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1 Introduction

The tensorial analysis of network (TAN) developed

by G.Kron in 1939 has today proved its capabil-

ity to give answers to the difficult problem of the

electromagnetic compatibility (EMC) prediction of

complex systems[1]. The purpose of this article

is to show how this technique can allow to opti-

mize the choice of parameters in system functions.

We recall briefly the principles of the TAN, before

to speak of the hybrid approach. Using this last

technique, we detail a very simple example to illus-

trate the mechanisms involved. After what we can

speak about the optimization of the system studied

through a classical experience plan. The techniques

can be then used for many more complex systems

and efficient mathematical techniques of optimiza-

tions.

2 Recall on the tensorial anal-
ysis of network

The tensorial analysis of networks (TAN)
developed by G.Kron benefits today of many
publications describing its application and
capabilities[1, 2, 3]. G.Kron has understood
all the powerfull mechanism of the tensorial
algebra to resolve complex problems (at his

time about electrical machines, quantum
mechanics, computing, etc.). The reader
can see the web description of the Kron’s
work in ”http:\\www.quantum-chemistry-
history.com\Kron Dat\KronGabriel1.htm”.
Until today the Kron’s method was used
by many various people in many different
jobs. More than to be a method to solve
the problems, the Kron’s formalism is first
of all a theoretical technique to establish its
equations even in multiphysic[4]. The Kron’s
idea was to reuse as far as possible all the
work made previously in modelling by an
engineer in any new problem he had to solve.
To do that, he shows that the TAN gives all
the mathematical tools needed to connect old
networks in a new one, or to make the inverse,
i.e. to cut a complex problem in littleler ones,
without missing any information from the
global network. Kron has called this second
possibility ”Diakoptic”[5].
The Kron’s method is based on the use of
two dual spaces: the voltage space and the
current one, each of them defined in Rn.
Whatever is the representation of a network
(using edges, vertices, nodes, meshes, ...),
Kron had remarked that its total energy
should not change. So, the global power of
any network can be seen as an invariant.
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Once two dual spaces and an invariant are
defined, next step is to define a metric[6]. In
case of electrical circuit, this metric is not
a Riemannian one. But its stills possible to
define it through operators, and the result is
a tensorial algebra to theoretically study any
complex networks[3]. The technique used is
so a real topological one as deeply shown by
Branin[7]. In all the article we use the index
notation defined by Einstein[8].
On the principle, once defined the covector of
the effort (voltage in an electrical circuit) eµ

and the flux (current) vector fν . The invari-
ant W results from their contracted product
W = eµf

µ. The metric can be deduced from
the same invariant writing: W = zµνf

µfν .
Classically, the electrical circuit solvers work
in the nodal description. They often use the
Modified Nodal Analysis which includes the
voltage sources, but it doesn’t change the fun-
damental concepts1. It means they translate
the impedance matrix in the nodal space using
the incidence matrix[9]. This matrix can be
seen as a connectivity between the voltage
differences V defined in the edge space, and
the electrical potentials ψ defined in the nodes
space. Starting from the gradient Maxwell’s
law we can simply write: Va = Bp

aψp. Kron
has shown that this kind of translation could
be used between the currents f defined in
the edge space and the meshes currents
m. To do that, he define a connectivity C
writing: fa = Caµm

µ. This transformation
defined, it began possible to compute all the
problem in the mesh description, changing
the metric through: zµν = CaµC

b
νzab. What

is remarkable, is the fact that in this space,
the edge voltage vanishes. Effectively, as the
Maxwell’s equation tell us, Rot(GradV) = 0.
The whole problem is simply compacted in a
unique equation: eµ = zµνm

ν . But for various

1More, our hybrid formalism get out this problem
as we will show it in the example.

Figure 1: System considered as illustration

reasons, it can be interesting to keep a nodal
description, at least to reuse cases already
computed under this space for example. To
allow this mixted approach, the authors have
proposed to create mix tensors[10]. This
mechanism give all the agility needed to
manage the complexity and the diversity in
systems.

3 A simple example as illus-
tration

We consider the system described fig. 1. All
the next equations used are extracted from
Paul’s formalism on lines[11].

The current in the input of the line can be
defined depending on the incident voltage wave
and the coefficient reflexion ΓL:

i(0) =
V +

Zc

[
1− ΓLe

−2jβL
]

(1)

But i(0) is a proportion of the current source
i0:

i(0) = i0
R0

R0 + Zin
= αi0 (2)

V + is defined as a function of the voltage at
the input of the line:

V + =
V (0)

1 + ΓLe−2jβL
(3)
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Combining the previous equations we ob-
tain:

V (0) = Zcαi0

(
1 + ΓLe

−2jβL

1− ΓLe−2jβL

)
(4)

On the other side of the line we can define
the relation between the transmitted voltage
and the input voltage and as a consequence,
the relation between the transmitted current
and the input voltage:

V (L) = V (0)e−jβL 1+ΓL
1+ΓLe−2jβL . . .

. . .⇒ i(L) = 1
RL
V (L)

(5)

Writing:

Y =
1

αZc

(
1− ΓLe

−2jβL

1 + ΓLe−2jβL

)
(6)

The nodal relation is synthetized in i0 =
Y V (0).
On the second network, the mesh relation is:

e0 − jγωi(L) = (Z1 + Z2) J = ZJ (7)

Where γ is the mutual inductance coefficient.
It is there assumed that the back interaction
from the second network to the first one is neg-
ligeable. Using the relation between i(L) and
V (0) we can write: i(L) = gV (O). Finally the
whole system can be written:

[
i0
e0

]
=

[
Y 0

jγgω Z

] [
V (0)
J

]
(8)

This is the basic principle of hybrid tensor
applied to connected networks. This can be
applied to large networks where the previous
elements become vectors and the metric is hy-
brid with both impedance, admittance metrics
and matrix too making the connection between
the element of same physical dimension. The
previous equation becomes:

[
ia

eµ

]
=

[
Y ab Ma

ν

M b
µ Zµν

] [
Vb
Jν

]
(9)

4 System optimization

Writing ζ = jγgω, λ = Y −1 and S = Z−1, the
solution of the previous system is given by:

[
V (0)
J

]
=

[
λ 0
−ζλ S

] [
i0
e0

]
(10)

which can be compacted in the form: fν =
Ων

µh
µ. Now we wonder how J depends on γi0

or e0 in frequency, because we hope to keep
the coupling influence (γi0) inferior to the self
generator e0. We can theoretically calculate
for the first request:

∣∣∣∣∂J∂γ
∣∣∣∣ =

∣∣∣∣∣∂f2

∂γ

∣∣∣∣∣ =

∣∣∣∣ ∂∂γ (−ζλi0 + Se0)

∣∣∣∣ (11)

We found easily:
∣∣∣∂J∂γ ∣∣∣ = |gωλ|. The second

request is directly given by |S|. The first term
gives:

∣∣∣∂J∂γ ∣∣∣ = ZcR0(1+ΓL)
(Zc+R0)RL

ω . . .

. . .

{√
[1 + Γ0ΓL cos(2βL)]2 + [Γ0ΓL sin(2βL)]2

}−1

(12)
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With Γ0 the coefficient of reflexion: Zc−R0
Zc+R0

.
So, to keep the dependencies equals in a
matched line case, it is necessary to have the

admittance S of the form:

[
R
√

1 +
(ω0
ω

)2]−1

.

Until the cutoff frequency ω0, the generated
current will keep the same distance to the one
induced by i0.

5 Conclusion

Through this simple example we try to illus-
trate the method and how it can comply with
the various needs of any engineers. The opti-
mization of the system can be studied numeri-
cally of course, through experience plans[12].
Once an equation is available to represent
the system, any analytical mathematical study
can be imagine to realize a theoretical anal-
ysis of the system behavior. Several studies
was already conducted using this technique in
conjonction with uncertainties computations.
Very good results were obtained showing that
the Kron’s method really gives a support for
these kinds of complex problems, allowing all
the formulations to take part of its formalism.
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