∫ 1

−1
w2 dξ, (16)

• and the potential of the axial load, which can be found by calculating the product
of the local load intensity t and the axial displacement u(x), or u(ξ), of the
corresponding load application point, which can, for positive values of x, or ξ,
be found as

u =
1

2

∫ x

0

[
dw

dx

]2

dx =
1

l

∫ ξ

0

[
dw

dξ

]2

dξ . . . for x, ξ ≥ 0 (17)

and integrating along the beam axis. Because of the symmetry of the load dis-
tribution and the symmetry of the axial displacements, the integral can be cal-
culated over one symmetry half of the beam without loss of information, if the
result is multiplied by a factor of two:

ΠL = −2

∫ l/2

0
t(x)u(x) dx = −l

∫ 1

0
t(ξ)u(ξ) dξ. (18)

Integration by parts, using Eqs.̃(7) and (8), gives alternative forms as

ΠL = −
∫ l/2

0
N(x)

[
dw

dx

]2

dx = −2

l

∫ 1

0
N(ξ)

[
dw

dξ

]2

dξ. (19)

The functions w(x), which satisfy the differential equation (8) for the deflection of
the beam exactly for the given load cases, are not known. We employ the Rayleigh-
Ritz method in order to calculate approximative values for the critical load inten-
sities based on the Trefftz criterion (13) for linear systems and trial functions w̃(x)
for the deflections which will be detailed in the following sections.

As a first group of Ritz functions, i.e., trial functions used for an approximative
description of the deformed configurations w(x) of the buckled beams, polynomials

8
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in x are considered. Buckling modes, which are symmetric with respect to the centre
of the beam (x = 0), can be described by polynomials of order oS having non-zero
coefficients only for even powers of x,

w̃(x) =

oS/2∑

i=0

ai x
2i. (20)

Buckling modes, which are antisymmetric with respect to the centre of the beam
(x = 0), can be defined by polynomials of order oA having nonzero coefficients only
for odd powers of x,

w̃(x) =

int(oA/2)+1∑

i=1

ai x
2i−1. (21)

The distinction between symmetrical and antimetrical polynomial functions is nat-
ural for the representation of the respective buckling modes and, at the same time,
makes it easier to solve the respective characteristic equations.

The polynomial Ritz functions presented above do not perform well for foundations
with comparatively high stiffness, which lead to short wavelength buckling. Thus,
we introduce another set of admissible basis functions w̃(ξ) for the displacement
in y-direction based on the following transcendental and exponential functions:

• The symmetric Ritz function gS

gS(ξ) = cos
(α

2
ξ
)
− 2

α
sin

α

2
. (22)

The constant term on the right hand side of (22) causes the integral
∫ 1
−1 gS dξ = 0

to vanish for all values of the shape parameter, α, which reflects bedding force
equilibrium in the direction perpendicular to the beam axis.

• The antimetric Ritz function gA

gA(ξ) = sin
(α

2
ξ
)

. (23)

• The decaying function gDC, which takes the value of one at the centre of the
beam, and decays towards the ends

gDC(ξ) = exp

(
−β

2
|ξ|

)
(24)

with β as a further shape parameter.

• The decaying function gDE, which assumes the value of one at the ends of the
beam and decays towards the centre

gDE(ξ) = exp

(
−β

2
[1 − |ξ|]

)
. (25)

As Ritz functions we use either w̃(ξ) = q gS(ξ) or w̃(ξ) = q gA(ξ) directly. These
trial functions, which have one degree of freedom only, namely q, will be referred
to by labels ‘A’ and ‘S’, respectively, in the following. Furthermore, we obtain
additional Ritz functions by multiplying gS or gA with gDC or gDE. Appropriate
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labels are used; e.g., the label ‘ADE’ is assigned to the single-degree-of-freedom
Ritz function w̃ADE(ξ) = q gA(ξ) gDE(ξ), and ‘ADC’ is assigned to w̃ADC(ξ) =
q gA(ξ) gDC(ξ).

The shape parameters α and β are implicitly defined by Eqs. (22, 23) and Eqs. (24,
25), respectively. The parameter α can be interpreted as inverse wavelength pa-
rameter of the buckling mode (the full wavelength Lw is given by Lw = πl/α).
The parameter β describes the intensity, with which the amplitude of the buckling
mode decays either toward the ends of the beam, cf. Eqn. (24), or toward its centre,
cf. Eqn. (25).

To demonstrate the good approximative nature of the cosinus Ritz function for
certain configurations, Fig. 4a shows the symmetric function gS (solid line) plotted
against a buckling eigenmode that was predicted by the finite element analysis for
a bedding stiffness of k = 10−5 and a ratio l/h = 100. The case of a constant
distributed load ‘CO’ was considered. It can be seen that the symmetric function
predicts the actual mode shape quite well.

Remark 2: It is important to mention that the unit of k, i.e. [k], is here and in the
following to be understood as being consistent so that the product kl has the same
unit as the load intensity t, i.e. [kl] = [t].

Remark 3: It should be noted that the ADE mode with waves near the ends of the
beam, see Eqn. (25), is activated for soft bedding only. However, since the rigid
body rotation mode, which will be discussed later, is relevant for soft bedding, this
ADE mode is not outlined further here.

Increasing the bedding stiffness for the same beam (load case ‘CO’) to k = 2.8576×
10−5 gives rise to an antimetric buckling mode, which is depicted in Fig. 4b. The
respective Ritz function corresponds to gA. Again, reasonably good agreement is
obtained.

Finally, the Ritz function w̃ADE becomes the appropriate choice for approximating
the finite element results for a comparatively high bedding stiffness of k = 10−1, as
is demonstrated for the case of constant axial load ‘CO’ in Fig. 4c. The dashed lines
represent the decaying envelope functions ±gDC. Again, the Ritz function agrees
well with the buckling mode predicted by the finite element method.

Since only one degree of freedom, q, is assumed in the Ritz functions, the evaluation
of the Trefftz criterion is simplified, yielding for the linear setting

δ
(
δ2Πtot

)
= δ(Πtot(q)) =

∂Πtot

∂q
δq = 0. (26)

This can be fulfilled for arbitrary variations δq only if ∂Πtot/∂q = 0. If we use the
form Πtot = q2 Π̄tot(α, β), where Π̄tot is no longer a function of q, then we come up
with the following condition for the critical state:

∂Πtot

∂q
= 2q Π̄tot = 0, (27)

from which we derive the condition

Π̄tot(α, β) = 0 (28)

for the instant of instability. Equation (28) can be used to calculate the critical load
intensity for a given basis function g(ξ;α, β). Two shape parameters, namely α and
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Figure 4. Comparison between the buckling eigenmodes predicted by finite element analysis (line with
circles) and approximations by Ritz functions for the case of constant axial load ‘CO’; a) for
a comparatively soft bedding; b) for a little bit stiffer bedding; c) for a stiff bedding.

β, appear with respect to which the axial load intensity t∗ leading to buckling has
to be minimized.

Inserting the Ritz functions into Eqn. (28) gives the quantity ltmax, for which the
minimum has to be found. This quantity reads

ltmax =
EJ

l2
F1(α, β) + kl2 F2(α, β) (29)

with the integral terms

F1(α, β) = 4

∫ 1

0

[
w̃′′

]2
dξ

/∫ 1

0

[
w̃′

]2
T (ξ) dξ, (30)

F2(α, β) =
1

4

∫ 1

0
w̃2dξ

/ ∫ 1

0

[
w̃′

]2
T (ξ) dξ. (31)
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Figure 5. Load intensity tmax as a function of shape parameter α; a) for the symmetric Ritz function
(compare Fig. 4a); b) for the antimetric Ritz function (compare Fig. 4b). Load case ‘CO’ is
considered and β = α/4. [F ] is the unit of force, and [L] is the unit of length.

The notation (. . .)′ means differentiation with respect to ξ. With ξ = x
l/2 , this gives

for a general function f as first derivative df(ξ(x))
dx = df

dξ
dξ
dx = 2

l f
′ and, analogously,

d2f(ξ(x))
dx2 = 4

l2 f
′′.

In order to better understand the relationship between the critical maximum load
intensity tmax and the shape parameters α and β, respective diagrams are presented
in Figs. 5 and 6. These diagrams correspond to the load case ‘CO’, i.e., constant
axial load, and the parameter sets that were already discussed in the context of
Fig. 4. Figure 5a shows the function tmax(α) with β = α/4 for the case of a low
bedding stiffness triggering a low wavelength symmetric buckling mode as shown
earlier in Fig. 4a. For a slightly higher bedding stiffness, an antimetric buckling
eigenform becomes relevant, which is depicted in Fig. 4b with β = α/4. For this
mode, the function tmax(α) can be found in Fig. 5b.

Finally, for comparatively high bedding stiffnesses, a short-wavelength sinusoidal
mode shape with decaying amplitude is predicted according to Fig. 4c. For this case,
the maximum intensity tmax depends on both parameters α and β. An attempt for
the visualization of tmax(α, β) is made in Fig. 6.

Looking for the minimum min(ltmax) yields, with the derivatives ∂/∂α, ∂/∂β
set to zero, to two highly nonlinear equations in α, β with the solution pairs
ᾱ, β̄ being functions of the two system parameters EJ/l2, kl2. Correspond-
ing solutions can only be found by a numerical procedure, e.g., by applying
MAPLE R©[http://www.maple.com].

If one sets β = εα, 0 < ε < 1, hundreds of solution pairs ᾱ, β̄ can be found.
Therefore, it is more straight-forward to look at the asymptotic behaviour of the
system, i.e., large values of α, α � 1, for which simple expressions for F1 and F2

are found as given in Table 1.

A numerical study has also shown that β can be approximated by a certain fraction
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Figure 6. Load intensity tmax as a function of shape parameters α and β for the decaying antimetric
Ritz function (compare Fig. 4c). [F ] is the unit of force, and [L] is the unit of length.

Mode Load case Load case Load case
‘CO’ ‘CD’ ‘ED’

S α2 3α2 3α2/2

F1 A α2 3α2 3α2/2

ADC (α2 + 5β2)/2 (α2 + 5β2) (α2 + 5β2)

S 16/α2 48/α2 16/α2

F2 A 16/α2 48/α2 16/α2

ADC 8/(α2 + β2) 16/(α2 + β2) 16/(α2 + β2)

Table 1. Approximations for functions F1 and F2 for α � 1; the notations S, A, and ADC refer to the buckling

mode – compare Eqs. (22) to (25)

of α, e.g., β ≈ α/4 for load case ‘CD’ and ‘ED’, so we finally have

F1 = f1α
2, F2 = f2/α

2, (32)

f1 and f2 being numerical coefficients. Eqs. (29) to (32) allow for a simple estimate
of lt∗ =min(ltmax) and the according value of α, namely α∗, as

α∗ = l 4

√
k/ [EJ ] 4

√
f2/f1, (33)

lt∗ =
√

k [EJ ] 2
√

f1f2. (34)

As an example we have for the load case ‘CD’ and β = α/4

S, AS : 4

√
f2/f1 = 2,

√
f1f2 = 12, (35)

ADC : 4

√
f2/f1 = 1.84,

√
f1f2 = 4.45. (36)

In the case of soft bedding (relatively small values of kl4/ [EJ ]) the beam looses
its stability primarily by a rigid body rotation. The corresponding displacement
function is wRB = ϕx for small angles of rotation ϕ. Then the contribution of the
strain energy due to bending, ΠB ≈ 0, becomes negligible, and lt∗ can be found
directly by setting up an equation for the equilibrium of moments with respect to
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the centre (x = 0) of the beam. For small positive angles ϕ this equation takes the
form

2

∫ l/2

0
t(x)ϕx dx − 2

∫ l/2

0
k ϕx2 dx = 0. (37)

Inserting the respective axial load distributions t(x) in Eqn. (37) allows for the
calculation of critical load intensities for the three considered load cases as follows:

• for load case ‘CO’, i.e., constant distributed axial load,

t̄∗RB =
1

3
k l; (38)

• for load case ‘CD’, i.e., axial load increasing linearly towards the centre of the
beam,

t̂∗RB = k l; (39)

• for load case ‘ED’, i.e., axial load decreasing linearly towards the centre of the
beam,

ť∗RB =
1

2
k l. (40)

Buckling modes of beams, in which no bending strain energy is activated but only
a change in the potential of the loads acting on the beam, have been recently
addressed by Grabovsky and Truskinovsky [8] as “flip side of buckling”. It should
be noted that such modes may interact with bending controlled modes, yielding a
transition from the “flip buckling” (tilting) to Euler-type buckling, see also [18].

Apart from the buckling behaviour of the beam on an elastic foundation, we can
also extract information about another buckling mechanism from the presented
model, namely the symmetric buckling mode of a beam, the centre of which is
constrained against translation or rotation. This buckling mode corresponds to the
second buckling mode of the beam on the elastic foundation for the limiting case
of vanishing foundation stiffness. This situation is treated in the Appendix.

4. Results

The results obtained from the finite element simulations comprise reference solu-
tions for the critical load intensities t̄∗, t̂∗, and ť∗ for the constant, the centre-
dominated and the end-dominated axial load cases, respectively. Furthermore, the
approximative solutions obtained with the proposed semi-analytical approaches are
compared to this reference solutions, and the relative errors, occurring for different
Ritz functions, are discussed in detail.

In the first part of this section, the finite element reference solutions are discussed.
For the load case characterized by a constant axial load, i.e., load case ‘CO’, the
critical load intensities t̄∗(k;h/l) are plotted against the foundation stiffness k in
Fig. 7.

The solid lines in Figs. 7 to 9 represent the dependency of the critical load intensities
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Figure 7. Critical axial load intensity of beams in reference configurations as functions of bedding
stiffness; load case ‘CO’. Dashed lines represent the second buckling eigenvalue. The dotted
line represents the rigid body mode. The gray area refers to symmetric modes. [F ] is the unit
of force, and [L] is the unit of length.

on the bedding stiffness k for beams in reference configuration with unit width
b = bref = 1 (cf. Remark 1 in Section 2.), unit Young’s modulus E = Eref = 1, and
a length of l = lref = 10. The units of the mentioned quantities must be consistent;
see also Remark 2 in Section 3.2.

Four different curves pertain to thickness-to-length ratios h/l of 0.01, 0.02, 0.05,
and 0.10, respectively. Gray areas under a given curve indicate sections of the
curves which pertain to symmetric buckling modes. The single gray area in Fig. 7
demonstrates that for the considered system symmetric buckling modes appear
only for one limited foundation stiffness interval.

The dashed lines are finite element predictions for the critical load intensities of
these beams associated with the second eigenvalues. For very low bedding stiff-
nesses, these second eigenvalues belong to symmetric eigenmodes such as those
discussed in the Appendix. For vanishing bedding stiffnesses, the critical load in-
tensities corresponding to this second eigenvalue asymptotically approach the val-
ues derived for the symmetric buckling mode of a beam which is not constrained
by any bedding.

Reading Fig. 7 from left to right reveals that for very low bedding stiffness values
the buckling mode corresponds more or less to a rigid body rotation (“flip mode”)
as described above. The analytical solution for this mode is marked by a straight
dotted line in Figs. 7 to 9. As the bedding stiffness is increased, the mode changes
from an antimetric one to a symmetric one which can be described well by a cosinus
function (see Fig. 4a). Increasing the bedding stiffness further causes the buckling
mode to become antimetric again. For the considered load case antimetric buckling
modes are relevant for bedding stiffnesses above this value.

For increasing bedding stiffness values the wavelength of the buckling mode de-
creases. Towards the ends of the beam the amplitude of the wavy buckling eigen-
form decreases asymptotically towards zero. This characteristic behaviour was al-
ready discussed in the context of Fig. 4c. For very stiff beddings the critical load
intensity approaches asymptotically a value given by Eqs. (34 to 36).

For larger ratios of beam thickness to beam length, i.e., for more compact beams,
the critical load intensity curves are shifted towards higher values, taking into ac-
count the increased (relative) bending stiffnesses. Of course, the rigid body mode
remains unaffected by the bending stiffness, and the asymptotes for beddings of in-
creasing stiffness are all parallel with an inclination of 1/2 in the double-logarithmic
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Figure 8. Critical axial load intensity of beams in reference configurations as functions of bedding
stiffness; load case ‘ED’. Dashed lines represent the second buckling eigenvalue. The dotted
line represents the rigid body mode. Gray areas refer to symmetric buckling modes.
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Figure 9. Critical axial load intensity of beams in reference configurations as functions of bedding
stiffness; load case ‘CD’. Dashed lines represent the second buckling eigenvalue. The dotted
line represents the rigid body mode. (No gray area.)

diagrams, Figs. 7 to 9.

Figure 8 shows the critical load intensity ť∗ for the end-dominated load case ‘ED’.
Most of what has already been said for the case of constant axial load applies
also for this load case. The big difference is that this load case favors symmetric
buckling modes in several different regimes of the bedding stiffness range, as can
be seen by the four gray areas in Fig. 8 marking stiffness ranges that cause the
relevant buckling mode for h/l = 0.01 to be symmetric. Comparing Fig. 8 to Fig. 7
reveals that the critical load intensity for the load case ‘ED’ is higher than the one
for load case ‘CO’. This can easily be attributed to the higher compressive normal
force that a given value of t̄ produces in the centre of the beam as compared to the
one related to ť.

The third load case with centre-dominated load distribution, i.e. load case ‘CD’, is
associated with critical load intensities t̂∗ that are lower than those of the constant
and the end-dominated load case. The corresponding critical intensities are plotted
over the bedding stiffness in Fig. 9 for four different ratios h/l. Here, the absence
of symmetric eigenmodes is most notable. Evidence for the fact that all critical
eigenmodes are antimetric regardless of the bedding stiffness can be found in the
observation that the dashed lines corresponding to the second eigenvalue do not
intersect the solid lines (with the exception of the one which corresponds to the
rigid body mode), which represent the lowest eigenvalue.

So far, only the finite element predictions were considered. In the following, the
quality of the semi-analytical predictions based on the energy approach with dif-
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Figure 10. Relative error in the critical axial load intensity t̄∗ (load case ‘CO’); a) polynomial Ritz
functions; b) transcendental Ritz functions. [F ] is the unit of force, and [L] is the unit of
length.

ferent Ritz functions is discussed. First, we take a look at the performance of the
polynomial Ritz functions. As a measure for the accuracy of the semi-analytical
solutions the relative error with regard to the reference finite element solution is
calculated.

For the case of constant axial load and h/l = 0.01, the relative error is plotted
over the bedding stiffness k for polynomials of order up to 10 in Fig. 10a. The
result for the linear function (n = 1) corresponds to the rigid body mode. This
solution is reasonably accurate for bedding stiffnesses up to the value marking the
transition to the symmetric buckling mode. The relative error of solutions obtained
with transcendental Ritz functions is shown in Fig. 10b.

From Fig. 10 one can conclude that, as long as rather small bedding stiffnesses are
concerned, polynomial Ritz functions of sufficiently high order lead to smaller rel-
ative errors than the transcendental ones. For situations with higher bedding stiff-
nesses the transcendental Ritz functions are better. Thus, for all bedding stiffnesses
proper Ritz functions exist, based on Eqs. (20) to (25), which lead to sufficiently
small errors. For the other load cases treated here, similar conclusions can be drawn
from the computed results, but are not presented due to space limitations.

So far, the results discussed in Fig. (7) to Fig. (9) refer to beams in reference
configuration with E = Eref = 1, b = bref = 1, and l = lref = 10 (with consistent
units for these quantities). For other values of (E, b, l) these diagrams can also
be used for very large bedding stiffnesses (i.e. for the asymptotic case). Here the
ordinate values t̄∗, t̂∗, and ť∗, respectively, taken from the diagrams according to
the corresponding values of k and h/l have to be multiplied by the dimensionless
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factor λ

λ =

√
E

Eref

l

lref

b

bref
, (41)

compare Eqn. (34) in combination with Tab. 1 and Eqn. (32). For rather small
values of the bedding stiffness, for which the “flip mode” is relevant (i.e., the
bending stiffness EJ is not relevant), the solutions for the critical load intensities
can be calculated simply by using Eqs. (38) to (40).

As an example let us consider the nanostructure of bone, for which the following
data can be used (b is chosen with b = 1nm according to Remark 1; cf. Section
2.): For the mineralized platelets, E = 0.1µN/nm2, h = 2nm, l = 100nm, hence,
h/l = 0.02; for the collagen matrix, Eb = 1.× 10−3 µN/nm2, hb = 4nm, leading to
k = 5. × 10−4 µN/nm2. Load case ‘CO’ is considered. With these data Eqn. (38)
leads for the tilt mode t̄∗RB = 1

3 k l = 1.67 × 10−2 µN/nm2. For the bending mode
the asymptotic solution used as an estimate can be obtained by using Eqn. (34)
in combination with Tab. 1 and Eqn. (32) with the mode shape ADC as t∗ =
2.57 × 10−4 µN/nm2 (an FE analysis has given t∗ = 2.87 × 10−4 µN/nm2), which
is smaller than t̄∗RB. Thus, bending buckling is the relevant mode. Using Eqn. (41)
leads to λ = 1.. Consequently Fig. 7 can directly be used, where one finds for
h/l = 0.02 and k = 5.×10−4 µN/nm2: t∗ ≈ 3×10−4 µN/nm2 which is in reasonable
agreement with the FE-result, while the estimate resulting from the asymptotic
consideration is a bit farer away.

If the values for h and k of the nanostructure of bone used in the above example
are changed to become h = 1nm and k = 1. × 10−2 µN/nm2, i.e. a rather stiff
bedding, the estimate for t∗ using Fig. 7 in conjunction with Eqn. (41) becomes
t∗ = 4.×10−4 µN/nm2. This is exactly that what the finite element analysis renders,
too. If, however, the values for E and l in the above bone example are modified
in oder to become E = 0.2µN/nm2, l = 20nm, leading to h/l = 0.1, it becomes
obvious that Fig. 7 in conjunction with Eqn. (41) is no longer applicable. Here
neither the tilt mode nor the asymptotic estimate are correct; the finite element
analysis has lead to a bending buckling mode with a single half wave and a critical
load intensity t∗ = 2.27 × 10−3 µN/nm2.

The above considerations confirm that the proposed estimate procedures work
quite well for sufficiently stiff beddings. However, in the transition regime, i.e.
between very soft and very stiff bedding, individual numerical or semi-analytical
calculations, as they are described in the paper, have to be performed for getting
more accurate results. And for the “tilt mode” (or “flip mode”) appearing in cases
with very soft matrix the simple formulas Eqs. (38)–(40) lead exact values.

5. Conclusions

In the paper the problem of the stability of equilibrium of nanoparticles in the form
of rods or platelets embedded in a relatively soft matrix is treated as buckling of
elastically supported beams under axially acting distributed loads, which are intro-
duced to the beam by the surrounding matrix. Computational and semi-analytical
as well as asymptotic methods of mechanics are used. Although the appearance of
such systems in biological and technical materials is quite widespread, there have
been still open questions. This fact is the background motivation for the investiga-
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tions presented here.

A variety of system parameters and load distributions are investigated in the
present paper, and their influence on critical load intensities is presented both
in form of formulas and diagrams, which can be used very generally. The quality
of the semi-analytically derived results is checked against finite element results. It
is demonstrated that, provided the appropriate trial functions are chosen, the Ritz
approach leads to reasonably good results.

While for soft beddings polynomial trial functions of sufficient order are appropri-
ate, for stiffer beddings transcendental trial functions should be used.

Obviously two regimes control the stability behaviour of elastic beams or platelets
embedded in a relatively soft elastic matrix:

• For the “flip mode”, i.e. tilting or pure rotation mode, the critical load intensity
is proportional to the bedding stiffness k, i.e lt∗ ∝ k, compare Eqs. (38)–(40).
This mode is particularly relevant for stiffness relations, which can be found in
biological tissues (although this mode is not sufficiently perceived in the corre-
sponding literature; see e.g. [1], where this mode is not included).

• For the bending modes the critical load intensity is, in an asymptotic sense,
proportional to the square root of the bedding stiffness k, i.e. lt∗ ∝

√
k, see

Eqn. (34), or, more specifically, lt∗ = c̃
√

kEJ , with c̃ being a coefficient depend-
ing on loading and the selected Ritz functions.

The value of k, where both above mentioned regimes intersect, can be estimated
by

k̄ =
EJ

l4
4f1f2 . (42)

As an example, for load case ‘CD’ Eqn. (42) gives k̄ = 576EJ/l4. In the neigh-
bourhood of k̄ a transition regime exists, where the simple procedure according to
Eqs. (32) to (36) is not directly applicable but the solution pairs (ᾱ, β̄) can only
be found by a numerical study including the minimum search using Eqs. (29) to
(31), see Fig. 6.
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Appendix A. Symmetric Buckling without Foundation

The critical load multipliers corresponding to the second buckling eigenvalue are
shown as dashed lines in Figs. 7, 8, and 9. Extending those dashed lines towards
decreasing foundation stiffnesses shows that the corresponding eigenvalues asymp-
totically approach values, which represent the buckling eigenvalues of beams sub-
jected to symmetry conditions imposed on their centre point but otherwise freely
suspended in space.

These results can be transfered to the mechanically equivalent problem of the
buckling of beams, which are fully constrained on one end and free at the other
end. In this case the nonuniform distributed load acts towards the constrained end.
Due to the symmetry of the problem, the length of the beam in the modified setting
is half of the length l of the original beam. Figure A1 illustrates this approach. In
Fig. A1(a), a symmetric buckling mode is enforced by constraining the rotation of
the beam at its centre. This symmetric buckling mode corresponds to the second
buckling mode of the unconstrained problem. Fixing the position of the rotational
constraint in space and reducing the foundation stiffness now to zero yield the
configuration depicted in Fig. A1(b).

In order to find approximate solutions for the critical load intensities, leading to
symmetric buckling of the free beam, the semi-analytical procedure described ear-
lier is applied. The first choice for the Ritz function was the symmetric function gS,
compare Eqn. (22). Unfortunately, the predictions obtained with this trial function
are worse than the ones provided by the formulas reported in [16]. On the other
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x

y

b) Remove foundation          equivalent model:

a) Impose symmetry condition at center of beam:

x

Figure A1. Sketch showing how the results obtained for the symmetric buckling mode pertain to an
equivalent buckling problem.

hand, [16] does not give a formula for the end-dominated loading case.

The search for a Ritz function, which gives predictions that are at least as good
as those in [16] and can be applied to the end-dominated load case, leads to the
choice of a tenth order polynomial for the displacement w(ξ),

w(ξ) = w0 + w1 ξ2 + w2 ξ4 + w3 ξ6 + w4 ξ8 + w5 ξ10. (A1)

Solving Π̄tot = 0 for the respective load intensity t and searching for the minimum
t∗ = min(t(w0, w1, . . . w5)) give the critical load intensities for symmetric buckling
under the three considered load cases as follows:

• for load case ‘CO’

t̄∗S = 62.70
EJ

l3
, (A2)

• for load case ‘ED’

ť∗S = 81.95
EJ

l3
, (A3)

• for load case ‘CD’

t̂∗S = 257.73
EJ

l3
. (A4)

For the considered benchmark beams the relative errors of these estimates com-
pared to the finite element solutions, are on the order of 10−5.

21

Page 21 of 36

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Sketch showing how the results obtained for the symmetric buckling mode pertain to an 
equivalent buckling problem.  
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Model experiment showing the post-buckling configuration of a foil strip that is glued between 
two polymer foam blocks. Compression of the block leads to shear stresses along the interface 
between foil and foam. The resulting compressive normal force distribution leads to buckling.  
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The elastic beam of length l and bending stiffness EJ in the undeformed configuration on a 
linear elastic foundation with stiffness k; loading by distributed axial loads t(x) is indicated.  
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Normalized intensity of distributed axial load (left column) and resulting normalized normal 
force distributions (right column) for the three considered load cases.  
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Comparison between the buckling eigenmodes predicted by finite element analysis (line with 
circles) and approximations by Ritz functions for the case of constant axial load (CO); a) for 

a comparatively soft bedding;  
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b) for a little bit stiffer bedding;  
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c) for a stiff bedding.  
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Load intensity t_max as a function of shape parameter α; a) for symmetric Ritz function  
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Load intensity t_max as a function of shape parameter α; b) for the antimetric Ritz function  
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Load intensity t_max as a function of shape parameters α and β.  
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Critical axial load intensity of beams in reference configuration - load case 'CO'  
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Critical axial load intensity of beams in reference configuration - load case 'ED'  
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Critical axial load intensity of beams in reference configuration - load case 'CD'  
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Relative error in the critical axial load intensity (load case 'CO'); a) polynomial Ritz functions  
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Relative error in the critical axial load intensity (load case 'CO'); b) transcendental Ritz functions  
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