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Partial Differential Equations

This Note deals with a uniqueness and stability result for a nonlinear reaction-diffusion equation with heterogeneous coefficients, which arises as a model of population dynamics in heterogeneous environments. We obtain a Lipschitz stability inequality which implies that two non-constant coefficients of the equation, which can be respectively interpreted as intrinsic growth rate and intraspecific competition coefficients, are uniquely determined by the knowledge of the solution on the whole domain at two times t0 and t1 and on a subdomain during a time interval which contains t0 and t1. This inequality can be used to reconstruct the coefficients of the equation using only partial measurements of its solution.

Version française abrégée

L'équation de réaction-diffusion [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF], dans laquelle u(t, x) correspond à une densité de particules à un temps t et une position x, fut introduite par Fisher et Kolmogorov et al. [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] pour modéliser un problème de génétique des populations. Depuis, ce modèle est utilisé dans des domaines allant de l'écologie à la cytologie. Nous nous intéressons ici à sa version hétérogène. Alors que le coefficient de diffusion est supposé constant, nous faisons en effet l'hypothèse que les coefficients de croissance intrinsèque, µ(x), et de compétition intraspécifique, γ(x), peuvent dépendre de la variable d'espace. Ces deux coefficients jouent un rôle essentiel en dynamique des populations. Nous les supposons non connus, notre objectif étant de les retrouver à partir de mesures partielles de u(t, x), via une inégalité de stabilité. A notre connaissance, dans la littérature existante, de tels résultats de stabilité portent uniquement sur un coefficient. En se plaçant dans un domaine borné Ω, et en utilisant des résultats de régularité parabolique (voir [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]), le principe du maximum ainsi que le lemme de Hopf, nous démontrons tout d'abord trois lemmes préliminaires (1.1, 2.1 et 2.2) donnant des estimations a priori des solutions de [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF], indépendantes des coefficients de l'équation. Nous établissons ensuite trois inégalités de Carleman (avec des poids spéciaux) associées aux systèmes (4), ( 5) et [START_REF] Fisher | The wave of advance of advantageous genes[END_REF]. Le principal résultat [START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF] en découle. Il implique que si deux coefficients μ et γ sont tels que la solution ũ de (1), où µ et γ sont respectivement remplacés par μ et γ, est proche de u sur Ω aux temps t 0 et t 1 et dans un sous-domaine ω durant un intervalle de temps ]t 0 -δ, t 1 + δ[, alors μ est proche de µ et γ est proche de γ.

Introduction and main results

The idea of modelling population dynamics with reaction-diffusion models has begun to develop at the beginning of the 20 th century, with random walk theories of organisms. Then independently, Fisher [START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and Kolmogorov, Petrovsky, Piskunov [START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF] used a reaction-diffusion equation as a model for population genetics. The corresponding equation is u t = D∇ 2 u + u(µ -γu), where u = u(t, x) is the population density at time t and space position x, D is the diffusion coefficient, and µ and γ respectively correspond to the constant intrinsic growth rate and intraspecific competition coefficients. In the 80's, this model has been extended to heterogeneous environments by Skellam [START_REF] Skellam | Random dispersal in theoretical populations[END_REF]:

u t = D∇ 2 u + u(µ(x) -γ(x)u), for t > 0, (1) 
in a bounded and smooth domain Ω ⊂ R N . Recently, this model revealed that the heterogeneous character of the environment played an essential role on species persistence and spreading, in the sense that for different spatial configurations of the environment, a population can survive or become extinct and spread at different speeds, depending on the habitat spatial structure ( [START_REF] El Smaily | Homogenization and influence of fragmentation in a biological invasion model[END_REF], [START_REF] Roques | Modelling the impact of an invasive insect via reaction-diffusion[END_REF], [START_REF] Roques | On population resilience to external perturbations[END_REF], [START_REF] Roques | Mathematical analysis of the optimal habitat configurations for species persistence[END_REF], [START_REF] Roques | A population facing climate change: joint influences of Allee effects and environmental boundary geometry[END_REF], [START_REF] Roques | Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments[END_REF], [START_REF] Shigesada | Traveling periodic-waves in heterogeneous environments[END_REF]). In a previous work [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF] assuming that γ was constant, we stated a stability inequality which enabled us to successfully recover µ(x), using the following measurements: (i) µ(x) is known and equal to a constant near the boundary ∂Ω; (ii) the density u(0, x) is known in Ω at t = 0; (iii) the density u(t, x) is known and equal to 0 for (t, x) ∈ [0, T ] × ∂Ω for some T > 0; (iv) the density u(t, x) is known for (t, x) ∈ (t 0 , t 1 ) × ω, for some times 0 < t 0 < t 1 < T and a subset ω ⊂⊂ Ω; (v) the density u( t0+t1 2 , x) is known for all x ∈ Ω. Here, our aim is to obtain a stability inequality which enables to simultaneously recover both coefficients µ(x) and γ(x), and to prove their uniqueness, provided they belong to a particular subset of C ∞ (Ω), given the following information: (i') µ(x) and γ(x) are known near the boundary ∂Ω; (ii') the density u i (x) = u(0, x) is known in Ω at t = 0; (iii') u is known and satisfies Neumann boundary conditions in [0, ∞) × ∂Ω; (iv') the density u(t, x) is known in a finite time interval and in a subset ω ⊂⊂ Ω; (v') the densities u(t 0 , x) and u(t 1 , x) are known at two fixed times t 0 , t 1 and for all x ∈ Ω.

Few works are related to the reconstruction of several coefficients of reaction-diffusion equations. Furthermore, those works only deal with the reconstruction of source terms and initial conditions (see e.g. [START_REF] Choulli | Some stability estimates in determining sources and coefficients[END_REF], [START_REF] Yamamoto | Simultaneous reconstruction of the initial temperature and heat radiative coefficient[END_REF]), or provide uniqueness results without stability [START_REF] Roques | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF].

The main tools used to establish these new results are Carleman estimate with special weights and parabolic estimates together with parabolic maximum principle and Hopf's lemma.

Let us make our hypotheses more precise. We define two subsets of C ∞ (Ω) by M 1 := {μ s.t. μ(x) = µ * (x) if d(x, ∂Ω) < ε, for all x ∈ Ω}, and Γ 1 := {γ s.t. γ(x) = γ * (x) if d(x, ∂Ω) < ε, for all x ∈ Ω}, for given functions µ * ∈ C ∞ (Ω) and γ * ∈ C ∞ (Ω), and a small parameter ε > 0; d(x, ∂Ω) corresponds to the distance from x to ∂Ω. Let M 2 and Γ 2 be two other subsets of C ∞ (Ω), defined by: M 2 := {μ s.t. µ -≤ μ ≤ µ + on Ω}, for two given functions µ + , µ -in M 1 with 0 < µ -≤ µ + , and Γ 2 := {γ s.t. γ -≤ γ ≤ γ + on Ω}, for two given functions γ -and γ + in Γ 1 with 0 < γ -≤ γ + . Lastly, let K ⊂ C ∞ (Ω) be defined by K := {ρ s.t. ρ C 5 (Ω) ≤ m}, for some m > 0.

We then define the state spaces M and Γ by M := M 1 ∩ M 2 ∩ K, and Γ := Γ 1 ∩ Γ 2 ∩ K. Note that, if ε is chosen small enough and m is chosen large enough, these sets are not empty. Let us fix two couples (µ, γ) and (μ, γ) in M × Γ and let u, ũ be, respectively, the solutions of

         ∂ t u = D∆u + u(µ -γu) in (0, ∞) × Ω, ∂ ν u = 0 on [0, ∞) × ∂Ω, u(0, •) = u i in Ω,
and

         ∂ t ũ = D∆ũ + ũ(μ -γ ũ) in (0, ∞) × Ω, ũ = u on [0, ∞) × ∂Ω, ũ(0, •) = u i in Ω.
(

) 2 
for some constant D > 0 and some function u i in C ∞ (Ω) which verifies:

u i > 0 in Ω, ∂ ν u i = 0 on ∂Ω and 6 sup Ω u i < inf Ω µ -/ sup Ω γ + . (3) 
The functions u, ũ belong to

C 2 1 ([0, ∞) × Ω) ∩ C ∞ ([σ, ∞) × Ω)
, for any σ > 02 . Before stating our main theorem, let us state a preliminary lemma: Lemma 1.1 It exists an interval T in (0, ∞) such that, for any couple (t 0 , t 1 ) with 0 < t 0 ≤ inf T < sup T ≤ t 1 , and for all (μ, γ)

∈ M × Γ, 6 sup x∈Ω ũ(t 0 , x) < inf x∈Ω ũ(t 1 , x).
The interval T can be computed explicitly. The proof of this lemma uses hypothesis (3) on u i .

Our main result is: Theorem 1.2 For any ω ⊂⊂ Ω and any time interval (t 0 , t 1 ) containing T it exists δ ∈ (0, t 0 ) and a constant C such that for all µ, μ ∈ M , γ, γ ∈ Γ,

µ -µ 2 L 2 (Ω) + γ -γ 2 L 2 (Ω) ≤ C G(u, ũ), with G(u, ũ) = u -u 2 H 2 ((t0-δ,t1+δ),L 2 (ω)) + (u -u)(t 0 , .) 2 H 2 (Ω) + (u -u)(t 1 , .) 2 H 2 (Ω)
. A straightforward corollary is a uniqueness result for the couple (μ, γ), given u(t 0 , x), u(t 1 , x) for x ∈ Ω and u(t, x) for t ∈ (t 0 -δ, t 1 + δ) and x ∈ ω. Another practical consequence of Theorem 1.2 is to enable a numerical reconstruction of the unknown coefficients µ and γ, given the partial measurements (i)', (ii)', (iii)', (iv)', (v)' (see [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF]).

In the sequel, we give a very schematic proof of this result. More details will be given in the forthcoming paper [START_REF] Cristofol | Simultaneous reconstruction of two coefficients in a nonlinear parabolic equation[END_REF].

Let us recall a classical Carleman estimate (see [START_REF] Fernández | Global Carleman inequalities for parabolic systems and application to controllability[END_REF]): Theorem 2.3 Let ρ ∈ R, 0 < τ 0 < τ 1 and 0 < δ < τ 0 . Then it exists a constant K > 0, a function K < ζ(x) < 2K in C 2 (Ω), λ 0 ≥ 0, s 0 > 0 and a positive constant C 0 such that, for any λ ≥ λ 0 , any s ≥ s 0 , and any function q ∈ C 2 (Q i ) with q ≡ 0 on [τ i -δ, τ i + δ] × ∂Ω, the following estimate holds:

I i (ρ, q) ≤ C 0 s Qω i e -2sηi λ 4 (sϕ i ) ρ+3 |q| 2 dtdx + Qi e -2sηi (sϕ i ) ρ |∂ t q -∆q| 2 dtdx , (7) 
where

I i (ρ, q) = s Qi e -2sηi (sϕ i ) ρ-1 (|∂ t q| 2 + |∆q| 2 ) dtdx +s 2 λ 2 Qi e -2sηi (sϕ i ) ρ+1 |∇q| 2 dtdx + sλ 4 Qi e -2sηi (sϕ i ) ρ+3 |q| 2 dtdx.
Using [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] applied to the solution y of ( 4), together with Lemmata 2.1 and 2.2 we get that, for any 0 < τ 0 < τ 1 , 0 < δ < τ 0 , λ 0 ≤ λ, and for s large enough, it exist C(s, λ) > 0 and C > 0 such that, independently of the choice of (μ, γ) ∈ M × Γ,

I i (0, y) ≤ C(s, λ) Qω i ϕ 3 i |y| 2 e -2sηi dtdx + Cs Qi |α -β ũ| 2 e -2sηi dtdx. (8) 
Similarly, using [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] applied to the solution z of ( 5) and Lemma 2.1 of [START_REF] Klibanov | Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman estimate[END_REF], we get that it exist C(s, λ) > 0 and C > 0 such that:

I i (0, z) ≤ C(s, λ) Qω i ϕ 3 i |z| 2 e -2sηi dtdx + Cs Qi |β| 2 e -2sηi dtdx + C(s, λ) (y(τ i , .) 2 H 1 (Ω) . (9) 
Then, from (6) and using once more Lemma 2.1 of [START_REF] Klibanov | Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation by a Carleman estimate[END_REF] we can write:

I i (0, w) ≤ C(s, λ) Qω i e -2sηi ϕ 3 i (|w| 2 + |z| 2 )dtdx + C 1 λ 2 Qi |β| 2 e -2sηi dtdx + C(s, λ) (y(τ i , .) 2 H 1 (Ω) . (10) 
Multiplying ( 4) by e -sη0 , evaluating at time t = τ 0 and taking the L 2 norm in space we can get an upper bound for αe -sη0(τ0,.) 2 L 2 (Ω) . Then, using Carleman estimates (8), ( 9) and [START_REF] Roques | Modelling the impact of an invasive insect via reaction-diffusion[END_REF] we also obtain an upper bound for (α -β ũ(τ 1 , .))e -sη1(τ1,.) 2 L 2 (Ω) . Combining these two upper bounds, and using the fact that η 0 (τ 0 , .) = η 1 (τ 1 , .), we obtain, for sufficiently large s, the existence of C > 0, such that: αe -sη0(τ0,.) 2 L 2 (Ω) + β ũ(τ 1 , .)e -sη0(τ0,.) 2 L 2 (Ω) ≤ C 

We then use Lemma 1.1 to find two times t 0 and t 1 such that 6 sup x∈Ω ũ(t 0 , x) < inf x∈Ω ũ(t 1 , x), and we fix δ ∈ (0, t 0 ). We finally obtain the existence of a constant C > 0 such that, for any couple (μ, γ) ∈ M × Γ, 

α 2 L 2 (Ω) + β 2 L 2 (Ω) ≤ C t1+δ t0-δ ω ϕ 3 max e -
) where η min (., .) = min (t0-δ,t1+δ)×ω (η 0 , η 1 )(., .) and ϕ max (., .) = max (t0-δ,t1+δ)×ω (ϕ 0 , ϕ 1 )(., .).

Qω 1 ϕ 3 1 e

 1 -2sη1 |z| 2 dtdx + C Qω 0 ϕ 3 0 e -2sη0 (|w| 2 + |z| 2 )dtdx +C y(τ 0 , .) 2 H 2 (Ω) + C y(τ 1 , .) 2 H 2 (Ω) + 6 sup Ω |ũ(τ 0 , .)| 2 βe -sη0(τ0,.) 2 L 2 (Ω) .

  2sηmin (|z| 2 + |w| 2 )dtdx + C y(t 0 , .) 2 H 2 (Ω) + C y(t 1 , .) 2 H 2 (Ω) ≤ C u -ũ 2 H 2 ((t0-δ,t1+δ),L 2 (ω)) + (u -ũ)(t 0 , .) 2 H 2 (Ω) + (u -ũ)(t 1 , .) 2

	H 2 (Ω)

The spaces C i j ([σ, ∞) × Ω) are spaces of functions on [σ, ∞) × Ω whose derivatives up to order i in x and order j in t are continuous. The regularity of ũ follows from the hypothesis on u i and from the definition of M 1 and Γ 1 which lead to proper compatibility conditions.

Proof of Theorem 1.2.

We begin with a priori estimates on ũ, independent of the choice of the couple (μ, γ) ∈ M × Γ. Lemma 2.1 For any T > 0 it exists r > 0 such that, for all (μ, γ) ∈ M × Γ, ũ ≥ r and ∂ t ũ ≥ r on [0, T ] × Ω. The next lemma states C α α/2 boundary estimates on ũ and its time derivatives. Lemma 2.2 For any T > 0 and σ ∈ (0, T ) it exists a constant C > 0, independent of the choice of (μ, γ) ∈ M × Γ, such that:

The main tools used to prove Lemmata 1.1 and 2.1 are comparison principles and Hopf's lemma.

Let u (resp. u) be the solution of (2) associated to (µ, γ) (resp. (μ, γ)). We set

where α = µ -μ and β = γ -γ. Using Lemma 2.1, we can set y = U u and the previous system becomes

We set z = ∂ t y.

z(0, x) = (D∆y + 2D u ∇ u • ∇y + Ay(0, .) + α -β u(0, .) on Ω.

(5)

Using Lemma 2.1, we set z = z ∂t u and w = ∂ t z. We obtain w(t, x) = 0 on (0, ∞) × ∂Ω and:

where C and E are functionals depending on ũ and its time and space derivatives until order two. Given any couple 0 < τ 0 < τ 1 and 0 < δ < τ 0 , we set

and some constant K > 0, we may also define:

, η i (x, t) = e 2λK -e λζ(x) (t -(τ i -δ))(τ i + δ -t) for i = 0, 1. Note that η 0 (τ 0 , .) = η 1 (τ 1 , .) on Ω.