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Shape derivatives of boundary integral operators in
electromagnetic scattering. Part II : Application to
scattering by a homogeneous dielectric obstacle

Martin Costabel * Frédérique Le Louér T

Abstract

We develop the shape derivative analysis of solutions to the problem of scattering
of time-harmonic electromagnetic waves by a bounded penetrable obstacle. Since
boundary integral equations are a classical tool to solve electromagnetic scattering
problems, we study the shape differentiability properties of the standard electromag-
netic boundary integral operators. The latter are typically bounded on the space
of tangential vector fields of mixed regularity TH > (divp,T'). Using Helmholtz de-
composition, we can base their analysis on the study of pseudo-differential integral
operators in standard Sobolev spaces, but we then have to study the Gateaux dif-
ferentiability of surface differential operators. We prove that the electromagnetic
boundary integral operators are infinitely differentiable without loss of regularity.
We also give a characterization of the first shape derivative of the solution of the
dielectric scattering problem as a solution of a new electromagnetic scattering prob-
lem.

Keywords : Maxwell’s equations, boundary integral operators, surface differential
operators, shape derivatives, Helmholtz decomposition.

1 Introduction

Consider the scattering of time-harmonic electromagnetic waves by a bounded obstacle
Q2 in R3 with a smooth and simply connected boundary I" filled with an homogeneous
dielectric material. This problem is described by the system of Maxwell’s equations with
piecewise constant electric permittivity and magnetic permeability, valid in the sense of
distributions, which implies two transmission conditions on the boundary of the obstacle
guaranteeing the continuity of the tangential components of the electric and magnetic
fields across the interface. The transmission problem is completed by the Silver—Miiller
radiation condition at infinity (see [26] and [27]). Boundary integral equations are an

*IRMAR, Institut Mathématique, Université de Rennes 1, 35042 Rennes, France,
martin.costabel@Quniv-rennesl.fr

fInstitut fiir Numerische und Andgewandte Mathematik, Universitit Gottingen, 37083 Gottingen,
Germany, f.lelouer@math.uni-goettingen.de



efficient method to solve such problems for low and high frequencies. The dielectric
scattering problem is usually reduced to a system of two boundary integral equations
for two unknown tangential vector fields on the interface (see [5] and [27]). We refer to
[8] for methods developed by the authors to solve this problem using a single boundary
integral equation.

Optimal shape design with a goal function involving the modulus of the far field
pattern of the dielectric scattering problem has important applications, such as antenna
design for telecommunication systems and radars. The analysis of shape optimization
methods is based on the analysis of the dependency of the solution on the shape of the
dielectric scatterer, and a local analysis involves the study of derivatives with respect
to the shape. An explicit form of the shape derivatives is desirable in view of their
implementation in shape optimization algorithms such as gradient methods or Newton’s
method.

In this paper, we present a complete analysis of the shape differentiability of the
solution of the dielectric scattering problem and of its far field pattern, using integral
representations. Even if numerous works exist on the calculus of shape derivatives of
various shape functionals [I1, 12 [13], 15, B3], in the framework of boundary integral
equations the scientific literature is not extensive. However, one can cite the papers [28],
[30] and [29], where R. Potthast has considered the question, starting with his PhD the-
sis [31], for the Helmholtz equation with Dirichlet or Neumann boundary conditions and
the perfect conductor problem, in spaces of continuous and Holder continuous functions.
Using the integral representation of the solution, one is lead to study the Gateaux differ-
entiability of boundary integral operators and potential operators with weakly singular
and hypersingular kernels.

The natural space of distributions (energy space) which occurs in the electromagnetic
potential theory is TH_%(din, '), the set of tangential vector fields whose components

are in the Sobolev space H 2 (T") and whose surface divergence is in H 2 (I"). We face two
main difficulties: On one hand, the solution of the scattering problem is given in terms
of products of boundary integral operators and their inverses. In order to be able to
construct shape derivatives of such products, it is not sufficient to find shape derivatives
of the boundary integral operators, but it is imperative to prove that the derivatives are
bounded operators between the same spaces as the boundary integral operators them-
selves. On the other hand, the very definition of shape differentiability of operators
defined on the shape-dependent space TH_%(din,I’) poses non-trivial problems. Our
strategy consists in using the Helmholtz decomposition of this Hilbert space which gives
a representation of a tangential vector field in terms of (tangential derivatives of) two
scalar potentials. In this way, we split the analysis into two steps: First the Gateaux
differentiability analysis of scalar boundary integral operators and potential operators
with strongly and weakly singular kernels, and second the study of shape derivatives of
surface differential operators.

This work contains results from the thesis [24] where this analysis has been used to
develop a shape optimization algorithm of dielectric lenses in order to obtain a prescribed
radiation pattern.



This is the second of two papers on shape derivatives of boundary integral operators,
the first one [9] being aimed at a general theory of shape derivatives of singular integral
operators appearing in boundary integral equation methods.

The paper is organized as follows:

In Section Bl we recall some standard results about trace mappings and regularity
properties of the boundary integral operators in electromagnetism. In Section Bl we
define the scattering problem for time-harmonic electromagnetic waves at a dielectric
interface. We then give an integral representation of the solution — and of the quantity
of interest, namely the far field of the dielectric scattering problem — following the single
source integral equation method developed in [g].

The remaining parts of the paper are dedicated to the shape differentiability analysis
of the solution of the dielectric scattering problem. We use the results of our first paper [9]
on the Gateaux differentiability of boundary integral operators with pseudo-homogeneous
kernels. We refer to this paper for a discussion of the notion of Gateaux derivatives in
Fréchet spaces and of some of their basic properties. In Section[@we discuss the difficulties
posed by the shape dependency of the function space TH: (divp,T') on which the integral
operators are defined, and we present a strategy for dealing with this difficulty, namely
using the well-known tool [10] of Helmholtz decomposition. In our approach, we map the
variable spaces TH*%(diVFT,FT) to a fixed reference space with a transformation that
preserves the Hodge structure. This technique involves the analysis of surface differential
operators that have to be considered in suitable Sobolev spaces. Therefore in Section (H)
we recall and extend the results on the differentiability properties of surface differential
operators established in [9] Section 5]. Using the rules on derivatives of composite and
inverse functions, we obtain in Section [0 the shape differentiability properties of the
solution of the scattering problem. More precisely, we prove that the boundary integral
operators are infinitely Gateaux differentiable without loss of regularity, whereas previous
results allowed such a loss [29], and we prove that the shape derivatives of the potentials
are smooth away from the boundary but they lose regularity in the neighborhood of the
boundary. This implies that the far field is infinitely Gateaux differentiable, whereas the
shape derivatives of the solution of the scattering problem lose regularity.

These new results generalize existing results: In the acoustic case, using a variational
formulation, a characterization of the first Gateaux derivative was given by A. Kirsch
[21] for the Dirichlet problem and then by Hettlich [16, I7] for the impedance problem
and the transmission problem. An alternative technique was introduced by Kress and
Péivarinta in [23] to investigate Fréchet differentiability in acoustic scattering by the
use of a factorization of the difference of the far-field pattern of the scattered wave for
two different obstacles. In the electromagnetic case, Potthast used the integral equation
method to obtain a characterization of the first shape derivative of the solution of the
perfect conductor scattering problem. In [22], Kress improved this result by using a
far-field identity and in [I4] Kress and Haddar extended this technique to acoustic and
electromagnetic impedance boundary value problems.

At the end of Section [6] we obtain a characterization of the first shape derivative of
the solution of the dielectric scattering problem as the solution of a new electromagnetic



transmission problem. We show by deriving the integral representation of the solution
that the first derivative satisfies the homogeneous Maxwell equations, and by directly
deriving the boundary values of the solution itself we see that the first derivative satisfies
two new transmission conditions on the boundary.

In the end we will have obtained two different algorithms for computing the shape
derivative of the solution of the dielectric scattering problem and of the far field pattern:
A first one by differentiating the integral representations and a second one by solving the
new transmission problem associated with the first derivative.

The characterization of the derivatives as solutions to boundary value problems has
been obtained in the acoustic case by Kress [6], Kirsch [21I], Hettlich and Rundell [I§]
and Hohage [19] and has been used for the construction of Newton-type or second degree
iterative methods in acoustic inverse obstacle scattering. Whereas the use of these char-
acterizations requires high order regularity assumption for the boundary, we expect that
the differentiation of the boundary integral operators does not require much regularity.
Although in this paper we treat the case of a smooth boundary, in the last section we give
some ideas on possible extensions of the results of this paper to non-smooth domains.

2 Boundary integral operators and their main properties

Let Q be a bounded domain in R? and let Q¢ denote the exterior domain R3\Q. Through-
out this paper, we will for simplicity assume that the boundary I' of €2 is a smooth and
simply connected closed surface, so that € is diffeomorphic to a ball.

We use standard notation for surface differential operators and boundary traces. More
details can be found in [27]. For a vector function v € €*(R3, C?) with k € N*, we denote
by [Vv] the matrix the i-th column of which is the gradient of the i-th component of v,
and we set [Dv] = [Vo]'. Let n denote the outer unit normal vector on the boundary T'.
The tangential gradient of a complex-valued scalar function u € €*(T, C) is defined by

Vru = Vir — (Vi -n)n, (2.1)
and the tangential vector curl is defined by
curlpu = Vi An, (2.2)

where @ is a smooth extension of u to the whole space R3. For a complex-valued vector
function u € €*(I',C3), we denote [Vru] the matrix the i-th column of which is the

tangential gradient of the i-th component of % and we set [Dpu] = [Vru]'.
The surface divergence of u € €*(I', C?) is defined by
divp u = divayr — ([Varn - n), (2.3)

and the surface scalar curl is defined by
curlru =n - (curla) .

These definitions do not depend on the choice of the extension .



Definition 2.1 For a vector function v € €°(Q,C?) a scalar function v € €>(Q,C)
and k € C\ {0}, we define the traces :

YU = V),

0
Tn¥ = 5V = n-(Vv)

Ir>

Ypv = n A (v). (Dirichlet),
1
YN,V = —n A (curlv)|, (Neumann).
K

We define in the same way the exterior traces 7, vy, 7p and 7§ .

For a domain G C R? we denote by H®(G) the usual L?-based Sobolev space of
order s € R, and by Hfoc(a) the space of functions whose restrictions to any bounded
subdomain B of G belong to H®(B). Spaces of vector functions will be denoted by
boldface letters, thus

H*(G) = (H*(G))°".

If D is a differential operator, we write:

H°(D,Q) = {ueH’Q):DuecHQ)}
5.(D,9°) = {ue€H; () :Duc Hj ()}

loc loc

The space H*(D, §2) is endowed with the natural graph norm. When s = 0, this defines in
particular the Hilbert spaces H(curl,©?) and H(curl curl, Q). We introduce the Hilbert
spaces H*(T') = ~ <H$+%(Q)), and TH*(T") = ~vp (HH%(Q)). For s > 0, the trace
mappings

y H2(Q) = H(D),

Y HT2(Q) — HY (),
vp : H2(Q) — THY(T)

are then continuous. The dual of H*(I") and TH*(T") with respect to the L? (or L?) scalar
product is denoted by H*(I") and TH™*(T"), respectively.

The surface differential operators defined above can be extended to Sobolev spaces:
For s € R the tangential gradient and the tangential vector curl are obviously linear and
continuous operators from H*(I") to TH*(I'). The surface divergence and the surface
scalar curl can then be defined on tangential vector fields by duality, extending duality
relations valid for smooth functions

/(dinj) cpds = —/j -Vreds for all j € TH™Y(T), p € H5(I), (2.4)
r r

/(curlp Jj)-pds= /j -curlr pds for all j € TH™NT), o € H ().  (2.5)
r r



We have the following equalities:
curlp Vi = 0 and divpcurly =0 (2.6)
divp(n A j) = —curlp g and curlp(n A j) = divp j (2.7)
Definition 2.2 Let s € R. We define the Hilbert space
TH®(divp,T') = {7 € TH*(T"); divrj € H*(')}

endowed with the norm

- thrmeavery = (11 By + 1 dive | Bregry )

Lemma 2.3 The operators yp and v are linear and continuous from €°°(Q,C?) to
TLXI) and they can be extended to continuous linear operators from H(curl,Q) and

H(curl, Q) N H(curl curl, Q), respectively, to THfé(divF, r).

For u € Hjo.(curl, Q°) and v € Hjoc(curl curl, Q°)) we define v4,u and 75w in the
same way and the same mapping properties hold true.

Recall that we assume that the boundary I' is smooth and topologically trivial. For
a proof of the following result, we refer to [IL [7, 27].

Lemma 2.4 Let s € R. The Laplace—Beltrami operator defined by
Aru = divp Vru = — curlp curlp . (2.8)

is linear and continuous from H*2(I') to H*(T'). For f € H*(T') and v € H**2(I), the
equation Aru = f has the equivalent formulation

/ Vru-Vrpds = — / fpds, for all p € H*(T). (2.9)
r r

The operator Ar : HY2(I') — H*(T') is Fredholm of index zero, its kernel and cokernel
consisting of constant functions, so that Ar : H¥7?(I')/R — HZ(T) is an isomorphism.
Here we define the space HZ(T") by

feH;I) < feH) and/fds:O.
r

For f € H{(T') we denote the unique solution u € H**?(T)/R of @Z3) by u = Ap'f.

This result is due to the injectivity of the operator Vr from H*T2(I')/R to TH*T}(T"), the
Lax-Milgram lemma applied to ([2.9]) for s = —1, and standard elliptic regularity theory.
Note that curlp is also injective from H*+2(T")/R to TH*TY(I"), and by duality both divy
and curlp are surjective from TH¥H(T) to H2(T')

Notice that curlp is defined in a natural way on all of H*T}(T") and maps to H2(T'),
because we have curlp(pn) = 0 for any scalar function ¢ € H*T1(T"). Thus (23] is still



valid for a not necessarily tangential density j € H*TY(I"). An analogous property for
divp defined by (&) is not available.

We now recall some well known results about electromagnetic potentials. Details can
be found in [I1 3, [ 5], 20, 27].
irlz—yl
Let  be a positive real number and let G, (k, |z —y|) = h be the fundamental
e —y
solution of the Helmholtz equation Au + x?u = 0. The single layer potential ¥, is given
by

@w®%=AGAmW—MW@de r € RAT,

and its trace by
Veulo) = [ Gulislo =yhutu)dsty) o eT.

As discussed in the first part of this paper [9], the fundamental solution is pseudo-
homogeneous of class —1. The single layer potential V,u is continuous across the bound-
ary I'. As a consequence we have the following result :

Lemma 2.5 Let s € R. The operators

N

v, H
V., :H*"

(T) — HL(Q) N HE(@F) <HS*%(F) — HEPYRY) if s < %)
(D) — H*"2(D)

N

are continuous.

The electric potential operator W, is defined for j € THfé(din, I') by

1
Vg g =rVYsg+ ;V\I/HdIVFJ

1
In R3\ T, this can be written as Wp,_j := — curlcurl ¥,j because of the Helmholtz
K
equation and the identity curlcurl = —A + V div.
The magnetic potential operator ¥, is defined for m & THfé(divr7 I') by

Wy, m = curl ¥, m.
We denote the identity operator by L.

Lemma 2.6 The potentials operators Vg, and Vs are continuous from TH_%(din, I)
to Hipe(curl,R?). For j € THfé(din,F) we have

(curlcurl —x*T)¥ g, j = 0 and (curlcurl —x*T)¥y;, m = 0 in R3\T,

and Vg, 3 and Wy m satisfy the Silver-Miiller condition.



We define the electric and the magnetic far field operators for a density j and an element
# of the unit sphere S? of R? by
5.3 =ran ([ iwism) na.
r (2.10)
w5, 0@ = in ([ e ias ).
r

These operators are bounded from TH?(divr, ") to TL?(S?) = {h € L?(S?); h(i)-# = 0},
for all s € R.
We can now define the main boundary integral operators:

Cywj(x) = —/Fn(:c) A curl curl®{G,(k, |z — y|)7 (y) }ds(y)

= <—/£ nAV.j+ %curlp V,@dinj> (x), (2.11)
and
M) = = [ (o) curl” (G | = 1)) ds(o)
= (DHJ - BRJ)(x)a (2'12)
with

B, () = / Ve Gals | — y]) (§(y) - () ds(y),
Dy j(x) = / ("Gl £ — yl) - n(2)) 5 (1)ds ().

The operators M,, and C, are bounded operators from TH_%(din, I') to itself.

3 The dielectric scattering problem

We consider the scattering of time-harmonic waves at a fixed frequency w by a three-
dimensional bounded and non-conducting homogeneous dielectric obstacle represented by
the domain §2. The electric permittivity € and the magnetic permeability p are assumed
to take constant positive real values in €2 and Q€. Thus they will be discontinuous across
the interface I', in general. The wave number is given by £ = w,/ue. We distinguish
the dielectric quantities related to the interior domain €2 through the index 7 and to
the exterior domain ¢ through the index e. The time-harmonic Maxwell system can be
reduced to second order equations for the electric field only. The time-harmonic dielectric
scattering problem is then formulated as follows.

The solution of the dielectric scattering problem : Consider the scattering of a
given incident electric wave E"¢ € Hy,.(curl, R?) that satisfies curl curl E"¢ —x2E™¢ = 0



in a neighborhood of Q. The interior electric field E’ € H(curl, Q) and the exterior electric
scattered field E® € Hj,.(curl, Q¢) satisfy the time-harmonic Maxwell equations
curlcurl E' — k?E' =0 in Q, (3.1)
curlcurl E¥ — *E* =0 in Q°,
the two transmission conditions,
nAE' =n A (E® 4 E™) onT (3.3)
1t (n A curl EY) = p7tn A curl(E* + E™) onT (3.4)
and the Silver-Miiller radiation condition:
lim  |z||curl E*(z) A — ir E¥(z)| = 0. (3.5)
|x| =400 |£C|

It is well known that the problem (B.1))- (B3] admits a unique solution for any positive
real values of the exterior wave number k.. We refer the reader to [0, [8, 25] for a proof
via boundary integral equation methods.

To analyze the dependency of the solution on the shape of the scatterer 2, we will
use an integral representation of the solution, obtained by the single boundary integral
equation method developped by the autors in [§]. It is based on the layer ansatz for the
exterior electric field E®:

ES=—Up, j—inVuy, Cij nR*\Q (3.6)

where 7 is a positive real number, 7 € TH 2 (divr,T") and the operator Cf is defined for

j € TH 2(divp,T) by
Cyj =-—nAVyj—curlp Vydivr j.

Thanks to the transmission conditions and the Stratton-Chu formula, we have the integral
representation of the interior field

1

Ei - p(\IIE"% {'Y]cve Einc + Nej}) - (\IIM@ {VBEinc + Lej}) in (3'7)
where p = Rifte and
Re ki

1
Le = C"@e +’L77 <—§I+Mﬁe> Cg,

1 ) N
]\fe = <—§I+ MH€> +ZnCHeCO'

The exterior Dirichlet trace applied to the right-hand side ([B.7)) vanishes. The density j
then solves the following boundary integral equation

. 1 . . 1 . .
Sj=p <—§I + M,ﬁ) Lej+CiNej=—p (—51 + M,Qi) ypE™ + Cy, v, E™C. (3.8)



Theorem 3.1 The operator S is linear, bounded and invertible on THz (divp,I'). More-
over, given the electric incident field E™¢ € Hioc(curl, R3), the integral representations
B8), B of E' and E® give the unique solution of the dielectric scattering problem for
all positive real values of the dielectric constants p;, e, € and €.

An important quantity, which is of interest in many shape optimization problems, is
the far field pattern of the electric solution, defined on the unit sphere of R?, by

S
E°(3) = lim 4rjelE® ) with S — 4.
|z|—o00 eirelz| ’1"
We have E® € TL?(S?) N ¢>(S%,C?). To obtain the integral representation of the far
field E* of the solution, it suffices to replace in (3.6]) the potential operators ¥p, —and
W, by the far field operators W3 and W3 defined in (2.I0), respectively.

In the method we have described, the solution E = (E’, E®) and the far field E* are
constructed from operators defined by integrals on the boundary I' and the incident field.
For a fixed incident field and fixed constants k;, Ke, i, Me, these quantities therefore
depend on the geometry of the boundary I' of the scatterer 2 only. In the sequel we
analyze the I'-dependence of the solution following the definition of shape derivatives
and the notations of section 4 of the paper [9].

4 Shape dependence via Helmholtz decomposition

Let us fix a reference domain €2. We consider variations of € generated by transformations
of the form = + = + r(z) of points € R3, where 7 is a smooth vector function defined
on I'. This transformation deforms the domain 2 in a domain €2, of boundary I',.. The
functions r are assumed to belong to the Fréchet space €>°(I', R?). For £ > 0 and some
metric do, on € (T, R3), we set

B>(0,¢) = {r € €°(I,R?), dso(0,7) < c}.

In the following, we choose € small enough so that for any r € B*(0,¢), (I+r) is a
diffeomorphism from I" to I', = (I+7)I' = {x, = x + r(z);z € T'}.

The aim of this paper is to study the shape differentiability, that is, the Gateaux
differentiability with respect to r, of the functionals mapping r to the solution

(&(r),65(r)) = (E'(T,), E*(T)))

of the dielectric scattering problem with obstacle €2,., and to the far field &°°(r) = E*(T',.).

In the following, we use the superscript r for integral operators and trace mappings
pertaining to I',, while functions defined on I', will often have a subscript r. According
to the boundary integral equation method described in the previous section, we have

£ = (-5, ¥, ") i =R\, (4.1)

10



where j, solves the integral equation

1 . )
Srjr =—p <_§I + M;) ,YE’)EZHC - C/:ZW;VNE Eznc,

and 1
& (r) = —;\I/r TN EXN(r) = Wy A5 E(r) in Q,, (4.2)
with '
E°(r) = E™C + &5(r). (4.3)

The far field pattern of the dielectric scattering problem by the interface I',. is

£%(r) = (~937 — w3 C5") i
As defined in (3.8), the operator 8" is composed of the operators Cy,_, M, , Cf et M
which are all bounded operators on the space TH_%(dinT,I’r). Therefore we have to
study the Gateaux differentiability of the following mappings on B*°(0, )

r M7,Cr e £(TH 2(divr,,T)))
s Wh W€ Z(TH 2 (divr,, T',), H(curl, Q,) U Hyo.(curl, Q7))
P U URT € Z(TH 2 (divy,, T,), TL2(52) N 6>(5%,C%)).

Finally, the differentiability properties of the mapping r — C§" can be deduced from
those of the mapping r — CJ..

In this approach, several difficulties have to be overcome. The first one is that if we
want to find the derivatives of the solution of the scattering problem, which is given as a
product of operators and of their inverses, all defined on the same space TH 2 (divp,T)
(for the derivative at r = 0), it is necessary to prove that the derivatives themselves
are defined as bounded operators on the same space, too. On the other hand, the very
definition of the differentiability of operators defined on TH: (divr,I') raises non-trivial
questions. For reducing the variable space TH 3 (divy,,T') to a fixed reference space, it
is not sufficient, as we did in the scalar case studied in the first part [9], to use a change
of variables. Let us discuss this question: How to define the shape derivative of operators
defined on the variable space TH_%(diVFT,I’T) ¢ in detail.

We recall the notation 7, for the “pullback” induced by the change of variables. It
maps a function wu, defined on I, to the function 7,u, = u, o (I 4+ r) defined on I'. For
r € B>¥(0,¢), the transformation 7, is an isomorphism from H'(T';) to H!(T"). We have

(trup) () = up(x +7(z)) and (Tflu)(xr) = u(z).

The natural idea to use this for a product of operators, proposed by Potthast in [28] in
the acoustic case, is to insert the identity 7, l7, = IH_ ) between the factors. This
allows to consider integral operators on the fixed boundary I' only and to would require
study the differentiability of the mappings

I TTC;Tr_l, T TTM,:Tr_l, T \IITENTfl, T \117]"\/[&7';1, (4.4)

11



but as has been already pointed out in [29], difficulties remain. The main cause for this
is that 7,. does not map vector fields tangential to I',. to vector fields tangential to I', and
in particular,

7 (TH 2 (divr,,T,)) # TH™ 2 (divp, T).

This will lead to a loss of regularity if we simply try to differentiate the mappings in
([#4). Let us explain this for the operator M,,. The operator M/, when acting on vector
fields tangential to I',., has additional regularity like what is known for the scalar double
layer potential, namely it has a pseudo-homogeneous kernel of class —1, whereas it is of
class 0 when considered on all vector fields (see (212)). If we differentiate the kernel
of 7.M! 7,71, we will not obtain a pseudo-homogeneous kernel of class —1 on the set of
vector fields tangential to I', so that we find a loss of regularity for the Gateaux derivative
of 7. MIT, L.

For mapping tangent vector fields to tangent vector fields, the idea of Potthast was to
use projectors from one tangent plane to the other. Let us denote by m(r) the pullback
7, followed by orthogonal projection to the tangent plane to I'. This maps any vector
function on I', to a tangential vector function on I', and we have

(r(r)ur)(x) = ur(z +7(2) = (n(2) - wr(z + r(2))) n(2).

The restriction of 7(r) to tangential functions on I', admits an inverse, denoted by 71 (r),
if r is sufficiently small. The mapping 7~!(r) is defined by

n.(z + () - ula)
n(@ + () - n()

(77 (r)u)(z +r(2) = u(z) — n(z) ,
and it is easy to see that 7(r) is an isomorphism between he space of continuous tangential
vector functions on I', and on I, and for any ¢ between TH'(T',) and TH'(T").

In the framework of continuous tangential functions it suffices to insert the product
a L r)r(r) = It4o(r,) between factors in the integral representation of the solution to
reduce the analysis to the study of boundary integral operators defined on T¢°(T"), which
does not depend on r. In our case, we would obtain operators defined on the space

w(r) (TH_%(divFT,FT)> - {u e TH™ (D), divr, (7~ (r)u) € H_%(Fr)} ,

which still depends on r and is, in general, different from THfé(divF, r).

We propose a different approach, using the Helmholtz decomposition of the space
TH_%(dinT,Fr) to introduce a new pullback operator P, that defines an isomorphism
between TH™2 (divr,,T,) and TH™2 (divp, ).

Recall that we assume that the boundary I' is smooth and simply connected. We
have the following decomposition. We refer to [10] for the proof.

Theorem 4.1 The Hilbert space TH_%(din, I') admits the following Helmholtz decom-
position:
1 1
TH 2 (divp,T) = Vi H?(I) & curlpHz (T). (4.5)

12



Since ¢ is chosen such that for all € B*°(0, ¢) the surfaces I', are still regular and simply
connected, the spaces TH_%(diVFT, I',) admit similar decompositions.

The operator of change of variables 7, is an isomorphism from H g(I’r) to H %(F)
and from H %(I’T) to H %(I‘), and it maps constant functions to constant functions. Let
Jr € TH_%(dinT,FT) and let 3, = Vr, p, + curlp, ¢, be its Helmholtz decomposition.
The scalar functions p, and ¢, are determined uniquely up to additive constants. The
following operator :

P,: TH 2(divp,,T,) — TH™2(divp, ) (4.6)
§.=Vp prtceurly, ¢ —  j=Vr (rpr) + curlp (1.q,)

is therefore well defined, linear, continuous and invertible. Its inverse P, !is given by
P-l: TH 2(divy,T) —s TH z(divp,,T},) (47
j=Vrp+eurlr ¢ = j,=Vr, 7, (p)+curly, 7,7 (q). .

Obviously for 7 = 0 we have P, = P} =1 . We can now insert the identity

1
TH™ 2 (divp,I)

| =P, 'P, between factors in the integral representation of the solution
TH™ 2 (divy,.,I';)

(&4(r), &5(r)), and we are finally led to study the Gateaux differentiability properties of
the following mappings, defined on r-independent spaces.

B=(0,e) — .Z(TH 2(divp,T),H(curl, K,)) res W Pyl
B=(0,e) — .Z(TH 2(divp,T),H(curl, K,)) res U, Py (148)
B=(0,e,) — Z(TH(divp,T), TH™2(divp,T))  : 7 P,.MIP! '
B=(0,e,) — Z(TH 2(divp,T), TH 2(divp,T)) : 7~ P,CTP; L

where K, is a compact subset of R3\I'. These mappings are composed of scalar singular
integral operators, the shape derivatives of which we studied in the first part [9], of
surface differential operators, and of the inverse of the Laplace-Beltrami operator, which
appears in the construction of the Helmholtz decomposition.

Let us look at the representation of the operators in ([A8]) in terms of the Helmholtz
decomposition.
Helmholtz representation of V%, P, !

The operator \IJ”ENPF_1 is defined for j = Vr p+ curlyr ¢q € THfé(din,F) and z € K,
by:

v, P () = /F Gl — y]) (V75 'p) () ds ()
+ & [ Ga(k, |z —y|) (curly, 771q) (y,)ds(yr)

Iy

1 _
+ Ev Ga("@ ’1‘ - yr’) (AFTTT lp) (yr)ds(yr)'

T

13



Helmholtz representation of ¥}, P !

The operator \IJfMHPr_1 is defined for j = Vr p+ curlp g € THfé(din,F) and z € K,
by:

1 Prlj(r) = curl / Galk 2 — ) (Y, 7571p) (9 ds (o)

+ curl g Ga(K, |z —yr|) (curlprTr_lq) (yr)(yr)ds(yy).

Helmholtz representation of P,.C7P, !
Recall that for j, € THf%(dinr,I’r), the operator C7, is defined by

Cljr(an) = —rmp() A / Galr, 21 -y )i () ds(y,)

1 ., .
(o) AV [ Gul o = ) dive, 4, ()ds(o)

We want to write C7j, in the form Vp P, + curlp, Q,. Using formulas ([26])-27), we
find
divr, C.j, = Ar, P, and curlp, Clj, = —Arp, Q.

As a consequence we have for x, € I,

Pr(xr) = —K AE} diVI’T <nr(xr) /\/F Ga("{’ |xr - yr|)jr(y7“)d5(y7’)> (49)
and

Qi) = — (~AFY)curly, (nmr) A Gl - yr|>jr<yr>ds<yr>)

Iy

1 L
——(=Ar,)curlp, (- Curlm)/ Ga(k, |zr — yr|) dive, g, (yr)ds(yr),
T,

Ia%
— s AFtewln, (m(acr) A Gl - yr|>jr<yr>ds<yr>>
Iy

1 . .
+; . Ga(k,|2r — yrl) divr, 3, (yr)ds(yr).

The operator P,.CTP, 1 is defined for j = Vr p + curlp ¢ € TH—2 (divp,T") by

P.C"P, ! = VrP(r) + curlr Q(r),

P(r)(@) = =k (mAp, dive, 771) ((Trnr)(x) ATy {/F Ga(t, |- =y )(Vr, 77 ') (yr)ds(yy)

# [ Gute] - —ur(eustr, nlq><yr>ds<yr>} <m>)
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Q@) = & (rAp cwlr, 7,71) <(Trnr)(~’6)ATr{ Ga(k, |+ =) (Ve 7 p) (yr)ds(yy )

Ty

[ Gals] -~y )(curly, T;quyr)ds(yr)} <w>>

'y

L ( Gl |- —yA)(Amlpxyr)ds(yr)) (a).
Iy

K

Helmholtz representation of P, M’P, !
Recall that for all 3, € TH: (divr,,TI';), the operator M, is defined by

MZj o (2y) = / (V¥ Galr, L1 — u0])) - 7)) o (5 IS )

T

— . vera(K, |xr - yr|)(nr($7’) : jr(yr))ds(yr)'

Using the equalities (2.7)) and the identity curl curl = —A + V div, we have

divy, MZj,(2,) = () - / curl curl® {Ga(r, [z, — 4 ()3, (3r)} ds()
— Rn(m)- / (Gl s — 2)d (5r)} ds(ur)

a . .
+ r m {Ga(:‘i, ‘xr - yr‘) leFr Jr(yr)} ds(yr)

Proceeding in the same way as with the operator P, Cl.P, 1 we obtain that the operator

P, M"P; ! is defined for j = Vp p + curlp ¢ € TH-2(divy, ') by:
PTM,:Pglj = VrP'(r) + curlp Q'(r),

with
P(r)@) = (nAitn)n { / ne - {Galr, | - —u]) curly, 7-g(y,)  ds(y,)
i / ne - {Galk |-~ )V, 7 p(we) ) ds(vy)
Iy

+ /Fr %Ga(fﬂ : _yr|)(AFrTrlp)(yT)dS(yr)} (),
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and

r(w) = (TrAEfCUﬂFrTrl)Tr{/ (VGa(,| - =yr]) - nr) (curlr, 77q) (yr)ds (yr)

T

4 [ (Gl =) 1) (Tr7 p) ()
Iy
—jﬁ VGalt, |- —url) (e - (curly, 7 1q) () ds(yr)

1Avam»—mmm«mwﬂmm»@mﬁ@»

These operators are composed of boundary integral operators with weakly singular ker-
nel and of the surface differential operators defined in section 2l Each of these weakly
singular boundary integral operators has a pseudo-homogeneous kernel of class -1. The
@ >°-Gateaux differentiability properties of such boundary integral operators has been
established in the preceding paper [9]. It remains now to show that the surface differ-
ential operators, more precisely 7,Vr, 7!, 7. curlp, 774, 7.divp, 7,1, 7. curlp, 771, as
well as 7.Ar, 7, ! and its inverse, preserve their mapping properties by differentiation
with respect to r.

5 Gateaux differentiability of surface differential operators

The analysis of the surface differential operators requires the differentiability properties
of some auxiliary functions, such as the outer unit normal vector n, and the Jacobian J,
of the change of variable x — x+7(xz). We recall some results established in the first part
[9, section 4]. For the definition of Gateaux derivatives and the corresponding analysis,

see [32].

Lemma 5.1 The mapping N : B®(0,¢) > r = 7,m, = n, o (I +7r) € €°(,R3) is
€ >°-Gateaus-differentiable and its first derivative in the direction of & € €°(T,R3) is
given by

dNr,€] = — [ Ve, (11O N (r).

Lemma 5.2 The mapping J from r € B>(0,¢) to the surface Jacobian J, € €°°(T",R)
is €>°-Gateaux differentiable and its first derivative in the direction of & € €>°(I',R3) is
given by

dj[""o,g] = Jro : (Tro diVFro (7—7;)15))'

The differentiability properties of the tangential gradient and of the surface divergence
in the framework of classical Sobolev spaces is established in [9, section 5].

Lemma 5.3 The mapping

G: B>®(0,e) — ZL(HTYT),H(I))

r — TerrTr_l
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is €°°-Gateauz differentiable and its first derivative for ¢ € €°°(I',R3) is given by
dglr,€lu = —[G(r)ElG(r)u + (G(r)u - [G(r)EJN (r)) N(r).
Lemma 5.4 The mapping

D: B®(0,e) — ZL(H(T),H*I))
r — 7'rdinT7'7T1

is €>°-Gateauz differentiable and its first derivative for & € €°°(I',R3) is given by
dD[r,{lu = — Trace([G(r)¢][G(r)u]) + ([G(r)ulN (r) - [G(r)EIN(r)) .

Similar results can now be obtained for the tangential vector curl by composition of
the tangential gradient with the normal vector.

Lemma 5.5 The mapping

R: B®(0,e) — ZL(HTYT),H(I))

r —> Trcurlp, 7,” 1

is €>°-Gateauz differentiable and its first derivative for & € €°°(I',R3) is given by
dR[r,Ju = [G(r)¢] "R(r)u = D(r)¢ - R(r)u.

PROOF. Letu € H*1(T). By definition, we have R(r)u = G(r)uAN (r). By lemmas[B.1]
and B3l this application is € °°-Gateaux differentiable. For the derivative in the direction
¢ € €°°(TI,R3) we find

dR[r,§lu = =[G(r)E]G(r)u AN (r) = G(r)u A [G(r)SIN (7).
For any (3 x 3) matrix A and vectors b and ¢ there holds
(Ab) Ac+bA Ac = Trace(A)(bAc) — AT(bAc).

We obtain the expression of the first derivative with the choice A = —[G(r){], b =
G(r)u and ¢ = N(r). [ ]

Lemma 5.6 The mapping

R: B>®(0,e) — Z(HTYD), H(I))

r — 7 curlp, 7,71

is €>°-Gateauz differentiable and its first derivative for ¢ € €°°(I',R3) is given by

3
dR[r,flu == (G(r)& - R(r)u;) = D(r)¢ - R(r)u

i=1

where u = (uy,uz,uz) and & = (§1,&2,£3).
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PROOF. Let u € H*"(T'). Notice that we have curlpu = — Trace ([curlr u]). We can
therefore write

R(r)u = — Trace(R(r)u).

The € °°-differentiability of R results from the @ *°-differentiability of R. The first deriva-
tive in the direction ¢ is

dR][r,{]Ju = — Trace (dR[r, &|u)
= — Trace ([Q(T)S]T[’R(r)u]) — D(r)¢ - Trace (—R(r)u))

Higher order derivatives of the tangential vector curl operator and of the surface scalar
curl operator can be obtained by applying these results recursively.

In view of the integral representations of the operators P,CZP, ! and P, MIP; !, we
have to study the Gateaux differentiability of the mappings

1

1

ro TTAI:} divp, 7,
ro— TTA;: curlp, 7,7,

We have seen that for r € B*(0,¢) the operator curlr, is linear and continuous from
HSTY(T,) to H:(T,), that the operator divr, is linear and continuous from TH**1(T,)
to H:(T',) and that Al?rl is defined from H?(T',) to H*T2(T,)/R. To use the chain rules,
it is necessary to prove that the derivatives at » = 0 act between the spaces H8+1(F)
and H(T) for the scalar curl operator, between the spaces TH*™ (") and H2(T') for
the divergence operator and between the spaces H?(I') and H**2(I")/R for the Laplace-
Beltrami operator. An important observation is

u, € H;(I';) if and only if J, u, o (I+7) € HJ(T).

Using the duality (235) on the boundary T', we can write for any vector density j €
H*™Y(T) and any scalar density ¢ € H—5(I")

/TT(CUI'IFT(Tr_lj)> cpdpds = / curlpT(Tr_lj) . (7';130) ds
r

T

B /r (1, '4) - curlp, (1, p) ds (5.1)

= /j . Tr<CurlFr(T;1¢)) Jr ds,
r

Taking ¢ € R (i.e. ¢ is a constant function) then the right-hand side vanishes. This
means that J, (7, curlr, (7, '4)) is of vanishing mean value.
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Lemma 5.7 The mapping
R*: B®(0,e) — ZL(HTYD), H(T))

T — Jy T curlp, 7,0 1

is €°°-Gateauz differentiable and we have in any direction & = (&1, &s,&3) € €°(T, R3)

OR* 3

g = ~90)- 3 606 R
i=1

ag:?i* [r,¢] = 0, forallm > 2.

PrOOF.  Looking at the expression of the derivatives of the tangential gradient and
of the tangential vector curl in lemmas (.3l and we prove iteratively that all the
derivatives of G(r)¢ and of R(r)p are composed of G(r)p and R(r)p, so that for p € R
the derivatives of the right-hand side of (B.I) vanishes. We have for all m € N and
w € H¥TH(D):

om ] 1. d o am * ids =
(%“—m {/FJT(TTCUT Fr(Tr .7)) 5} [T’g] - . &"—m {R }[T,f]_] s =0.

It can also be obtained by directly deriving the expression of R*j using the formulas
obtained in the lemmas 5.1l to The first derivative of R* is given by
3

d(R*) [r,€lu = =J(r)- 3 (9(r)& - R(r)ui)

i=1

3
= —J..7, <Z Vr, (Tfl&-) -curlp, (Tflui)>
=1

The right-hand side is of vanishing mean value since the space Vp, H*(T',) is orthogonal
to curlp, H*(T',) for the L*(T';) duality product. For the second order derivative we
derive 7 +— d (R*) [r,£]j in the direction n = (11, 72,13) € € (T, R?) and we obtain

&> (R) [rsgmu = T(r)- 3 (G(r)n]G(r)& - R(r)us)

i=1
~Ir)- 32 (G0 (G0 TR (r)s)
= 0.
Higher order derivatives of R* vanish. |

For the surface divergence, similar arguments can be applied. Using the duality (24]),
we can write for j € TH*T(T):

/Fn(dim(w(r)—lj)).<pJTds - /divn(w(r)—lj)-(ilcp)ds

T

- / (r(r)14) - Vo (7 ) ds

= = [ ) 7 (T ) s

19



This shows that for constant ¢ € R the right-hand side vanishes and J, (7, divr, (71 (r)7))
is of vanishing mean value. We obtain the following result.

Lemma 5.8 The mapping

D*: B>(0,e) — L(THtYD), H(I))
r — Jp 7 divp, 771(r)

is €°°-Gateaur differentiable.

Now it remains to analyze the inverse of the Laplace-Beltrami operator Ap. We
apply the following abstract result on the Gateaux derivative of the inverse in a Banach
algebra. We leave its proof to the reader.

Lemma 5.9 Let U be an open subset of a Fréchet space X and letY be a Banach algebra.
Assume that f : U — Y is Gateauz differentiable at ro € U and that f(r) is invertible
inY for allr € U. Then g is Gateaux differentiable at ro and its first derivative in the
direction £ € X is

dffro, €] = —f(ro) " o df[ro, ] o f(ro) . (5.2)
Moreover if f is €""-Gateaur differentiable then g is, too.
From the preceding results we deduce the #°°-Gateaux differentiability of the map-
ping
L*: B>(0,e) — Z(H(T),H(T))
r = ATl = =R ()R(r).

Let us note that 7, induces an isomorphism between the quotient spaces H*(I',)/R and
H*(I')/R.

Lemma 5.10 The mapping

B>(0,e) — Z(H:(),H*t2(T)/R)
r — (ﬁ*(T))_l

is €>°-Gateauz differentiable and we have in any direction & € €>°(I',R3)

d {r - (z*(r))*l} 0,6] = At odL[0,€] 0 ARt (5.3)
Proor. We have seen in section [2 that the Laplace—Beltrami operator is invertible
from H**2(T',)/R to H:(T';). As a consequence £*(r) is invertible from H**2(I")/R to
HZ(I'). We conclude by using Lemma [5.9] [ |

Let us give another formulation of (5.3). For any u € H*"2(T") and ¢ € H %(T) we
have

/Fw (AFT(Tflu)) o Jrds = —/F (g(r)u ) g(T)SD) J.ds.
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It is more convenient to differentiate the right-hand side than the left hand side. For
f e H(T,), the element (,C*(’I“))_lf is the solution u of

—/F (Q(r)u . Q(r)go) Jpds = /Ff - pds, for all ¢ € H*(T).

The formula (53]) means that the first derivative at » = 0 in the direction ¢ € €°°(I",R?)
of r— (,C*(’I“))_lf is the solution v of

/F %{ (g(T)Uo : g(r)g0> Jr}[O,g]ds =— /F Vrov - Vreds, forall p € H*(I'), (5.4)

with ug = Ap'f.

Now we have all the tools to establish the differentiability properties of the electro-
magnetic boundary integral operators and then of the solution to the dielectric scattering
problem.

6 Shape derivatives of the solution of the dielectric prob-
lem

For the shape-dependent integral operators we now use the following simplified notation

g, (r)=U% Pt Uy (r) = Uy, Pt Cu(r) = P.CLP Y, et My (r) = P MP .

KT

In the following we use the results of the preceding paper [9] about the Gateaux differen-
tiability of potentials and boundary integral operators with pseudo-homogeneous kernels.

Theorem 6.1 The mappings

Z(TH 2 (divy,T), H(curl, K,,))
Vg, (r)
U, (r)

B=(0,¢)

111

.

r
are infinitely Gateaux differentiable. The derivatives can be written in explicit form by
differentiating the kernels of the operators Wy, —and V', , see [9, Theorem 4.7], and
by using the formulas for the derivatives of the surface differential operators given in
Section [ The first derivatives at v = 0 can be extended to bounded linear operators
from TH%(diVF,P) to H(curl, Q) and to Hj,.(curl, Q°). Given j € TH%(diVF,F), the
potentials dV g, [0,&]7 and dVys [0,£]7 satisfy the Mazwell equations

2

curlcurlu — k*u =0

in Q and Q°, and the Silver-Muiller radiation condition.
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PRrROOF. Let g € TH_%(din, I') and let 5 = Vpp + curlp ¢ be its Helmholtz decompo-
sition. Recall that ¥g_(r)j and Wy, ()7 can be written as:
. r -1 -1 - 1 r _—1 —1
Vg (r)j=rV.7, (1,Py " J) — EV\I/HTT (rrAp, (17 'p)),
g, (r)j = curl VL7, ' (7, P, 5).

By composition of differentiable mappings, we deduce that r — Vg _(r) and r — ¥y (1)

are infinitely Gateaux differentiable far from the boundary and that their first derivatives
1 _—

are continuous from TH2 (divpy,T') to L%(Q) ULE (Q°). Recall that we have

loc
curl g (r)j = k¥ (r)j and curl Wy, (r)j = ¥ g, (r)].

Far from the boundary we can invert the differentiation with respect to x and the deriva-
tion with respect to r, which gives

curld¥pg [0,€]5 = kdVy,, [0,£]7 and curldWy,, [0,€]7 = kdVE,[0,£]7.

It follows that dW¥ g, [0,£]5 and dWy, [0,€]5 are in H(curl, Q) U Hyy.(curl, Q¢) and that
they satisfy the Maxwell equations and the Silver-Miiller condition. |

We recall from Section [l that with the notation of Section Bl the operator Cy(r) admits
the following representation

Cu(r)j = P.C"P. "1 = Vi P(r) 4 curlp Q(r), (6.1)
where
P(r) = —k(Lr)"RA(r) (mVir 1) [G(r)p +R(r)q]
and
Qr) = —r (L) 'D*(r)r(r)r, (Vi 1) [G(r)p + R(r)d]

1
+E (TTVI:Tr_l) (TTAFT(Tr_lp)) .

Let j € TH*(divp,T') and let j = Vr p + curlp ¢ be its Helmholtz decomposition.
We want to derive

PTC;'P;Ij = PTC,Z(VFTTflp + curlp, T;Iq)
=P.(Vr, P + curlp, Q,)
= VrP(r) + curlr Q(r).

We find
dC[0,&]7 = VrdPl0,&] + curlp dQ|0, £].

Thus the derivative with respect to r of P,PC',’;PIf1 j is given by the derivatives of the
functions P(r) = 7,.(P,) and of Q(r) = 7(Q).
We also note that for an r-dependent vector function f(r) on I' there holds

d{m(r)r; " f(r)}[0,€] = m(0)df [0, €].

By composition of infinitely differentiable mappings we obtain the following theorem.
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Theorem 6.2 The mapping:

B®(0,e) — .,Sf(TH*%(divF,P),TH*%(divF,P)>
r — P.CiP?

is infinitely Gateauz differentiable. The derivatives can be written in explicit form by
differentiating the kernel of the operator C}., see [4, Corollary 4.5], and by using the
formulas for the derivatives of the surface differential operators given in Section [3.

Similarly, recall that the operator P, M, ,’;Prfl admits the following representation :

P.M'P,~j = VP (r) + curlp Q'(r),

where
P'(r)= (L) (KT - oy - (VI [G(r)p + R(1r)g]
(L) (I - e D) (7 A, (7' p))
and
Q'(r) = (L*(r)) 'R (r)((B. = D)7 1) [G(r)p + R(7)d]
with

nBP = 7 { [ G- ) - (T 7 ) ) )

+ VG(k, | —y|) (nr( -) - (curlp, Tflq)(yr)) ds(yr)}} .

'y

Theorem 6.3 The mapping:

B=(0,e) — z(TH*%(divF,r),TH*%(divF,r)>
r — P.M.P1

is infinitely Gateauz differentiable. The Gateauz derivatives have the same reqularity as
M., so that they are compact operators in TH_%(din, I'). The derivatives can be written
in explicit form by differentiating the kernel of the operators M]., see [9, Corollary 4.5],
and by using the formulas for the derivatives of the surface differential operators given
in Section [3.

PrOOF. The differentiability of the double layer boundary integral operator is estab-
lished in [9, Example 4.10]. It remains to prove the infinite Gateaux differentiability of
the mapping

Bs — & (TH—%(divF,r), H%(r)>

r — TTBZ;PT_l.
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The function (z,y —z) — VG(k, |z —y|) is pseudo-homogeneous of class 0. We then have

to prove that for any fixed (z,y) € (I' x I')* and any function p € H%(F) the Gateaux
derivatives of

T (Trnr)(x) : (TerrTr_lp) (y)
behave as |z — y|?> when z — y tends to zero. To do so, either we write

(Trm) () - (TerrTT‘_lp) () = () (2) — (Temr) (y)) - (TerrTr_lp) (v)
or we use Lemmas [5.1] and and straighforward computations. |
Theorem 6.4 Assume that E™° € Hi. (curl,R?) and that the mappings
B®(0,e) — TH 2(divp,T)
roe P (n A ER)

r — P, nr/\(curlEmc)‘F)

are Gateaux differentiable at r = 0. Then the mapping from r € B*(0,¢) to the solution
&(r) = E(Q,.) € H(curl, Q,) UH,.(curl, Q¢) of the scattering problem by the obstacle ;.
is Gateaux differentiable at r = 0.

PROOF.  We use the integral equation method described in Theorem Bl Let j be
the solution of the integral equation ([B.8]). By composition of infinitely differentiable
mappings we see that

B=(0,e) — .,zﬂ(TH—%(divF,r),TH—%(divF,r)>
r — S(r)=P,S"P,!

is €°°-Géateaux differentiable. Then with ([B.0]) and ([B.8]) we get for the exterior field &
dgs[()’ é.] = (_d\IIEme [07 g] - ind\I}Mne [07 S]Cg - Z.T/\IIM@ dcék [07 g]) .7
+ (=W, =P, C5)S (= dS[0,¢]5)
+ (—=Ug,, —in¥,, C5)S™ (—pdM,,[0,&vpE™ — dC,, [0, &]yn,, E™)
. e — 1 r Einc
+(=Vg,, — iV, C3)S™ (‘P <§ + Mm‘) d{PpE™} [07§]>
+(=Wp,, — iV, C3)ST (~Crd {Pyk, "} [0,]) .
We know that j € TH%(diVF,F), so that the first terms on the right-hand side are in

Hi..(curl, Q°), and the hypotheses guarantee that the last two terms are in Hyo.(curl, Q°).
For the interior field we write

. 1 . .
4810, = — Vi, [0.€0%,, (E°+E™) — dy, [0.€0 (E°+ E™)

- %\If Eﬂid{ow\’,Ze (&5(r) + E™) }[0, €] = War, d{Pyp (&°(r) + E™) }[0,¢].
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The hypotheses guarantee that v, (ES + Emc) and 7% (ES + Emc) are in TH%(divF, r),
which implies that the first two terms are in H(curl, 2), and that the last two terms are
in H(curl, Q). [ |

Theorem 6.5 The mapping fromr € B>®(0,¢) to the far field pattern E®(Q,) € TE > (S?)
of the solution to the scattering problem by the obstacle §2,. is €°°-Gateaux differentiable.

PROOF. The mapping B¥(0,e) 3 r — {(&,y) — ei””ﬁ'(y*”(y))} € €°(S? xT) is €°°-
Gateaux differentiable and the derivatives define smooth kernels. By the linearity of the
integral we deduce that the boundary—to—far—field operators

Bs — Z(TH*(divp,T),€>(S?))

R T AGER T

oo Ugg (r) =0 !

are ¢ °°-Gateaux differentiable. For j € TH?®(divp,I") we have:

A 0,613 (#) = i A ( e e ) —ini s<y>>j<y>ds<y>) A,
and
d¥37.[0,€]4(2) = ki A ( /F e " (divp &(y) — ik - £(y))J (y)dS(y)> :

We conclude by using the integral representation of E*°(£2,) and previous theorems. W

6.1 Characterization of the first derivative

The following theorem gives a caracterization of the first Gateaux derivative of r — & (r)
at r = 0.

Theorem 6.6 Under the hypotheses of Theorem [6.4], the first derivative of the solution
&(r) of the dielectric scattering problem at r = 0 in the direction & € €*°(T',R3) solves
the following transmission problem :

curl curl &[0, &] — k2d&%0,£] = 0 62)
curl curl d&*[0,&] — k2d&°[0,£] = 0 .
with the interface conditions
n A d&Y0,€] —n AdES0,€] = gp 63)
p;n A curld€0, €] — ptn A curld€2(0, €] = gy, .

where with the solution (E, E®) of the scattering problem,
gp=—(§m) (n A curl E' — n A curl(E® + Ei”c)> AN

+ curlp ((5 n)(n E —n-(E+ EinC)))’
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and

K2 K2 4
gn =—(&-n) (jnAEZ—M—enA(ES+EZ”C)> An

+curly (6 n) (" curlp BN — gz curlp (E* + E7)) ),
and d&*[0, €] satisfies the Silver-Miiller radiation condition.

Proor. We have shown in the previous paragraph that the potential operators and
their Gateaux derivatives satisfy the Maxwell equations and the Silver-Miiller radiation
condition. It remains to compute the boundary conditions. They can be obtained from
the integral representation, but this is rather tedious. A simpler way consists in deriving
for a fixed z € I' the expression

ne(z+r(@) A (E(r)(@+r(x) — E(r)(z +r(x) — E™(z +r(z))) = 0. (6.4)

This gives A '
0 = dN10,€](z) A (E'(z) — E*(z) — E™(2))

+n(z) A (dé”i[O,g](x) — dé”s[O,g](x))
+nA (é(z) -V (E' - E°—E™)).

We now use the explicit form of the shape derivatives of the normal vector given in
LemmaB1l: dN(0,¢] = — [Vré] n, and the formula Vu = Vpu + (3—5) n. We obtain

n(x) A (d€7[0,¢](x) — d&°[0,€](x)) = [Vréln A (E'(z) - E*(z) — E™(x))
—nA(&(z) - Vr (E'(x) — E*(2) — E"™(2)))

(6 m)n A A (B () — () — E7(2)).
Since the tangential component of E! — E¥ — E™ vanishes, we have
() - Vr (E(2) - E*(@) — E™(2))) = (- (E'(a) — E*(2) - E"(2))) (| Vo] )
and
([Vréln) A (E'(z) — E*(z) — E™(2)) = ([Vré]n) An (E'(z) — E*(z) — E™(2)) - n.
Since we are on a regular surface, we have Vrn = Vrn' and
(Vré]ln) An—n A <|:VF’I’ZT} 5) — curly (¢ - n).

Using the expansion (see [27, p. 75])

curlu = (curlr w) n + curlp (ur - n) — ([Vrnju) An — (g—u> An
n
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we obtain that
—n A ("ynEZ _ fYTCL(ES + Emc)) - —nA (,Y curl Ei _ ,yc curl (Es + Elnc)) An
+curlr‘ (n . (’)’EZ — fyc(ES + Eznc))) )

Here we used that the curvature operator [Vrn| acts on the tangential component of
vector fields, so that ‘ |
[Vrn] (YE' —+°(E° + E™)) = 0.
Thus we have
9D = — (§ : n)n A (’)’Curl EZ — ")/Ccurl (Es + Ech)) AN
+ curlp ((5 ‘n) (’n . ’}/EZ —n-~°(E* + Ean))) .

To obtain the second transmission condition, we use similar computations with the elec-

1
tric field E replaced by the magnetic field — curl E. |
iwi

7 Perspectives: Non-smooth boundaries

We have presented a complete differentiability analysis of the electromagnetic integral
operators with respect to smooth deformations of a smooth boundary in the framework
of Sobolev spaces. Using the boundary integral equation approach we have established
that the far-field pattern of the dielectric scattering problem is infinitely differentiable
with respect to the deformations and we gave a characterization of the first derivative as
the far-field pattern of a new transmission problem.

In the case of a non-smooth boundary — a polyhedral or more generally a Lipschitz
boundary — the formulas determining the first derivative given in Theorem are
problematic. The normal vector field n will have discontinuities, and the factor £ - n and
vector product with n that appear in the right-hand side of (6.3]) may not be well defined
in the energy trace spaces. It is, however, known for the acoustic case that the far field
is infinitely shape differentiable for non-smooth boundaries, too, see [19] for a proof via
the implicit function theorem.

Our procedure of using a boundary integral representation gives an alternative way
of characterizing the shape derivatives of the solution of the dielectric scattering problem
and of its far field. We do not require the computation of the boundary traces of the
solution and taking tangential derivatives and multiplication by possibly discontinuous
factors. Instead we determine the shape derivatives of the boundary integral operators.
While the study of Gateaux differentiability of boundary integral operators, for the case
of smooth deformations of a Lipschitz domain, is still an open problem that will re-
quire further work, our approach via Helmholtz decompositions seems to be a promising
starting point for tackling this question. Let us briefly indicate why we think this is so.

We consider the case where the boundary I' is merely Lipschitz, but the deformation
is defined by a vector field ¢ that is smooth (at least ') in a neighborhood of I'. Note
that the reduction to purely normal displacements that is often used for studying shape
optimization problems for smooth boundaries does not make sense here, as soon as there
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are corners present. In this situation, many of the ingredients of our toolbox are still
available. Here are some of them.

First, the change of variables mapping 7, still defines an isomorphism between H 3 (T))
and H %(F) By duality, we see that the mapping w, — J,7-u, defines an isomor-
phism between H _%(Fr) and H _%(F). When we want to transport the energy space

TH: (divp,,T'), we can still use Helmholtz decomposition. Namely, the following result

is known, see [11 2] 3], 41 [5].

Lemma 7.1 Assume that I" is a simply connected closed Lipschitz surface. The Hilbert
1

space THii(din, I') admits the following Helmholtz decomposition:

_1
TH, * (divr, ) = ViH(D) & curly H2 (D).

where

HT) ={ue H(T) : Arue H 2(T)}.

_1
The notation TH|| 2(divp,I') recalls the fact that special case has to be taken for the
definition of the energy space.

A natural idea for the transport of the energy trace space is then, instead of (4.6]), to
define

_1 _1
P, : TH|| ?(divp,,I'y) — TH|| ?(divp, I')
Vr, pr+curly, ¢ — Vr Afl (Jr (TTAFTPT)) + curlp(7,q.).

This is justified by the sequence of isomorphisms

_1 _1 -1
HTO/R 2N HIAT,) —  HIAT) S5 H(T)/R
Dr — Afrpr = Jp (TTAFrpr) = AEI (Jr (TTAFrpr)) .

The inverse of the transformation P,. is given by
1

_1 _1
P.': TH *(divr,I) — TH *(divr,,I})

. -1 -
Vep+ecurlp ¢ = Vp, 771 (L5(r))  Arp+ curly, (17 1q).
In this situation it seems to be more convenient to rewrite the operators P,C"P;-! and
1

PTM,:P;1 as operators acting on the the scalar fields p* = Arp € H, ?(T') and ¢ €
H %(Fr) /R instead of p and q. For example, the operator P,CTP; ! is defined for j =

_1
2

VrAp'p® + curlp g € TH) 2 (divr, T) by
P.CIP ' = VAL P*(r) + curlr Q(r),

with
P*(r) = —kR*(r)(nVirh) [Q(T)(L'*(r))flp* + R(r)q
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and
Q) = = (L) D )l (RVir ) [G0)(£7(r) ' pT + R(r)g
—1—% (TTVI:TFI) (Jflp*) .

Here we have used the same notation for the surface differential operators as introduced
in Section Bl These formulas together with similar ones for the operator P,.M P~ L can
now be the starting point for generalization of the analysis of shape differentiability of
the Maxwell boundary integral operators to Lipschitz domains. We expect that the
results for the differentiability of the surface differential operators and then also of the
boundary integral operators will be similar to what we have obtained for the case of
smooth domains. This is, however, far from trivial and will require further work.
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