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Abstract

We develop the shape derivative analysis of solutions to the problem of scattering
of time-harmonic electromagnetic waves by a bounded penetrable obstacle. Since
boundary integral equations are a classical tool to solve electromagnetic scattering
problems, we study the shape differentiability properties of the standard electromag-
netic boundary integral operators. The latter are typically bounded on the space

of tangential vector fields of mixed regularity TH
−

1

2 (divΓ,Γ). Using Helmholtz de-
composition, we can base their analysis on the study of pseudo-differential integral
operators in standard Sobolev spaces, but we then have to study the Gâteaux dif-
ferentiability of surface differential operators. We prove that the electromagnetic
boundary integral operators are infinitely differentiable without loss of regularity.
We also give a characterization of the first shape derivative of the solution of the
dielectric scattering problem as a solution of a new electromagnetic scattering prob-
lem.

Keywords : Maxwell’s equations, boundary integral operators, surface differential
operators, shape derivatives, Helmholtz decomposition.

1 Introduction

Consider the scattering of time-harmonic electromagnetic waves by a bounded obstacle
Ω in R

3 with a smooth and simply connected boundary Γ filled with an homogeneous
dielectric material. This problem is described by the system of Maxwell’s equations with
piecewise constant electric permittivity and magnetic permeability, valid in the sense of
distributions, which implies two transmission conditions on the boundary of the obstacle
guaranteeing the continuity of the tangential components of the electric and magnetic
fields across the interface. The transmission problem is completed by the Silver–Müller
radiation condition at infinity (see [26] and [27]). Boundary integral equations are an
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efficient method to solve such problems for low and high frequencies. The dielectric
scattering problem is usually reduced to a system of two boundary integral equations
for two unknown tangential vector fields on the interface (see [5] and [27]). We refer to
[8] for methods developed by the authors to solve this problem using a single boundary
integral equation.

Optimal shape design with a goal function involving the modulus of the far field
pattern of the dielectric scattering problem has important applications, such as antenna
design for telecommunication systems and radars. The analysis of shape optimization
methods is based on the analysis of the dependency of the solution on the shape of the
dielectric scatterer, and a local analysis involves the study of derivatives with respect
to the shape. An explicit form of the shape derivatives is desirable in view of their
implementation in shape optimization algorithms such as gradient methods or Newton’s
method.

In this paper, we present a complete analysis of the shape differentiability of the
solution of the dielectric scattering problem and of its far field pattern, using integral
representations. Even if numerous works exist on the calculus of shape derivatives of
various shape functionals [11, 12, 13, 15, 33], in the framework of boundary integral
equations the scientific literature is not extensive. However, one can cite the papers [28],
[30] and [29], where R. Potthast has considered the question, starting with his PhD the-
sis [31], for the Helmholtz equation with Dirichlet or Neumann boundary conditions and
the perfect conductor problem, in spaces of continuous and Hölder continuous functions.
Using the integral representation of the solution, one is lead to study the Gâteaux differ-
entiability of boundary integral operators and potential operators with weakly singular
and hypersingular kernels.

The natural space of distributions (energy space) which occurs in the electromagnetic

potential theory is TH− 1

2 (divΓ,Γ), the set of tangential vector fields whose components

are in the Sobolev spaceH− 1

2 (Γ) and whose surface divergence is in H− 1

2 (Γ). We face two
main difficulties: On one hand, the solution of the scattering problem is given in terms
of products of boundary integral operators and their inverses. In order to be able to
construct shape derivatives of such products, it is not sufficient to find shape derivatives
of the boundary integral operators, but it is imperative to prove that the derivatives are
bounded operators between the same spaces as the boundary integral operators them-
selves. On the other hand, the very definition of shape differentiability of operators

defined on the shape-dependent space TH
− 1

2 (divΓ,Γ) poses non-trivial problems. Our
strategy consists in using the Helmholtz decomposition of this Hilbert space which gives
a representation of a tangential vector field in terms of (tangential derivatives of) two
scalar potentials. In this way, we split the analysis into two steps: First the Gâteaux
differentiability analysis of scalar boundary integral operators and potential operators
with strongly and weakly singular kernels, and second the study of shape derivatives of
surface differential operators.

This work contains results from the thesis [24] where this analysis has been used to
develop a shape optimization algorithm of dielectric lenses in order to obtain a prescribed
radiation pattern.
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This is the second of two papers on shape derivatives of boundary integral operators,
the first one [9] being aimed at a general theory of shape derivatives of singular integral
operators appearing in boundary integral equation methods.

The paper is organized as follows:
In Section 2 we recall some standard results about trace mappings and regularity

properties of the boundary integral operators in electromagnetism. In Section 3 we
define the scattering problem for time-harmonic electromagnetic waves at a dielectric
interface. We then give an integral representation of the solution — and of the quantity
of interest, namely the far field of the dielectric scattering problem — following the single
source integral equation method developed in [8].

The remaining parts of the paper are dedicated to the shape differentiability analysis
of the solution of the dielectric scattering problem. We use the results of our first paper [9]
on the Gâteaux differentiability of boundary integral operators with pseudo-homogeneous
kernels. We refer to this paper for a discussion of the notion of Gâteaux derivatives in
Fréchet spaces and of some of their basic properties. In Section 4 we discuss the difficulties

posed by the shape dependency of the function space TH− 1

2 (divΓ,Γ) on which the integral
operators are defined, and we present a strategy for dealing with this difficulty, namely
using the well-known tool [10] of Helmholtz decomposition. In our approach, we map the

variable spaces TH
− 1

2 (divΓr
,Γr) to a fixed reference space with a transformation that

preserves the Hodge structure. This technique involves the analysis of surface differential
operators that have to be considered in suitable Sobolev spaces. Therefore in Section (5)
we recall and extend the results on the differentiability properties of surface differential
operators established in [9, Section 5]. Using the rules on derivatives of composite and
inverse functions, we obtain in Section 6 the shape differentiability properties of the
solution of the scattering problem. More precisely, we prove that the boundary integral
operators are infinitely Gâteaux differentiable without loss of regularity, whereas previous
results allowed such a loss [29], and we prove that the shape derivatives of the potentials
are smooth away from the boundary but they lose regularity in the neighborhood of the
boundary. This implies that the far field is infinitely Gâteaux differentiable, whereas the
shape derivatives of the solution of the scattering problem lose regularity.

These new results generalize existing results: In the acoustic case, using a variational
formulation, a characterization of the first Gâteaux derivative was given by A. Kirsch
[21] for the Dirichlet problem and then by Hettlich [16, 17] for the impedance problem
and the transmission problem. An alternative technique was introduced by Kress and
Päivärinta in [23] to investigate Fréchet differentiability in acoustic scattering by the
use of a factorization of the difference of the far-field pattern of the scattered wave for
two different obstacles. In the electromagnetic case, Potthast used the integral equation
method to obtain a characterization of the first shape derivative of the solution of the
perfect conductor scattering problem. In [22], Kress improved this result by using a
far-field identity and in [14] Kress and Haddar extended this technique to acoustic and
electromagnetic impedance boundary value problems.

At the end of Section 6 we obtain a characterization of the first shape derivative of
the solution of the dielectric scattering problem as the solution of a new electromagnetic
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transmission problem. We show by deriving the integral representation of the solution
that the first derivative satisfies the homogeneous Maxwell equations, and by directly
deriving the boundary values of the solution itself we see that the first derivative satisfies
two new transmission conditions on the boundary.

In the end we will have obtained two different algorithms for computing the shape
derivative of the solution of the dielectric scattering problem and of the far field pattern:
A first one by differentiating the integral representations and a second one by solving the
new transmission problem associated with the first derivative.

The characterization of the derivatives as solutions to boundary value problems has
been obtained in the acoustic case by Kress [6], Kirsch [21], Hettlich and Rundell [18]
and Hohage [19] and has been used for the construction of Newton-type or second degree
iterative methods in acoustic inverse obstacle scattering. Whereas the use of these char-
acterizations requires high order regularity assumption for the boundary, we expect that
the differentiation of the boundary integral operators does not require much regularity.
Although in this paper we treat the case of a smooth boundary, in the last section we give
some ideas on possible extensions of the results of this paper to non-smooth domains.

2 Boundary integral operators and their main properties

Let Ω be a bounded domain in R
3 and let Ωc denote the exterior domain R

3\Ω. Through-
out this paper, we will for simplicity assume that the boundary Γ of Ω is a smooth and
simply connected closed surface, so that Ω is diffeomorphic to a ball.

We use standard notation for surface differential operators and boundary traces. More
details can be found in [27]. For a vector function v ∈ C k(R3,C3) with k ∈ N

∗, we denote
by [∇v] the matrix the i-th column of which is the gradient of the i-th component of v,
and we set [Dv] = [∇v]T. Let n denote the outer unit normal vector on the boundary Γ.
The tangential gradient of a complex-valued scalar function u ∈ C k(Γ,C) is defined by

∇Γu = ∇ũ|Γ −
(

∇ũ|Γ · n
)

n, (2.1)

and the tangential vector curl is defined by

curlΓ u = ∇ũ|Γ ∧ n, (2.2)

where ũ is a smooth extension of u to the whole space R
3. For a complex-valued vector

function u ∈ C k(Γ,C3), we denote [∇Γu] the matrix the i-th column of which is the
tangential gradient of the i-th component of u and we set [DΓu] = [∇Γu]

T.
The surface divergence of u ∈ C k(Γ,C3) is defined by

divΓ u = div ũ|Γ −
(

[∇ũ|Γ]n · n
)

, (2.3)

and the surface scalar curl is defined by

curlΓ u = n · (curl ũ) .

These definitions do not depend on the choice of the extension ũ.
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Definition 2.1 For a vector function v ∈ C∞(Ω,C3) a scalar function v ∈ C∞(Ω,C)
and κ ∈ C \ {0}, we define the traces :

γv = v|Γ ,

γnv =
∂

∂n
v = n · (∇v)|Γ ,

γDv := n ∧ (v)|Γ (Dirichlet),

γNκ
v :=

1

κ
n ∧ (curl v)|Γ (Neumann).

We define in the same way the exterior traces γc, γcn, γ
c
D and γcNκ

.

For a domain G ⊂ R
3 we denote by Hs(G) the usual L2-based Sobolev space of

order s ∈ R, and by Hs
loc(G) the space of functions whose restrictions to any bounded

subdomain B of G belong to Hs(B). Spaces of vector functions will be denoted by
boldface letters, thus

H
s(G) = (Hs(G))3 .

If D is a differential operator, we write:

H
s(D,Ω) = {u ∈ H

s(Ω) : Du ∈ H
s(Ω)}

H
s
loc(D,Ω

c) = {u ∈ H
s
loc(Ω

c) : Du ∈ H
s
loc(Ω

c)}.

The space Hs(D,Ω) is endowed with the natural graph norm. When s = 0, this defines in
particular the Hilbert spaces H(curl,Ω) and H(curl curl,Ω). We introduce the Hilbert

spaces Hs(Γ) = γ
(

Hs+ 1

2 (Ω)
)

, and TH
s(Γ) = γD

(

H
s+ 1

2 (Ω)
)

. For s > 0, the trace

mappings

γ : Hs+ 1

2 (Ω) → Hs(Γ),

γn : Hs+ 3

2 (Ω) → Hs(Γ),

γD : Hs+ 1

2 (Ω) → TH
s(Γ)

are then continuous. The dual of Hs(Γ) and TH
s(Γ) with respect to the L2 (or L2) scalar

product is denoted by H−s(Γ) and TH
−s(Γ), respectively.

The surface differential operators defined above can be extended to Sobolev spaces:
For s ∈ R the tangential gradient and the tangential vector curl are obviously linear and
continuous operators from Hs+1(Γ) to TH

s(Γ). The surface divergence and the surface
scalar curl can then be defined on tangential vector fields by duality, extending duality
relations valid for smooth functions

∫

Γ
(divΓ j) · ϕds = −

∫

Γ
j · ∇Γϕds for all j ∈ TH

s+1(Γ), ϕ ∈ H−s(Γ), (2.4)

∫

Γ
(curlΓ j) · ϕds =

∫

Γ
j · curlΓ ϕds for all j ∈ TH

s+1(Γ), ϕ ∈ H−s(Γ). (2.5)
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We have the following equalities:

curlΓ∇Γ = 0 and divΓ curlΓ = 0 (2.6)

divΓ(n ∧ j) = − curlΓ j and curlΓ(n ∧ j) = divΓ j (2.7)

Definition 2.2 Let s ∈ R. We define the Hilbert space

TH
s(divΓ,Γ) = {j ∈ TH

s(Γ) ; divΓ j ∈ Hs(Γ)}

endowed with the norm

|| · ||TH
s(divΓ,Γ) =

(

|| · ||2
TH

s(Γ) + ||divΓ ·||2Hs(Γ)

)
1

2

.

Lemma 2.3 The operators γD and γN are linear and continuous from C∞(Ω,C3) to
TL

2(Γ) and they can be extended to continuous linear operators from H(curl,Ω) and

H(curl,Ω) ∩H(curl curl,Ω), respectively, to TH
− 1

2 (divΓ,Γ).

For u ∈ Hloc(curl,Ωc) and v ∈ Hloc(curl curl,Ωc)) we define γcDu and γcNv in the
same way and the same mapping properties hold true.

Recall that we assume that the boundary Γ is smooth and topologically trivial. For
a proof of the following result, we refer to [1, 7, 27].

Lemma 2.4 Let s ∈ R. The Laplace–Beltrami operator defined by

∆Γu = divΓ ∇Γu = − curlΓ curlΓ u. (2.8)

is linear and continuous from Hs+2(Γ) to Hs(Γ). For f ∈ Hs(Γ) and u ∈ Hs+2(Γ), the
equation ∆Γu = f has the equivalent formulation

∫

Γ
∇Γu · ∇Γϕds = −

∫

Γ
f · ϕds, for all ϕ ∈ H−s(Γ). (2.9)

The operator ∆Γ : Hs+2(Γ) → Hs(Γ) is Fredholm of index zero, its kernel and cokernel
consisting of constant functions, so that ∆Γ : Hs+2(Γ)/R → Hs

∗(Γ) is an isomorphism.
Here we define the space Hs

∗(Γ) by

f ∈ Hs
∗(Γ) ⇐⇒ f ∈ Hs(Γ) and

∫

Γ
f ds = 0.

For f ∈ Hs
∗(Γ) we denote the unique solution u ∈ Hs+2(Γ)/R of (2.9) by u = ∆−1

Γ f .

This result is due to the injectivity of the operator ∇Γ from Hs+2(Γ)/R to TH
s+1(Γ), the

Lax-Milgram lemma applied to (2.9) for s = −1, and standard elliptic regularity theory.
Note that curlΓ is also injective from Hs+2(Γ)/R to TH

s+1(Γ), and by duality both divΓ
and curlΓ are surjective from TH

s+1(Γ) to Hs
∗(Γ)

Notice that curlΓ is defined in a natural way on all of Hs+1(Γ) and maps to Hs
∗(Γ),

because we have curlΓ(ϕn) = 0 for any scalar function ϕ ∈ Hs+1(Γ). Thus (2.5) is still
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valid for a not necessarily tangential density j ∈ H
s+1(Γ). An analogous property for

divΓ defined by (5.4) is not available.

We now recall some well known results about electromagnetic potentials. Details can
be found in [1, 3, 4, 5, 20, 27].

Let κ be a positive real number and let Ga(κ, |x−y|) = eiκ|x−y|

4π|x− y| be the fundamental

solution of the Helmholtz equation ∆u+ κ2u = 0. The single layer potential Ψκ is given
by

Ψκu(x) =

∫

Γ
Ga(κ, |x − y|)u(y)ds(y) x ∈ R

3\Γ,

and its trace by

Vκu(x) =

∫

Γ
Ga(κ, |x − y|)u(y)ds(y) x ∈ Γ.

As discussed in the first part of this paper [9], the fundamental solution is pseudo-
homogeneous of class −1. The single layer potential Ψκu is continuous across the bound-
ary Γ. As a consequence we have the following result :

Lemma 2.5 Let s ∈ R. The operators

Ψκ : Hs− 1

2 (Γ) → Hs+1(Ω) ∩Hs+1
loc (Ωc)

(

Hs− 1

2 (Γ) → Hs+1
loc (R3) if s < 1

2

)

Vκ : Hs− 1

2 (Γ) → Hs+ 1

2 (Γ)

are continuous.

The electric potential operator ΨEκ
is defined for j ∈ TH

− 1

2 (divΓ,Γ) by

ΨEκ
j := κΨκ j +

1

κ
∇Ψκ divΓ j .

In R
3 \ Γ, this can be written as ΨEκ

j :=
1

κ
curl curlΨκj because of the Helmholtz

equation and the identity curl curl = −∆+∇ div.

The magnetic potential operator ΨMκ
is defined for m ∈ TH

− 1

2 (divΓ,Γ) by

ΨMκ
m := curlΨκm.

We denote the identity operator by I.

Lemma 2.6 The potentials operators ΨEκ
and ΨMκ

are continuous from TH
− 1

2 (divΓ,Γ)

to Hloc(curl,R
3). For j ∈ TH

− 1

2 (divΓ,Γ) we have

(curl curl−κ2I)ΨEκ
j = 0 and (curl curl−κ2I)ΨMκ

m = 0 in R
3\Γ,

and ΨEκ
j and ΨMκ

m satisfy the Silver-Müller condition.
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We define the electric and the magnetic far field operators for a density j and an element
x̂ of the unit sphere S2 of R3 by

Ψ∞
Eκ

j(x̂) = κ x̂ ∧
(
∫

Γ
e−iκx̂·yj(y)ds(y)

)

∧ x̂,

Ψ∞
Mκe

j(x̂) = iκ x̂ ∧
(
∫

Γ
e−iκx̂·yj(y)ds(y)

)

.

(2.10)

These operators are bounded from TH
s(divΓ,Γ) to TL

2(S2) = {h ∈ L
2(S2); h(x̂)·x̂ = 0},

for all s ∈ R.
We can now define the main boundary integral operators:

Cκj(x) = −
∫

Γ
n(x) ∧ curl curlx{Ga(κ, |x − y|)j(y)}ds(y)

=

(

−κ n ∧ Vκ j +
1

κ
curlΓ Vκ divΓ j

)

(x), (2.11)

and

Mκj(x) = −
∫

Γ
n(x) ∧ curlx{Ga(κ, |x− y|)j(y)}ds(y)

= (Dκ j −Bκ j)(x), (2.12)

with

Bκ j(x) =

∫

Γ
∇xGa(κ, |x − y|) (j(y) · n(x)) ds(y),

Dκ j(x) =

∫

Γ
(∇xGa(κ, |x − y|) · n(x)) j(y)ds(y).

The operators Mκ and Cκ are bounded operators from TH
− 1

2 (divΓ,Γ) to itself.

3 The dielectric scattering problem

We consider the scattering of time-harmonic waves at a fixed frequency ω by a three-
dimensional bounded and non-conducting homogeneous dielectric obstacle represented by
the domain Ω. The electric permittivity ǫ and the magnetic permeability µ are assumed
to take constant positive real values in Ω and Ωc. Thus they will be discontinuous across
the interface Γ, in general. The wave number is given by κ = ω

√
µǫ. We distinguish

the dielectric quantities related to the interior domain Ω through the index i and to
the exterior domain Ωc through the index e. The time-harmonic Maxwell system can be
reduced to second order equations for the electric field only. The time-harmonic dielectric
scattering problem is then formulated as follows.

The solution of the dielectric scattering problem : Consider the scattering of a
given incident electric wave Einc ∈ Hloc(curl,R

3) that satisfies curl curlEinc−κ2eE
inc = 0
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in a neighborhood of Ω. The interior electric field E
i ∈ H(curl,Ω) and the exterior electric

scattered field E
s ∈ Hloc(curl,Ωc) satisfy the time-harmonic Maxwell equations

curl curlEi − κ2iE
i = 0 in Ω, (3.1)

curl curlEs − κ2eE
s = 0 in Ωc, (3.2)

the two transmission conditions,

n ∧ E
i = n ∧ (Es + E

inc) on Γ (3.3)

µ−1
i (n ∧ curlEi) = µ−1

e n ∧ curl(Es + E
inc) on Γ (3.4)

and the Silver-Müller radiation condition:

lim
|x|→+∞

|x|
∣

∣

∣

∣

curlEs(x) ∧ x

|x| − iκeE
s(x)

∣

∣

∣

∣

= 0. (3.5)

It is well known that the problem (3.1)-(3.5) admits a unique solution for any positive
real values of the exterior wave number κe. We refer the reader to [5, 8, 25] for a proof
via boundary integral equation methods.

To analyze the dependency of the solution on the shape of the scatterer Ω, we will
use an integral representation of the solution, obtained by the single boundary integral
equation method developped by the autors in [8]. It is based on the layer ansatz for the
exterior electric field E

s:

E
s = −ΨEκe

j − iηΨMκe
C∗
0j in R

3 \ Ω (3.6)

where η is a positive real number, j ∈ TH
− 1

2 (divΓ,Γ) and the operator C∗
0 is defined for

j ∈ TH
− 1

2 (divΓ,Γ) by

C∗
0j = −n ∧ V0 j − curlΓ V0 divΓ j.

Thanks to the transmission conditions and the Stratton-Chu formula, we have the integral
representation of the interior field

E
i = −1

ρ
(ΨEκ

i
{γcNe

E
inc +Nej})− (ΨMκ

i
{γcDEinc + Lej}) in Ω (3.7)

where ρ =
κiµe

κeµi
and

Le = Cκe
+ iη

(

−1

2
I +Mκe

)

C∗
0 ,

Ne =

(

−1

2
I +Mκe

)

+ iηCκe
C∗
0 .

The exterior Dirichlet trace applied to the right-hand side (3.7) vanishes. The density j

then solves the following boundary integral equation

Sj ≡ ρ

(

−1

2
I +Mκi

)

Lej +Cκi
Nej = −ρ

(

−1

2
I +Mκi

)

γDE
inc +Cκi

γNκe
E
inc. (3.8)
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Theorem 3.1 The operator S is linear, bounded and invertible on TH
− 1

2 (divΓ,Γ). More-
over, given the electric incident field E

inc ∈ Hloc(curl,R
3), the integral representations

(3.6), (3.7) of Ei and E
s give the unique solution of the dielectric scattering problem for

all positive real values of the dielectric constants µi, µe, ǫi and ǫe.

An important quantity, which is of interest in many shape optimization problems, is
the far field pattern of the electric solution, defined on the unit sphere of R3, by

E
∞(x̂) = lim

|x|→∞
4π|x|E

s(x)

eiκe|x|
, with

x

|x| = x̂.

We have E
∞ ∈ TL

2(S2) ∩ C∞(S2,C3). To obtain the integral representation of the far
field E

∞ of the solution, it suffices to replace in (3.6) the potential operators ΨEκe
and

ΨMκe
by the far field operators Ψ∞

Eκe

and Ψ∞
Mκe

defined in (2.10), respectively.

In the method we have described, the solution E = (Ei,Es) and the far field E
∞ are

constructed from operators defined by integrals on the boundary Γ and the incident field.
For a fixed incident field and fixed constants κi, κe, µi, µe, these quantities therefore
depend on the geometry of the boundary Γ of the scatterer Ω only. In the sequel we
analyze the Γ-dependence of the solution following the definition of shape derivatives
and the notations of section 4 of the paper [9].

4 Shape dependence via Helmholtz decomposition

Let us fix a reference domain Ω. We consider variations of Ω generated by transformations
of the form x 7→ x+ r(x) of points x ∈ R

3, where r is a smooth vector function defined
on Γ. This transformation deforms the domain Ω in a domain Ωr of boundary Γr. The
functions r are assumed to belong to the Fréchet space C∞(Γ,R3). For ε > 0 and some
metric d∞ on C∞(Γ,R3), we set

B∞(0, ε) =
{

r ∈ C
∞(Γ,R3), d∞(0, r) < ε

}

.

In the following, we choose ε small enough so that for any r ∈ B∞(0, ε), (I + r) is a
diffeomorphism from Γ to Γr = (I + r)Γ = {xr = x+ r(x);x ∈ Γ}.

The aim of this paper is to study the shape differentiability, that is, the Gâteaux
differentiability with respect to r, of the functionals mapping r to the solution

(E i(r),E s(r)) =
(

E
i(Γr),E

s(Γr)
)

of the dielectric scattering problem with obstacle Ωr, and to the far field E ∞(r) = E
∞(Γr).

In the following, we use the superscript r for integral operators and trace mappings
pertaining to Γr, while functions defined on Γr will often have a subscript r. According
to the boundary integral equation method described in the previous section, we have

E
s(r) =

(

−Ψr
Eκe

− iηΨr
Mκe

C∗,r
0

)

jr in Ωc
r = R

3\Ωr, (4.1)
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where jr solves the integral equation

S
rjr = −ρ

(

−1

2
I +M r

κi

)

γrDE
inc − Cr

κi
γrNκe

E
inc,

and

E
i(r) = −1

ρ
Ψr

Eκi

γc,rNκe

E
tot(r)−Ψr

Mκi

γc,rD E
tot(r) in Ωr, (4.2)

with
E

tot(r) = E
inc + E

s(r) . (4.3)

The far field pattern of the dielectric scattering problem by the interface Γr is

E
∞(r) =

(

−Ψ∞,r
Eκe

− iηΨ∞,r
Mκe

C∗,r
0

)

jr.

As defined in (3.8), the operator Sr is composed of the operators Cr
κe
, M r

κe
, Cr

κi
et M r

κi
,

which are all bounded operators on the space TH
− 1

2 (divΓr
,Γr). Therefore we have to

study the Gâteaux differentiability of the following mappings on B∞(0, ε)

r 7→ M r
κ, C

r
κ ∈ L (TH− 1

2 (divΓr
,Γr))

r 7→ Ψr
Mκ

,Ψr
Eκ

∈ L (TH− 1

2 (divΓr
,Γr),H(curl,Ωr) ∪Hloc(curl,Ωc

r))

r 7→ Ψ∞,r
Mκ

,Ψ∞,r
Eκ

∈ L (TH− 1

2 (divΓr
,Γr),TL

2(S2) ∩ C∞(S2,C3)).

Finally, the differentiability properties of the mapping r 7→ C∗r
0 can be deduced from

those of the mapping r 7→ Cr
κ.

In this approach, several difficulties have to be overcome. The first one is that if we
want to find the derivatives of the solution of the scattering problem, which is given as a

product of operators and of their inverses, all defined on the same space TH
− 1

2 (divΓ,Γ)
(for the derivative at r = 0), it is necessary to prove that the derivatives themselves
are defined as bounded operators on the same space, too. On the other hand, the very

definition of the differentiability of operators defined on TH
− 1

2 (divΓ,Γ) raises non-trivial

questions. For reducing the variable space TH
− 1

2 (divΓr
,Γr) to a fixed reference space, it

is not sufficient, as we did in the scalar case studied in the first part [9], to use a change
of variables. Let us discuss this question: How to define the shape derivative of operators

defined on the variable space TH
− 1

2 (divΓr
,Γr)? in detail.

We recall the notation τr for the “pullback” induced by the change of variables. It
maps a function ur defined on Γr to the function τrur = ur ◦ (I + r) defined on Γ. For
r ∈ B∞(0, ε), the transformation τr is an isomorphism from Ht(Γr) to Ht(Γ). We have

(τrur)(x) = ur(x+ r(x)) and (τ−1
r u)(xr) = u(x).

The natural idea to use this for a product of operators, proposed by Potthast in [28] in
the acoustic case, is to insert the identity τ−1

r τr = I
H

− 1
2 (Γr)

between the factors. This

allows to consider integral operators on the fixed boundary Γ only and to would require
study the differentiability of the mappings

r 7→ τrC
r
κτ

−1
r , r 7→ τrM

r
κτ

−1
r , r 7→ Ψr

Eκ
τ−1
r , r 7→ Ψr

Mκ
τ−1
r , (4.4)

11



but as has been already pointed out in [29], difficulties remain. The main cause for this
is that τr does not map vector fields tangential to Γr to vector fields tangential to Γ, and
in particular,

τr(TH
− 1

2 (divΓr
,Γr)) 6= TH

− 1

2 (divΓ,Γ).

This will lead to a loss of regularity if we simply try to differentiate the mappings in
(4.4). Let us explain this for the operator Mκ. The operator M r

κ, when acting on vector
fields tangential to Γr, has additional regularity like what is known for the scalar double
layer potential, namely it has a pseudo-homogeneous kernel of class −1, whereas it is of
class 0 when considered on all vector fields (see (2.12)). If we differentiate the kernel
of τrM

r
κτ

−1
r , we will not obtain a pseudo-homogeneous kernel of class −1 on the set of

vector fields tangential to Γ, so that we find a loss of regularity for the Gâteaux derivative
of τrM

r
κτ

−1
r .

For mapping tangent vector fields to tangent vector fields, the idea of Potthast was to
use projectors from one tangent plane to the other. Let us denote by π(r) the pullback
τr followed by orthogonal projection to the tangent plane to Γ. This maps any vector
function on Γr to a tangential vector function on Γ, and we have

(π(r)ur)(x) = ur(x+ r(x))− (n(x) · ur(x+ r(x)))n(x).

The restriction of π(r) to tangential functions on Γr admits an inverse, denoted by π−1(r),
if r is sufficiently small. The mapping π−1(r) is defined by

(π−1(r)u)(x+ r(x)) = u(x)− n(x)
nr(x+ r(x)) · u(x)
nr(x+ r(x)) · n(x) ,

and it is easy to see that π(r) is an isomorphism between he space of continuous tangential
vector functions on Γr and on Γ, and for any t between TH

t(Γr) and TH
t(Γ).

In the framework of continuous tangential functions it suffices to insert the product
π−1(r)π(r) = ITC 0(Γr) between factors in the integral representation of the solution to
reduce the analysis to the study of boundary integral operators defined on TC 0(Γ), which
does not depend on r. In our case, we would obtain operators defined on the space

π(r)
(

TH
− 1

2 (divΓr
,Γr)

)

=
{

u ∈ TH
− 1

2 (Γ),divΓr
(π−1(r)u) ∈ H− 1

2 (Γr)
}

,

which still depends on r and is, in general, different from TH
− 1

2 (divΓ,Γ).
We propose a different approach, using the Helmholtz decomposition of the space

TH
− 1

2 (divΓr
,Γr) to introduce a new pullback operator Pr that defines an isomorphism

between TH
− 1

2 (divΓr
,Γr) and TH

− 1

2 (divΓ,Γ).
Recall that we assume that the boundary Γ is smooth and simply connected. We

have the following decomposition. We refer to [10] for the proof.

Theorem 4.1 The Hilbert space TH
− 1

2 (divΓ,Γ) admits the following Helmholtz decom-
position:

TH
− 1

2 (divΓ,Γ) = ∇ΓH
3

2 (Γ)⊕ curlΓH
1

2 (Γ). (4.5)
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Since ε is chosen such that for all r ∈ B∞(0, ε) the surfaces Γr are still regular and simply

connected, the spaces TH− 1

2 (divΓr
,Γr) admit similar decompositions.

The operator of change of variables τr is an isomorphism from H
3

2 (Γr) to H
3

2 (Γ)

and from H
1

2 (Γr) to H
1

2 (Γ), and it maps constant functions to constant functions. Let

jr ∈ TH
− 1

2 (divΓr
,Γr) and let jr = ∇Γr

pr + curlΓr
qr be its Helmholtz decomposition.

The scalar functions pr and qr are determined uniquely up to additive constants. The
following operator :

Pr : TH
− 1

2 (divΓr
,Γr) −→ TH

− 1

2 (divΓ,Γ)
jr = ∇Γr

pr + curlΓr
qr 7→ j = ∇Γ (τrpr) + curlΓ (τrqr)

(4.6)

is therefore well defined, linear, continuous and invertible. Its inverse P
−1
r is given by

P
−1
r : TH

− 1

2 (divΓ,Γ) −→ TH
− 1

2 (divΓr
,Γr)

j = ∇Γ p+ curlΓ q 7→ jr = ∇Γr
τ−1
r (p) + curlΓr

τ−1
r (q).

(4.7)

Obviously for r = 0 we have Pr = P
−1
r = I

TH
− 1

2 (divΓ,Γ)
. We can now insert the identity

I
TH

− 1
2 (divΓr

,Γr)
= P

−1
r Pr between factors in the integral representation of the solution

(E i(r),E s(r)), and we are finally led to study the Gâteaux differentiability properties of
the following mappings, defined on r-independent spaces.

B∞(0, ε) → L (TH− 1

2 (divΓ,Γ),H(curl,Kp)) : r 7→ Ψr
Eκ

P
−1
r

B∞(0, ε) → L (TH− 1

2 (divΓ,Γ),H(curl,Kp)) : r 7→ Ψr
Mκ

P
−1
r

B∞(0, εp) → L (THs(divΓ,Γ),TH
− 1

2 (divΓ,Γ)) : r 7→ PrM
r
κP

−1
r

B∞(0, εp) → L (TH− 1

2 (divΓ,Γ),TH
− 1

2 (divΓ,Γ)) : r 7→ PrC
r
κP

−1
r

(4.8)

where Kp is a compact subset of R3\Γ. These mappings are composed of scalar singular
integral operators, the shape derivatives of which we studied in the first part [9], of
surface differential operators, and of the inverse of the Laplace–Beltrami operator, which
appears in the construction of the Helmholtz decomposition.

Let us look at the representation of the operators in (4.8) in terms of the Helmholtz
decomposition.
Helmholtz representation of Ψr

Eκ
P
−1
r

The operator Ψr
Eκ

Pr

−1 is defined for j = ∇Γ p + curlΓ q ∈ TH
− 1

2 (divΓ,Γ) and x ∈ Kp

by:

Ψr
Eκ

P
−1
r j(x) = κ

∫

Γr

Ga(κ, |x − yr|)
(

∇Γr
τ−1
r p

)

(yr)ds(yr)

+ κ

∫

Γr

Ga(κ, |x − yr|)
(

curlΓr
τ−1
r q

)

(yr)ds(yr)

+
1

κ
∇
∫

Γr

Ga(κ, |x− yr|)
(

∆Γr
τ−1
r p

)

(yr)ds(yr).
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Helmholtz representation of Ψr
Mκ

P
−1
r

The operator Ψr
Mκ

Pr

−1 is defined for j = ∇Γ p + curlΓ q ∈ TH
− 1

2 (divΓ,Γ) and x ∈ Kp

by:

Ψr
Mκ

P
−1
r j(x) = curl

∫

Γr

Ga(κ, |x − yr|)
(

∇Γr
τ−1
r p

)

(yr)ds(yr)

+ curl

∫

Γr

Ga(κ, |x − yr|)
(

curlΓr
τ−1
r q

)

(yr)(yr)ds(yr).

Helmholtz representation of PrC
r
κP

−1
r

Recall that for jr ∈ TH
− 1

2 (divΓr
,Γr), the operator Cr

κ is defined by

Cr
κjr(xr) = −κnr(xr) ∧

∫

Γr

Ga(κ, |xr − yr|)jr(yr)ds(yr)

−1

κ
nr(xr) ∧ ∇xr

Γr

∫

Γr

Ga(κ, |xr − yr|) divΓr
jr(yr)ds(yr).

We want to write Cr
κjr in the form ∇Γr

Pr + curlΓr
Qr. Using formulas (2.6)–(2.7), we

find
divΓr

Cr
κjr = ∆Γr

Pr and curlΓr
Cr
κjr = −∆Γr

Qr.

As a consequence we have for xr ∈ Γr

Pr(xr) = −κ ∆−1
Γr

divΓr

(

nr(xr) ∧
∫

Γr

Ga(κ, |xr − yr|)jr(yr)ds(yr)
)

(4.9)

and

Qr(xr) = −κ (−∆−1
Γr

) curlΓr

(

nr(xr) ∧
∫

Γr

Ga(κ, |xr − yr|)jr(yr)ds(yr)
)

−1

κ
(−∆Γr

) curlΓr
(− curlΓr

)

∫

Γr

Ga(κ, |xr − yr|) divΓr
jr(yr)ds(yr),

= κ ∆−1
Γr

curlΓr

(

nr(xr) ∧
∫

Γr

Ga(κ, |xr − yr|)jr(yr)ds(yr)
)

+
1

κ

∫

Γr

Ga(κ, |xr − yr|) divΓr
jr(yr)ds(yr).

The operator PrC
r
κP

−1
r is defined for j = ∇Γ p+ curlΓ q ∈ TH

− 1

2 (divΓ,Γ) by

PrC
r
κP

−1
r = ∇ΓP (r) + curlΓ Q(r),

with

P (r)(x) = −κ
(

τr∆
−1
Γr

divΓr
τ−1
r

)

(

(τrnr)(x) ∧ τr

{
∫

Γr

Ga(κ, | · −yr|)(∇Γr
τ−1
r p)(yr)ds(yr)

+

∫

Γr

Ga(κ, | · −yr|)(curlΓr
τ−1
r q)(yr)ds(yr)

}

(x)

)
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and

Q(r)(x) = κ
(

τr∆
−1
Γr

curlΓr
τ−1
r

)

(

(τrnr)(x) ∧ τr

{
∫

Γr

Ga(κ, | · −yr|)(∇Γr
τ−1
r p)(yr)ds(yr)

+

∫

Γr

Ga(κ, | · −yr|)(curlΓr
τ−1
r q)(yr)ds(yr)

}

(x)

)

+
1

κ
τr

(
∫

Γr

Ga(κ, | · −yr|)(∆Γr
τ−1
r p)(yr)ds(yr)

)

(x).

Helmholtz representation of PrM
r
κP

−1
r

Recall that for all jr ∈ TH
− 1

2 (divΓr
,Γr), the operator M r

κ is defined by

M r
κjr(xr) =

∫

Γr

(

(∇xrGa(κ, |xr − yr|)) · nr(xr)
)

jr(yr)ds(yr)

−
∫

Γr

∇xrGa(κ, |xr − yr|)
(

nr(xr) · jr(yr)
)

ds(yr).

Using the equalities (2.7) and the identity curl curl = −∆+∇ div, we have

divΓr
M r

κjr(xr) = nr(xr) ·
∫

Γr

curl curlxr {Ga(κ, |xr − yr|)jr(yr)} ds(yr)

= κ2nr(xr) ·
∫

Γr

{Ga(κ, |xr − yr|)jr(yr)} ds(yr)

+

∫

Γr

∂

∂nr(xr)
{Ga(κ, |xr − yr|) divΓr

jr(yr)} ds(yr).

Proceeding in the same way as with the operator PrC
r
κP

−1
r , we obtain that the operator

PrM
r
κP

−1
r is defined for j = ∇Γ p+ curlΓ q ∈ TH

− 1

2 (divΓ,Γ) by:

PrM
r
κP

−1
r j = ∇ΓP

′(r) + curlΓQ
′(r),

with

P ′(r)(x) =
(

τr∆
−1
Γr

τ−1
r

)

τr

{

κ2
∫

Γr

nr ·
{

Ga(κ, | · −yr|) curlΓr
τ−1
r q(yr)

}

ds(yr)

+κ2
∫

Γr

nr ·
{

Ga(κ, | · −yr|)∇Γr
τ−1
r p(yr)

}

ds(yr)

+

∫

Γr

∂

∂nr
Ga(κ, | · −yr|)(∆Γr

τ−1
r p)(yr)ds(yr)

}

(x),
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and

Q′
r(x) =

(

τr∆
−1
Γr

curlΓr
τ−1
r

)

τr

{
∫

Γr

(∇Ga(κ, | · −yr|) · nr) (curlΓr
τ−1
r q)(yr)ds(yr)

+

∫

Γr

((∇Ga(κ, | · −yr|) · nr) (∇Γr
τ−1
r p)(yr)ds(yr)

−
∫

Γr

∇Ga(κ, | · −yr|)
(

nr · (curlΓr
τ−1
r q)(yr)

)

ds(yr)

−
∫

Γr

∇Ga(κ, | · −yr|)
(

nr · (∇Γr
τ−1
r p)(yr)

)

ds(yr)

}

(x).

These operators are composed of boundary integral operators with weakly singular ker-
nel and of the surface differential operators defined in section 2. Each of these weakly
singular boundary integral operators has a pseudo-homogeneous kernel of class -1. The
C∞-Gâteaux differentiability properties of such boundary integral operators has been
established in the preceding paper [9]. It remains now to show that the surface differ-
ential operators, more precisely τr∇Γr

τ−1
r , τr curlΓr

τ−1
r , τr divΓr

τ−1
r , τr curlΓr

τ−1
r , as

well as τr∆Γr
τ−1
r and its inverse, preserve their mapping properties by differentiation

with respect to r.

5 Gâteaux differentiability of surface differential operators

The analysis of the surface differential operators requires the differentiability properties
of some auxiliary functions, such as the outer unit normal vector nr and the Jacobian Jr
of the change of variable x 7→ x+r(x). We recall some results established in the first part
[9, section 4]. For the definition of Gâteaux derivatives and the corresponding analysis,
see [32].

Lemma 5.1 The mapping N : B∞(0, ε) ∋ r 7→ τrnr = nr ◦ (I + r) ∈ C∞(Γ,R3) is
C∞-Gâteaux-differentiable and its first derivative in the direction of ξ ∈ C∞(Γ,R3) is
given by

dN [r, ξ] = −
[

τr∇Γr
(τ−1

r ξ)
]

N (r).

Lemma 5.2 The mapping J from r ∈ B∞(0, ε) to the surface Jacobian Jr ∈ C∞(Γ,R)
is C∞-Gâteaux differentiable and its first derivative in the direction of ξ ∈ C∞(Γ,R3) is
given by

dJ [r0, ξ] = Jr0 ·
(

τr0 divΓr0
(τ−1

r0
ξ)
)

.

The differentiability properties of the tangential gradient and of the surface divergence
in the framework of classical Sobolev spaces is established in [9, section 5].

Lemma 5.3 The mapping

G : B∞(0, ε) → L (Hs+1(Γ),Hs(Γ))
r 7→ τr∇Γr

τ−1
r
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is C∞-Gâteaux differentiable and its first derivative for ξ ∈ C∞(Γ,R3) is given by

dG[r, ξ]u = −[G(r)ξ]G(r)u +
(

G(r)u · [G(r)ξ]N (r)
)

N (r).

Lemma 5.4 The mapping

D : B∞(0, ε) → L (Hs+1(Γ),Hs(Γ))
r 7→ τr divΓr

τ−1
r

is C∞-Gâteaux differentiable and its first derivative for ξ ∈ C∞(Γ,R3) is given by

dD[r, ξ]u = −Trace([G(r)ξ][G(r)u]) + ([G(r)u]N (r) · [G(r)ξ]N (r)) .

Similar results can now be obtained for the tangential vector curl by composition of
the tangential gradient with the normal vector.

Lemma 5.5 The mapping

R : B∞(0, ε) → L (Hs+1(Γ),Hs(Γ))
r 7→ τr curlΓr

τ−1
r

is C∞-Gâteaux differentiable and its first derivative for ξ ∈ C∞(Γ,R3) is given by

dR[r, ξ]u = [G(r)ξ]TR(r)u−D(r)ξ ·R(r)u.

Proof. Let u ∈ Hs+1(Γ). By definition, we haveR(r)u = G(r)u∧N (r). By lemmas 5.1
and 5.3 this application is C∞-Gâteaux differentiable. For the derivative in the direction
ξ ∈ C∞(Γ,R3) we find

dR[r, ξ]u = −[G(r)ξ]G(r)u ∧N (r)− G(r)u ∧ [G(r)ξ]N (r).

For any (3× 3) matrix A and vectors b and c there holds

(Ab) ∧ c+ b ∧Ac = Trace(A)(b ∧ c)−AT(b ∧ c).

We obtain the expression of the first derivative with the choice A = −[G(r)ξ], b =
G(r)u and c = N (r). �

Lemma 5.6 The mapping

R : B∞(0, ε) → L (Hs+1(Γ),Hs(Γ))
r 7→ τr curlΓr

τ−1
r

is C∞-Gâteaux differentiable and its first derivative for ξ ∈ C∞(Γ,R3) is given by

dR[r, ξ]u = −
3

∑

i=1

(G(r)ξi ·R(r)ui)−D(r)ξ · R(r)u

where u = (u1, u2, u3) and ξ = (ξ1, ξ2, ξ3).
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Proof. Let u ∈ H
s+1(Γ). Notice that we have curlΓ u = −Trace

(

[curlΓ u]
)

. We can
therefore write

R(r)u = −Trace(R(r)u).

The C∞-differentiability of R results from the C∞-differentiability ofR. The first deriva-
tive in the direction ξ is

dR[r, ξ]u =− Trace (dR[r, ξ]u)

=− Trace
(

[G(r)ξ]T[R(r)u]
)

−D(r)ξ · Trace (−R(r)u])

=−
3

∑

i=1

(G(r)ξi ·R(r)ui)−D(r)ξ · R(r)u.

�

Higher order derivatives of the tangential vector curl operator and of the surface scalar
curl operator can be obtained by applying these results recursively.

In view of the integral representations of the operators PrC
r
κP

−1
r and PrM

r
κP

−1
r , we

have to study the Gâteaux differentiability of the mappings

r 7→ τr∆
−1
Γr

divΓr
τ−1
r

r 7→ τr∆
−1
Γr

curlΓr
τ−1
r .

We have seen that for r ∈ B∞(0, ε) the operator curlΓr
is linear and continuous from

H
s+1(Γr) to Hs

∗(Γr), that the operator divΓr
is linear and continuous from TH

s+1(Γr)
to Hs

∗(Γr) and that ∆−1
Γr

is defined from Hs
∗(Γr) to Hs+2(Γr)/R. To use the chain rules,

it is necessary to prove that the derivatives at r = 0 act between the spaces H
s+1(Γ)

and Hs
∗(Γ) for the scalar curl operator, between the spaces TH

s+1(Γ) and Hs
∗(Γ) for

the divergence operator and between the spaces Hs
∗(Γ) and Hs+2(Γ)/R for the Laplace–

Beltrami operator. An important observation is

ur ∈ Hs
∗(Γr) if and only if Jr ur ◦ (I + r) ∈ Hs

∗(Γ).

Using the duality (2.5) on the boundary Γr we can write for any vector density j ∈
H

s+1(Γ) and any scalar density ϕ ∈ H−s(Γ)

∫

Γ
τr

(

curlΓr
(τ−1

r j)
)

· ϕJrds =

∫

Γr

curlΓr
(τ−1

r j) · (τ−1
r ϕ) ds

=

∫

Γr

(τ−1
r j) · curlΓr

(τ−1
r ϕ) ds

=

∫

Γ
j · τr

(

curlΓr
(τ−1

r ϕ)
)

Jr ds,

(5.1)

Taking ϕ ∈ R (i.e. ϕ is a constant function) then the right-hand side vanishes. This
means that Jr

(

τr curlΓr
(τ−1

r j)
)

is of vanishing mean value.
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Lemma 5.7 The mapping

R∗ : B∞(0, ε) → L (Hs+1(Γ),Hs
∗(Γ))

r 7→ Jr τr curlΓr
τ−1
r

is C∞-Gâteaux differentiable and we have in any direction ξ = (ξ1, ξ2, ξ3) ∈ C∞(Γ,R3)














∂R∗

∂r
[r, ξ] = −J (r) ·

3
∑

i=1
(G(r)ξi ·R(r)ui) ,

∂mR∗

∂rm
[r, ξ] = 0, for all m ≥ 2.

Proof. Looking at the expression of the derivatives of the tangential gradient and
of the tangential vector curl in lemmas 5.3 and 5.5 we prove iteratively that all the
derivatives of G(r)ϕ and of R(r)ϕ are composed of G(r)ϕ and R(r)ϕ, so that for ϕ ∈ R

the derivatives of the right-hand side of (5.1) vanishes. We have for all m ∈ N and
u ∈ H

s+1(Γ):

∂m

∂rm

{
∫

Γ
Jr
(

τr curlΓr
(τ−1

r j)
)

ds

}

[r, ξ] =

∫

Γ

∂m

∂rm
{R∗} [r, ξ]j ds = 0.

It can also be obtained by directly deriving the expression of R∗j using the formulas
obtained in the lemmas 5.1 to 5.6. The first derivative of R∗ is given by

d (R∗) [r, ξ]u = −J (r) ·
3
∑

i=1
(G(r)ξi ·R(r)ui)

= −Jr.τr

(

3
∑

i=1
∇Γr

(τ−1
r ξi) · curlΓr

(τ−1
r ui)

)

The right-hand side is of vanishing mean value since the space ∇Γr
Hs(Γr) is orthogonal

to curlΓr
Hs(Γr) for the L

2(Γr) duality product. For the second order derivative we
derive r 7→ d (R∗) [r, ξ]j in the direction η = (η1, η2, η3) ∈ C∞(Γ,R3) and we obtain

d2 (R∗) [r; ξ, η]u = J (r) ·
3
∑

i=1
([G(r)η]G(r)ξi ·R(r)ui)

−J (r) ·
3
∑

i=1

(

G(r)ξi · [G(r)η]TR(r)ui

)

= 0.

Higher order derivatives of R∗ vanish. �

For the surface divergence, similar arguments can be applied. Using the duality (2.4),
we can write for j ∈ TH

s+1(Γ):
∫

Γ
τr

(

divΓr
(π(r)−1j)

)

· ϕJrds =

∫

Γr

divΓr
(π(r)−1j) · (τ−1

r ϕ) ds

= −
∫

Γr

(π(r)−1j) · ∇Γr
(τ−1

r ϕ) ds

= −
∫

Γ
τr(π(r)

−1j) · τr
(

∇Γr
(τ−1

r ϕ)
)

Jrds.
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This shows that for constant ϕ ∈ R the right-hand side vanishes and Jr
(

τr divΓr
(π−1(r)j)

)

is of vanishing mean value. We obtain the following result.

Lemma 5.8 The mapping

D∗ : B∞(0, ε) → L (THs+1(Γ),Hs
∗(Γ))

r 7→ Jr τr divΓr
π−1(r)

is C∞-Gâteaux differentiable.

Now it remains to analyze the inverse of the Laplace–Beltrami operator ∆Γ. We
apply the following abstract result on the Gâteaux derivative of the inverse in a Banach
algebra. We leave its proof to the reader.

Lemma 5.9 Let U be an open subset of a Fréchet space X and let Y be a Banach algebra.
Assume that f : U → Y is Gâteaux differentiable at r0 ∈ U and that f(r) is invertible
in Y for all r ∈ U . Then g is Gâteaux differentiable at r0 and its first derivative in the
direction ξ ∈ X is

df [r0, ξ] = −f(r0)
−1 ◦ df [r0, ξ] ◦ f(r0)−1. (5.2)

Moreover if f is Cm-Gâteaux differentiable then g is, too.

From the preceding results we deduce the C∞-Gâteaux differentiability of the map-
ping

L∗ : B∞(0, ε) → L (Hs+2(Γ),Hs
∗(Γ))

r 7→ Jrτr∆Γr
τ−1
r = −R∗(r)R(r).

Let us note that τr induces an isomorphism between the quotient spaces Hs(Γr)/R and
Hs(Γ)/R.

Lemma 5.10 The mapping

B∞(0, ε) → L (Hs
∗(Γ),H

s+2(Γ)/R)

r 7→
(

L∗(r)
)−1

is C∞-Gâteaux differentiable and we have in any direction ξ ∈ C∞(Γ,R3)

d
{

r 7→
(

L∗(r)
)−1

}

[0, ξ] = −∆−1
Γ ◦ dL∗[0, ξ] ◦∆−1

Γ . (5.3)

Proof. We have seen in section 2 that the Laplace–Beltrami operator is invertible
from Hs+2(Γr)/R to Hs

∗(Γr). As a consequence L∗(r) is invertible from Hs+2(Γ)/R to
Hs

∗(Γ). We conclude by using Lemma 5.9. �

Let us give another formulation of (5.3). For any u ∈ Hs+2(Γ) and ϕ ∈ H−s(Γ) we
have

∫

Γ
τr

(

∆Γr
(τ−1

r u)
)

· ϕJrds = −
∫

Γ

(

G(r)u · G(r)ϕ
)

Jrds.
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It is more convenient to differentiate the right-hand side than the left hand side. For
f ∈ Hs

∗(Γr), the element
(

L∗(r)
)−1

f is the solution u of

−
∫

Γ

(

G(r)u · G(r)ϕ
)

Jrds =

∫

Γ
f · ϕds, for all ϕ ∈ Hs(Γ).

The formula (5.3) means that the first derivative at r = 0 in the direction ξ ∈ C∞(Γ,R3)

of r 7→
(

L∗(r)
)−1

f is the solution v of

∫

Γ

∂

∂r

{(

G(r)u0 · G(r)ϕ
)

Jr

}

[0, ξ]ds = −
∫

Γ
∇Γv · ∇Γϕds, for all ϕ ∈ Hs(Γ), (5.4)

with u0 = ∆−1
Γ f .

Now we have all the tools to establish the differentiability properties of the electro-
magnetic boundary integral operators and then of the solution to the dielectric scattering
problem.

6 Shape derivatives of the solution of the dielectric prob-

lem

For the shape-dependent integral operators we now use the following simplified notation

ΨEκ
(r) = Ψr

Eκ
P
−1
r , ΨMκ

(r) = Ψr
Mκ

P
−1
r , Cκ(r) = PrC

r
κP

−1
r , et Mκ(r) = PrM

r
κP

−1
r .

In the following we use the results of the preceding paper [9] about the Gâteaux differen-
tiability of potentials and boundary integral operators with pseudo-homogeneous kernels.

Theorem 6.1 The mappings

B∞(0, ε) → L (TH− 1

2 (divΓ,Γ),H(curl,Kp))
r 7→ ΨEκ

(r)
r 7→ ΨMκ

(r)

are infinitely Gâteaux differentiable. The derivatives can be written in explicit form by
differentiating the kernels of the operators Ψr

Eκ
and Ψr

Mκ
, see [9, Theorem 4.7], and

by using the formulas for the derivatives of the surface differential operators given in
Section 5. The first derivatives at r = 0 can be extended to bounded linear operators

from TH
1

2 (divΓ,Γ) to H(curl,Ω) and to Hloc(curl,Ωc). Given j ∈ TH
1

2 (divΓ,Γ), the
potentials dΨEκ

[0, ξ]j and dΨMκ
[0, ξ]j satisfy the Maxwell equations

curl curlu− κ2u = 0

in Ω and Ωc, and the Silver-Müller radiation condition.
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Proof. Let j ∈ TH
− 1

2 (divΓ,Γ) and let j = ∇Γp+ curlΓ q be its Helmholtz decompo-
sition. Recall that ΨEκ

(r)j and ΨMκ
(r)j can be written as:

ΨEκ
(r) j = κΨr

κτ
−1
r (τrPr

−1j)− 1

κ
∇Ψr

κτ
−1
r

(

τr∆Γr
(τ−1

r p)
)

,

ΨEκ
(r) j = curlΨr

κτ
−1
r (τrPr

−1j).

By composition of differentiable mappings, we deduce that r 7→ ΨEκ
(r) and r 7→ ΨMκ

(r)
are infinitely Gâteaux differentiable far from the boundary and that their first derivatives

are continuous from TH
1

2 (divΓ,Γ) to L
2(Ω) ∪ L

2
loc(Ω

c). Recall that we have

curlΨEκ
(r)j = κΨMκ

(r)j and curlΨMκ
(r)j = κΨEκ

(r)j.

Far from the boundary we can invert the differentiation with respect to x and the deriva-
tion with respect to r, which gives

curl dΨEκ
[0, ξ]j = κdΨMκ

[0, ξ]j and curl dΨMκ
[0, ξ]j = κdΨEκ

[0, ξ]j.

It follows that dΨEκ
[0, ξ]j and dΨMκ

[0, ξ]j are in H(curl,Ω) ∪ Hloc(curl,Ωc) and that
they satisfy the Maxwell equations and the Silver-Müller condition. �

We recall from Section 4 that with the notation of Section 5 the operator Cκ(r) admits
the following representation

Cκ(r) j = PrC
r
κPr

−1j = ∇ΓP (r) + curlΓ Q(r), (6.1)

where
P (r) = −κ (L∗(r))−1R∗(r)

(

τrV
r
κ τ

−1
r

)

[G(r)p +R(r)q]

and
Q(r) = −κ (L∗(r))−1D∗(r)π(r)τ−1

r

(

τrV
r
κ τ

−1
r

)

[G(r)p +R(r)q]

+
1

κ

(

τrV
r
κ τ

−1
r

) (

τr∆Γr
(τ−1

r p)
)

.

Let j ∈ TH
s(divΓ,Γ) and let j = ∇Γ p + curlΓ q be its Helmholtz decomposition.

We want to derive

PrC
r
κP

−1
r j = PrC

r
κ(∇Γr

τ−1
r p+ curlΓr

τ−1
r q)

= Pr(∇Γr
Pr + curlΓr

Qr)
= ∇ΓP (r) + curlΓQ(r).

We find
dCκ[0, ξ]j = ∇ΓdP [0, ξ] + curlΓ dQ[0, ξ].

Thus the derivative with respect to r of PrC
r
κPr

−1j is given by the derivatives of the
functions P (r) = τr(Pr) and of Q(r) = τr(Qr).
We also note that for an r-dependent vector function f(r) on Γ there holds

d{π(r)τ−1
r f(r)}[0, ξ] = π(0)df [0, ξ].

By composition of infinitely differentiable mappings we obtain the following theorem.
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Theorem 6.2 The mapping:

B∞(0, ε) → L

(

TH
− 1

2 (divΓ,Γ),TH
− 1

2 (divΓ,Γ)
)

r 7→ PrC
r
κP

−1
r

is infinitely Gâteaux differentiable. The derivatives can be written in explicit form by
differentiating the kernel of the operator Cr

κ, see [9, Corollary 4.5], and by using the
formulas for the derivatives of the surface differential operators given in Section 5.

Similarly, recall that the operator PrM
r
κPr

−1 admits the following representation :

PrM
r
κPr

−1j = ∇ΓP
′(r) + curlΓQ

′(r),

where
P ′(r) = (L∗(r))−1(κ2Jr · τrnr · (τrV r

κ τ
−1
r ) [G(r)p +R(r)q]

+(L∗(r))−1(Jr · τrDr
κτ

−1
r )(τr∆Γr

(τ−1
r p))

and
Q′(r) = (L∗(r))−1R∗(r)(τr(B

r
κ −Dr

κ)τ
−1
r ) [G(r)p +R(r)q]

with

τrB
r
kP

−1
r j = τr

{
∫

Γr

∇G(κ, | · −yr|)
(

nr( · ) · (∇Γr
τ−1
r p)(yr)

)

ds(yr)

+

∫

Γr

∇G(κ, | · −yr|)
(

nr( · ) · (curlΓr
τ−1
r q)(yr)

)

ds(yr)
}

}

.

Theorem 6.3 The mapping:

B∞(0, ε) → L

(

TH
− 1

2 (divΓ,Γ),TH
− 1

2 (divΓ,Γ)
)

r 7→ PrMκP
−1
r

is infinitely Gâteaux differentiable. The Gâteaux derivatives have the same regularity as

Mκ, so that they are compact operators in TH
− 1

2 (divΓ,Γ). The derivatives can be written
in explicit form by differentiating the kernel of the operators M r

κ , see [9, Corollary 4.5],
and by using the formulas for the derivatives of the surface differential operators given
in Section 5.

Proof. The differentiability of the double layer boundary integral operator is estab-
lished in [9, Example 4.10]. It remains to prove the infinite Gâteaux differentiability of
the mapping

Bδ → L

(

TH
− 1

2 (divΓ,Γ),H
1

2 (Γ)
)

r 7→ τrB
r
κP

−1
r .
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The function (x, y−x) 7→ ∇G(κ, |x−y|) is pseudo-homogeneous of class 0. We then have

to prove that for any fixed (x, y) ∈ (Γ × Γ)∗ and any function p ∈ H
3

2 (Γ) the Gâteaux
derivatives of

r 7→ (τrnr)(x) ·
(

τr∇Γr
τ−1
r p

)

(y)

behave as |x− y|2 when x− y tends to zero. To do so, either we write

(τrnr)(x) ·
(

τr∇Γr
τ−1
r p

)

(y) = ((τrnr)(x)− (τrnr)(y)) ·
(

τr∇Γr
τ−1
r p

)

(y)

or we use Lemmas 5.1 and 5.3 and straighforward computations. �

Theorem 6.4 Assume that Einc ∈ H
1
loc(curl,R

3) and that the mappings

B∞(0, ε) → TH
− 1

2 (divΓ,Γ)

r 7→ Pr

(

nr ∧ E
inc
|Γr

)

r 7→ Pr

(

nr ∧
(

curlEinc
)

|Γr

)

are Gâteaux differentiable at r = 0. Then the mapping from r ∈ B∞(0, ε) to the solution
E (r) = E(Ωr) ∈ H(curl,Ωr)∪Hloc(curl,Ωc) of the scattering problem by the obstacle Ωr

is Gâteaux differentiable at r = 0.

Proof. We use the integral equation method described in Theorem 3.1. Let j be
the solution of the integral equation (3.8). By composition of infinitely differentiable
mappings we see that

B∞(0, ε) → L

(

TH
− 1

2 (divΓ,Γ),TH
− 1

2 (divΓ,Γ)
)

r 7→ S(r) = PrS
r
P
−1
r

is C∞-Gâteaux differentiable. Then with (3.6) and (3.8) we get for the exterior field E s

dE s[0, ξ] =
(

−dΨEκe
[0, ξ] − iηdΨMκe

[0, ξ]C∗
0 − iηΨMκe

dC∗
0 [0, ξ]

)

j

+ (−ΨEκe
− iηΨMκe

C∗
0 )S

−1
(

− dS[0, ξ] j
)

+ (−ΨEκe
− iηΨMκe

C∗
0 )S

−1
(

−ρdMκi
[0, ξ]γDE

inc − dCκi
[0, ξ]γNκe

E
inc

)

+ (−ΨEκe
− iηΨMκe

C∗
0 )S

−1

(

−ρ

(

1

2
+Mκi

)

d
{

Prγ
r
DE

inc
}

[0, ξ]

)

+ (−ΨEκe
− iηΨMκe

C∗
0 )S

−1
(

−Cκi
d
{

Prγ
r
Nκe

E
inc

}

[0, ξ]
)

.

We know that j ∈ TH
1

2 (divΓ,Γ), so that the first terms on the right-hand side are in
Hloc(curl,Ωc), and the hypotheses guarantee that the last two terms are inHloc(curl,Ωc).
For the interior field we write

dE i[0, ξ] = − 1

ρ
dΨEκi

[0, ξ]γcNκe

(

E
s + E

inc
)

− dΨMκi
[0, ξ]γcD

(

E
s + E

inc
)

− 1

ρ
ΨEκi

d
{

Prγ
c,r
Nκe

(

E
s(r) + E

inc
)

}

[0, ξ] −ΨMκi
d
{

Prγ
c,r
D

(

E
s(r) + E

inc
)}

[0, ξ].
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The hypotheses guarantee that γcNκe

(

E
s + E

inc
)

and γcD
(

E
s + E

inc
)

are in TH
1

2 (divΓ,Γ),
which implies that the first two terms are in H(curl,Ω), and that the last two terms are
in H(curl,Ω). �

Theorem 6.5 The mapping from r ∈ B∞(0, ε) to the far field pattern E
∞(Ωr) ∈ TC∞(S2)

of the solution to the scattering problem by the obstacle Ωr is C∞-Gâteaux differentiable.

Proof. The mapping B∞(0, ε) ∋ r 7→
{

(x̂, y) 7→ eiκx̂·(y+r(y))
}

∈ C∞(S2 × Γ) is C∞-
Gâteaux differentiable and the derivatives define smooth kernels. By the linearity of the
integral we deduce that the boundary–to–far–field operators

Bδ → L (THs(divΓ,Γ),C
∞(S2))

r 7→ Ψ∞
Eκ

(r) = Ψ∞,r
Eκ

τ−1
r

r 7→ Ψ∞
Mκ

(r) = Ψ∞,r
Mκ

τ−1
r

are C∞-Gâteaux differentiable. For j ∈ TH
s(divΓ,Γ) we have:

dΨ∞
Eκ

[0, ξ]j(x̂) = iκx̂ ∧
(
∫

Γ
e−iκx̂·y

(

divΓ ξ(y)− iκx̂ · ξ(y)
)

j(y)ds(y)

)

∧ x̂,

and

dΨ∞
Mκ

[0, ξ]j(x̂) = κx̂ ∧
(
∫

Γ
e−iκx̂·y

(

divΓ ξ(y)− iκx̂ · ξ(y)
)

j(y)ds(y)

)

.

We conclude by using the integral representation of E∞(Ωr) and previous theorems. �

6.1 Characterization of the first derivative

The following theorem gives a caracterization of the first Gâteaux derivative of r 7→ E (r)
at r = 0.

Theorem 6.6 Under the hypotheses of Theorem 6.4, the first derivative of the solution
E (r) of the dielectric scattering problem at r = 0 in the direction ξ ∈ C∞(Γ,R3) solves
the following transmission problem :

{

curl curl dE i[0, ξ]− κ2i dE
i[0, ξ] = 0

curl curl dE s[0, ξ]− κ2edE
s[0, ξ] = 0

(6.2)

with the interface conditions
{

n ∧ dE i[0, ξ]− n ∧ dE s[0, ξ] = gD

µ−1
i n ∧ curl dE i[0, ξ]− µ−1

e n ∧ curl dE s[0, ξ] = gN ,
(6.3)

where with the solution (Ei,Es) of the scattering problem,

gD =− (ξ · n)
(

n ∧ curlEi − n ∧ curl(Es + E
inc)

)

∧ n

+ curlΓ

(

(ξ · n)
(

n · Ei − n · (Es + E
inc)

)

)

,
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and

gN =− (ξ · n)
(

κ2i
µi

n ∧ E
i − κ2e

µe
n ∧ (Es + E

inc)

)

∧ n

+ curlΓ

(

(ξ · n)
(

µ−1
i curlΓ E

i − µ−1
e curlΓ(E

s + E
inc)

)

)

,

and dE s[0, ξ] satisfies the Silver-Müller radiation condition.

Proof. We have shown in the previous paragraph that the potential operators and
their Gâteaux derivatives satisfy the Maxwell equations and the Silver-Müller radiation
condition. It remains to compute the boundary conditions. They can be obtained from
the integral representation, but this is rather tedious. A simpler way consists in deriving
for a fixed x ∈ Γ the expression

nr(x+ r(x)) ∧
(

E
i(r)(x+ r(x))− E

s(r)(x+ r(x))− E
inc(x+ r(x))

)

= 0. (6.4)

This gives
0 = dN [0, ξ](x) ∧

(

E
i(x)− E

s(x)− E
inc(x)

)

+ n(x) ∧
(

dE i[0, ξ](x) − dE s[0, ξ](x)
)

+ n ∧
(

ξ(x) · ∇
(

E
i − E

s − E
inc

))

.

We now use the explicit form of the shape derivatives of the normal vector given in
Lemma 5.1 : dN [0, ξ] = − [∇Γξ]n, and the formula ∇u = ∇Γu+

(

∂u
∂n

)

n. We obtain

n(x) ∧
(

dE i[0, ξ](x) − dE s[0, ξ](x)
)

= [∇Γξ]n ∧
(

E
i(x)− E

s(x)− E
inc(x)

)

− n ∧
(

ξ(x) · ∇Γ

(

E
i(x)− E

s(x)− E
inc(x)

))

− (ξ · n)n ∧ ∂

∂n

(

E
i(x)− E

s(x)− E
inc(x)

)

.

Since the tangential component of Ei − E
s − E

inc vanishes, we have

(

ξ(x) · ∇Γ

(

E
i(x)− E

s(x)− E
inc(x)

))

=
(

n ·
(

E
i(x)− E

s(x)− E
inc(x)

))

([

∇Γn
T

]

ξ
)

and

([∇Γξ]n) ∧
(

E
i(x)− E

s(x)− E
inc(x)

)

= ([∇Γξ]n) ∧ n
(

E
i(x)− E

s(x)− E
inc(x)

)

· n.

Since we are on a regular surface, we have ∇Γn = ∇Γn
T and

([∇Γξ]n) ∧ n− n ∧
([

∇Γn
T

]

ξ
)

= curlΓ (ξ · n) .

Using the expansion (see [27, p. 75])

curlu = (curlΓ u)n+ curlΓ (uΓ · n)− ([∇Γn]u) ∧ n−
(

∂u

∂n

)

∧ n
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we obtain that

−n ∧
(

γnE
i − γcn

(

E
s + E

inc
))

= −n ∧
(

γ curlEi − γc curl
(

E
s + E

inc
))

∧ n

+ curlΓ
(

n ·
(

γEi − γc
(

E
s + E

inc
)))

.

Here we used that the curvature operator [∇Γn] acts on the tangential component of
vector fields, so that

[∇Γn]
(

γEi − γc
(

E
s + E

inc
))

= 0.

Thus we have

gD =− (ξ · n)n ∧
(

γ curlEi − γc curl
(

E
s + E

inc
))

∧ n

+ curlΓ
(

(ξ · n)
(

n · γEi − n · γc(Es + E
inc)

))

.

To obtain the second transmission condition, we use similar computations with the elec-

tric field E replaced by the magnetic field
1

iωµ
curlE. �

7 Perspectives: Non-smooth boundaries

We have presented a complete differentiability analysis of the electromagnetic integral
operators with respect to smooth deformations of a smooth boundary in the framework
of Sobolev spaces. Using the boundary integral equation approach we have established
that the far-field pattern of the dielectric scattering problem is infinitely differentiable
with respect to the deformations and we gave a characterization of the first derivative as
the far-field pattern of a new transmission problem.

In the case of a non-smooth boundary — a polyhedral or more generally a Lipschitz
boundary — the formulas determining the first derivative given in Theorem 6.6 are
problematic. The normal vector field n will have discontinuities, and the factor ξ ·n and
vector product with n that appear in the right-hand side of (6.3) may not be well defined
in the energy trace spaces. It is, however, known for the acoustic case that the far field
is infinitely shape differentiable for non-smooth boundaries, too, see [19] for a proof via
the implicit function theorem.

Our procedure of using a boundary integral representation gives an alternative way
of characterizing the shape derivatives of the solution of the dielectric scattering problem
and of its far field. We do not require the computation of the boundary traces of the
solution and taking tangential derivatives and multiplication by possibly discontinuous
factors. Instead we determine the shape derivatives of the boundary integral operators.
While the study of Gâteaux differentiability of boundary integral operators, for the case
of smooth deformations of a Lipschitz domain, is still an open problem that will re-
quire further work, our approach via Helmholtz decompositions seems to be a promising
starting point for tackling this question. Let us briefly indicate why we think this is so.

We consider the case where the boundary Γ is merely Lipschitz, but the deformation
is defined by a vector field ξ that is smooth (at least C 1) in a neighborhood of Γ. Note
that the reduction to purely normal displacements that is often used for studying shape
optimization problems for smooth boundaries does not make sense here, as soon as there
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are corners present. In this situation, many of the ingredients of our toolbox are still
available. Here are some of them.

First, the change of variables mapping τr still defines an isomorphism between H
1

2 (Γr)

and H
1

2 (Γ). By duality, we see that the mapping ur 7→ Jrτrur defines an isomor-

phism between H− 1

2 (Γr) and H− 1

2 (Γ). When we want to transport the energy space

TH
− 1

2 (divΓr
,Γr), we can still use Helmholtz decomposition. Namely, the following result

is known, see [1, 2, 3, 4, 5].

Lemma 7.1 Assume that Γ is a simply connected closed Lipschitz surface. The Hilbert

space TH
− 1

2

‖ (divΓ,Γ) admits the following Helmholtz decomposition:

TH
− 1

2

‖ (divΓ,Γ) = ∇ΓH(Γ)⊕ curlΓ H
1

2 (Γ).

where
H(Γ) = {u ∈ H1(Γ) : ∆Γu ∈ H− 1

2 (Γ)}.

The notation TH
− 1

2

‖ (divΓ,Γ) recalls the fact that special case has to be taken for the
definition of the energy space.

A natural idea for the transport of the energy trace space is then, instead of (4.6), to
define

Pr : TH
− 1

2

‖ (divΓr
,Γr) −→ TH

− 1

2

‖ (divΓ,Γ)

∇Γr
pr + curlΓr

qr 7→ ∇Γ ∆−1
Γ

(

Jr
(

τr∆Γr
pr
))

+ curlΓ(τrqr).

This is justified by the sequence of isomorphisms

H(Γr)/R
∆Γr−→ H

− 1

2

∗ (Γr) −→ H
− 1

2

∗ (Γ)
∆−1

Γ−→ H(Γ)/R

pr 7→ ∆Γr
pr 7→ Jr(τr∆Γr

pr) 7→ ∆−1
Γ

(

Jr(τr∆Γr
pr)

)

.

The inverse of the transformation Pr is given by

P
−1
r : TH

− 1

2

‖
(divΓ,Γ) −→ TH

− 1

2

‖
(divΓr

,Γr)

∇Γ p+ curlΓ q 7→ ∇Γr
τ−1
r

(

L∗(r)
)−1

∆Γp+ curlΓr
(τ−1

r q).

In this situation it seems to be more convenient to rewrite the operators PrC
r
κP

−1
r and

PrM
r
κP

−1
r as operators acting on the the scalar fields p∗ = ∆Γp ∈ H

− 1

2

∗ (Γ) and q ∈
H

1

2 (Γr)/R instead of p and q. For example, the operator PrC
r
κP

−1
r is defined for j =

∇Γ∆
−1
Γ p∗ + curlΓ q ∈ TH

− 1

2

‖ (divΓ,Γ) by

PrC
r
κP

−1
r = ∇Γ∆

−1
Γ P ∗(r) + curlΓQ(r),

with
P ∗(r) = −κ R∗(r)

(

τrV
r
κ τ

−1
r

)

[

G(r)
(

L∗(r)
)−1

p∗ +R(r)q
]
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and

Q(r) = −κ (L∗(r))−1D∗(r)π(r)
(

τrV
r
κ τ

−1
r

)

[

G(r)
(

L∗(r)
)−1

p∗ +R(r)q
]

+
1

κ

(

τrV
r
κ τ

−1
r

) (

J−1
r p∗

)

.

Here we have used the same notation for the surface differential operators as introduced
in Section 5. These formulas together with similar ones for the operator PrMκP

−1
r can

now be the starting point for generalization of the analysis of shape differentiability of
the Maxwell boundary integral operators to Lipschitz domains. We expect that the
results for the differentiability of the surface differential operators and then also of the
boundary integral operators will be similar to what we have obtained for the case of
smooth domains. This is, however, far from trivial and will require further work.
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