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Abstract: We consider a semiparametric convolution model. We observe
random variables having a distribution given by the convolution of some
unknown density f and some partially known noise density g. In this work,
g is assumed exponentially smooth with stable law having unknown self-
similarity index s. In order to ensure identifiability of the model, we re-
strict our attention to polynomially smooth, Sobolev-type densities f , with
smoothness parameter β. In this context, we first provide a consistent esti-
mation procedure for s. This estimator is then plugged-into three different
procedures: estimation of the unknown density f , of the functional

∫

f2 and
goodness-of-fit test of the hypothesisH0 : f = f0, where the alternativeH1

is expressed with respect to L2-norm (i.e. has the form ψ−2
n ‖f−f0‖2

2 ≥ C).
These procedures are adaptive with respect to both s and β and attain
the rates which are known optimal for known values of s and β. As a by-
product, when the noise density is known and exponentially smooth our
testing procedure is optimal adaptive for testing Sobolev-type densities.
The estimating procedure of s is illustrated on synthetic data.
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1. Introduction

Semiparametric convolution model

Consider the semiparametric convolution model where the observed sam-
ple {Yj}1≤j≤n comes from the independent sum of independent and identically
distributed (i.i.d.) random variables Xj with unknown density f and Fourier
transform Φf and i.i.d. noise variables εj with known, only up to a parameter,
density g and Fourier transform Φg

Yj = Xj + εj , 1 ≤ j ≤ n. (1)

The density of the observations is denoted by p and its Fourier transform Φp.
Note that we have p = f ∗ g where ∗ denotes the convolution product and
Φp = ΦfΦg .

We consider noise distributions whose Fourier transform does not vanish on R:
Φg(u) 6= 0, ∀ u ∈ R. Typically, nonparametric estimation in convolution models
gives rise to the distinction of two different behaviours for the noise distribution:
polynomially or exponentially smooth. In our setup, we focus on exponentially
smooth noise where the noise density g may be known only partially. We thus
assume an exponentially smooth (or supersmooth or exponential) noise
having stable symmetric distribution with

Φg (u) = exp (− |γu|s) , γ, s > 0. (2)

The parameter s is called the self-similarity index of the noise density and we
shall consider that it is unknown and belongs to a discrete grid Sn = {s = s1 <
s2 < · · · < sN = s̄}, with a number N of points that may grow to infinity with
the number n of observations (and 0 < s < s̄ ≤ 2). The parameter γ is a scale
parameter and it is supposed known in our setting. Some classical examples of
such noise densities include the Gaussian and the Cauchy distribution.

The underlying unknown density f is always supposed to belong to L1 ∩
L2. For identifiability of the model, the unknown density must be less smooth
than the noise. We shall restrict our attention to probability density functions
belonging to some Sobolev class

S (β, L) =

{

f : R → R+,

∫

f = 1,
1

2π

∫

∣

∣Φf (u)
∣

∣

2 |u|2βdu ≤ L

}

, (3)

for L a positive constant and some unknown β > 0. We assume that the un-
known parameter β belongs to some known interval [β, β̄] ⊂ (0,+∞). We restrict
this interval to (1/2,+∞) in the case of pointwise estimation of the density f .
Moreover, we must assume that f is not too smooth, i.e. its Fourier transform
does not decay asymptotically faster than a known polynomial of order β′.

Assumption (A) There exists some known A > 0, such that |Φf(u)| ≥
A|u|−β′

for large enough |u|.
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Note that when f belongs to S(β, L) and assumption (A) is fulfilled, we nec-
essarily have β′ > β+1/2. In the following, we use the notation qβ′(u) = A|u|−β′

.
Under assumptions (2) and (A) the model is identifiable. Indeed, considering
the Fourier transforms, we get for all real numbers u

log |Φp(u)| = log |Φf(u)| − |γu|s.

Now assume that we have equality between two Fourier transforms of the like-
lihoods Φp

1 = Φp
2, where Φp

1(u) = Φf1(u)e−|γ1u|s1
and Φp

2(u) = Φf2(u)e−|γ2u|s2
.

Without loss of generality, we may assume s1 ≤ s2. Then we get

|u|−s1 log |Φf1(u)| − γs1

1 = |u|−s2 log |Φf2(u)| − γs2

2 |u|s2−s1

and taking the limit when |u| tends to infinity implies (with assumption (A))
that s1 = s2, γ1 = γ2 and then Φf1 = Φf2 which proves the identifiability of the
model.

In the sequel, probability and expectation with respect to the distribution
of Y1, . . . , Yn induced by unknown density f and self-similarity index s will be
denoted by Pf,s and Ef,s.

Convolution models have been widely studied over the past two decades,
mainly in a nonparametric setup where the noise density g is assumed to be
entirely known. We will be interested here in a wider framework and will have
to deal with the presence of a nuisance parameter s. We will focus on both esti-
mation of the unknown density f and goodness-of-fit testing of the hypothesis
H0 : f = f0, with a particular interest in adaptive procedures.

Assuming the noise distribution to be entirely known is not realistic in many
situations. Thus, dealing with the case of not entirely known noise distribution
is a crucial issue. Some approaches [13] rely on additional direct observations
from the noise density, which are not always available. A major problem is that
semiparametric convolution models do not always result in identifiable models.
However, when the noise density is exponentially smooth and the unknown den-
sity is restricted to be less smooth than the noise, semiparametric convolution
models are identifiable and may be considered.

The case of a Gaussian noise density with unknown variance γ and unknown
density f without Gaussian component has first been considered in [10]. She
proposes an estimator of the parameter γ which is then plugged in an esti-
mator of the unknown density. Note that [12] also studied a framework where
the variance of the errors is unknown. More generally, [3] consider errors with
exponentially smooth stable noise distribution, with unknown scale parameter
γ but known self-similarity index s. The unknown density f belongs either to
a Sobolev class, or to a class of supersmooth densities with some parameter r
such that r < s. Minimax rates of convergence are exhibited. In this context,
the unknown parameter γ acts as a real nuisance parameter as the rates of con-
vergence for estimating the unknown density are slower compared to the case
of known scale, those rates being nonetheless optimal in a minimax sense.

Another attempt to remove knowledge on the noise density appears in [11].
The author proposes a deconvolution estimator associated to a procedure for
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selecting the error density between the normal supersmooth density and the
Laplace polynomially smooth density (both with fixed parameter values). Note
that our procedure is more general as we encompass the case of only two different
noise distributions and allow a number of unknown supersmooth distributions
that may grow to infinity with the number of observations.

Nonparametric goodness-of-fit testing has been extensively studied in the
context of direct observations (namely a sample distributed from the density f
to be tested), but also for regression or in the Gaussian white noise model. We
refer to [9] for an overview on the subject. The convolution model provides an
interesting setup where observations may come from a signal observed through
some noise.

Nonparametric goodness-of-fit tests in convolution models were studied in [8],
[1] and [4], only in the case of entirely known noise distribution. The approach
used in [1] is based on a minimax point of view combined with estimation of
the quadratic functional

∫

f2 . Assuming the smoothness parameter of f to be
known, the authors of [8] define a version of the Bickel-Rosenblatt test statistic
and study its asymptotic distribution under the null hypothesis and under fixed
and local alternatives, while [1] provides a different goodness-of-fit testing pro-
cedure attaining the minimax rates of testing in various setups. The approach
used in [1] is further developped in [4] to give adaptive procedures, with respect
to the smoothness parameter of f , in the case of a polynomially smooth noise
distribution.

In our setup, we first propose an estimator of the self-similarity index s,
which, plugged into kernel procedures, provides an adaptive estimator of the
unknown density f with the same optimal rate of convergence as in the case
of entirely known noise density. Using the estimator of s, we also construct an
estimator of the quadratic functional

∫

f2 (attaining the optimal adaptive rate
of convergence) and L2 goodness-of-fit test statistic. Note that our procedure
can only recover the index s on a size-increasing but discrete grid.

Note that this work is very different from [3] as the self similarity index s plays
a different role from the scale parameter γ previously studied. Nevertheless, we
conjecture that their procedure can be extended to recover simultaneously s and
γ (when both parameters are unknown). However, optimal rates of convergence
are even slower when γ is unknown.

Another consequence of our results is that when the noise density is known
and exponentially smooth our testing procedure is adaptive for testing Sobolev-
type densities, improving the previous results in [1].

Roadmap

In Section 2, we provide a consistent estimation procedure for the self-similarity
index. Then (Section 3) using a plug-in, we introduce a new kernel estimator
of f where both the bandwidth and the kernel are data dependent. We also
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introduce an estimator of the quadratic functional
∫

f2 with sample dependent
bandwidth and kernel. We prove that these two procedures attain the same rates
of convergence as in the case of entirely known noise distribution, and are thus
asymptotically optimal in the minimax sense. We also present a goodness-of-fit
test on f in this setup. We prove that the testing rate is the same as in the
case of entirely known noise distribution and thus asymptotically optimal in the
minimax sense. Section 4 illustrates our estimation procedure for parameter s
on synthetic data. Proofs are postponed to Section 5.

2. Estimation of the self-similarity index s

We first present a selection procedure ŝn which asymptotically recovers the true
value of the smoothness parameter s on a given discrete grid

Sn = {s = s1 < s2 < · · · < sN = s̄},

where 0 < s < s̄ ≤ 2 and with a number N of points that may grow to infinity
with n, under additional assumptions (see Proposition 1).

Without loss of generality, we assume that γ = 1 in the following. Indeed, if
known γ is not equal to 1 then we divide the observations by γ to get a noise
with scale parameter 1. The asymptotic behavior of the Fourier transform Φp

of the observations is used to select the smoothness index s. More precisely, we
have for any large enough |u|

A|u|−β′

exp(−|u|s) ≤ |Φp(u)| ≤ exp(−|u|s).

Let us now denote Φ[k](u) = e−|u|sk
and Ik(u) the interval

Ik(u) = [(qβ′Φ[k])(u),Φ[k](u)],

where qβ′ is defined in Assumption (A). Let un,k for k = 1, . . . , n be some well-
chosen points, as described later. Our estimation procedure uses the empirical
estimator

Φ̂p
n(u) =

1

n

n
∑

j=1

exp(−iuYj), ∀u ∈ R,

of the Fourier transform Φp. We select all values of k belonging to 1, . . . , N such
that Φ̂p

n(un,k) belongs to or is closest to the interval Ik(un,k). Let then ŝn be
the smallest selected value of k, respectively s1 in case no k was selected.

In other words, denote Ŝn ⊂ Sn the set constructed as follows,

• sk ∈ Ŝn if 2 ≤ k ≤ N − 1 and

1

2

{

qβ′Φ[k] + Φ[k+1]
}

(un,k) ≤ |Φ̂p
n(un,k)| < 1

2

{

qβ′Φ[k−1] + Φ[k]
}

(un,k),

• s1 ∈ Ŝn if |Φ̂p
n(un,1)| ≥ 1

2

{

qβ′Φ[1] + Φ[2]
}

(un,1),

• sN ∈ Ŝn if |Φ̂p
n(un,N)| < 1

2

{

qβ′Φ[N−1] + Φ[N]
}

(un,N) ,
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where for each index k, a sequence of positive real numbers {un,k}n≥0 has to be

chosen later. If the set Ŝn is empty, we add s1. The estimator is

ŝn = min Ŝn. (4)

Note that taking the smallest value such that our condition on the closest inter-
val is satisfied ensures that, with high probability, we do not over-estimate the
true value s. Over-estimation of s has to be avoided and in some sense, is much
worse than under-estimation. Indeed, deconvolution with an over-estimated value
of s could result in unbounded estimation risk.

The previous procedure is proven to be consistent, with an exponential rate
of convergence, in the following proposition.

Proposition 1. Under assumptions (2) and (A), consider the estimation pro-
cedure given by (4) where

un,k =

(

logn

2
− δ

sk
log logn

)1/sk

,

where δ > β′. The grid s = s1 < s2 < · · · < sN = s̄ is chosen such that

|sk+1 − sk| ≥ dn =
c

logn
, with c > 2β′, N − 1 ≤ (s̄− s)/dn.

Then, for any k ∈ {1, . . . , N}, we have

Pf,sk
(ŝn 6= sk) ≤ exp

(

−A
2

4
22β′/s̄(logn)2(δ−β′)/s̄(1 + o(1))

)

, (5)

where A and β′ are defined in Assumption (A).

3. Adaptive estimation and tests

We now plug the preliminary estimator of s in the usual estimation and testing
procedures for f .

3.1. Density estimation

Let us introduce the kernel deconvolution estimator K̂n (see [5] for a recent sur-
vey) built with a preliminary estimation of s plugged-into the usual expression.

It is defined by its Fourier transform ΦK̂n ,

ΦK̂n(u) = exp

{

( |u|
ĥn

)ŝn

}

1|u|≤1, (6)

where ĥn =

(

logn

2
− β̄ − ŝn + 1/2

ŝn
log logn

)−1/ŝn

. (7)
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Note that both the bandwidth sequence ĥn and the kernel K̂n are random and
depend on observations Y1, . . . , Yn. Now, the estimator of f is given by

f̂n(x) =
1

nĥn

n
∑

j=1

K̂n

(

Yj − x

ĥn

)

. (8)

This estimation procedure is consistent and adaptively achieves the minimax
rate of convergence when considering unknown densities f in the union of
Sobolev balls S(β, L) with β ∈ [β, β̄] ⊂ (1/2; +∞) and unknown smoothness
parameter for the noise density s in a discrete grid Sn .

Corollary 1. Under assumptions (2) and (A), for any β̄ > β > 1/2, the
estimation procedure given by (8) which uses estimator ŝn defined by (4) with
parameter values: {un,k} given by Proposition 1, δ > β′ + s̄2/(2s), dn ≥ c logn
and c > 2β′, satisfies, for any real number x,

lim sup
n→∞

sup
s∈Sn

sup
β∈[β,β̄]

sup
f∈S(β,L)

(logn)(2β−1)/s
Ef,s|f̂n(x) − f(x)|2 <∞.

Moreover, this rate of convergence is asymptotically optimal adaptive.

Remark 1. This result is obtained by using that, with high probability, the
estimator ŝn is equal to the true value s on the grid (see Proposition 1).

Note that the optimality of this procedure is a direct consequence of a result
by [6] where he considers the convolution model for circular data with β and s
fixed and known. This result confirms the results of [2] for adaptive estimation
of linear functionals in the convolution model and known parameter s. Therefore
we may say that there is no loss due to adaptation neither with respect to β
nor to s.

Note also that by similar calculations we get that the adaptive estimator f̂n

attains the rate (logn)2β/s over Hölder classes of probability density functions
of smoothness β, for the mean squared error (pointwise risk).

Moreover, it can be shown that the mean integrated squared error of the
adaptive estimator f̂n converges at the rate (logn)2β/s over either Sobolev or
Hölder classes of functions. In [7], lower bounds of the same order were proven
over Hölder classes of density functions f .

3.2. Goodness-of-fit test

In the sequel, ‖ · ‖2 denotes the L2-norm, M̄ is the complex conjugate of M and
< M,N >=

∫

M(x)N̄(x)dx is the scalar product of complex-valued functions
in L2(R). From now, we consider again that [β, β̄] ⊂ (0,+∞).

For a given density f0 in the class S(β0, L0), we want to test the hypothesis

H0 : f = f0
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from observations Y1, . . . , Yn given by (1). We extend the results of [1] by giving
the family of sequences Ψn = {ψn,β}β∈[β,β̄] which separates (with respect to

L2-norm) the null hypothesis from a larger alternative

H1(C,Ψn) : f ∈ ∪β∈[β,β̄]{f ∈ S(β, L) and ψ−2
n,β‖f − f0‖2

2 ≥ C}.

Let us first remark that as we use noisy observations (and unlike what happens
with direct observations), this test cannot be reduced to testing uniformity of
the distribution density of the observed sample (i.e. f0 = 1 with support on the
finite interval [0; 1]).

We recall that the usual procedure is to construct, for any 0 < ǫ < 1, a test
statistic ∆⋆

n (an arbitrary function, with values in {0, 1}, which is measurable
with respect to Y1, . . . , Yn and such that we accept H0 if ∆⋆

n = 0 and reject it
otherwise) for which there exists some C0 > 0 such that

lim sup
n→∞

sup
s∈Sn

{

Pf0,s[∆
⋆
n = 1] + sup

f∈H1(C,Ψn)

Pf,s[∆
⋆
n = 0]

}

≤ ǫ, (9)

holds for all C > C0. This part is called the upper bound of the testing rate.
Then, prove the minimax optimality of this procedure, i.e. the lower bound

lim inf
n→∞

inf
∆n

sup
s∈Sn

{

Pf0,s[∆n = 1] + sup
f∈H1(C,Ψn)

Pf,s[∆n = 0]

}

≥ ǫ, (10)

for some C0 > 0 and for all 0 < C < C0, where the infimum is taken over all test
statistics ∆n.

An additional assumption (T) used in [1] on the tail behaviour of f0 (ensuring
it does not vanish arbitrarily fast) is needed to obtain the optimality result,
which is in fact a consequence of [1]. We recall this assumption here for reader’s
convenience.

Assumption (T)

∃c0 > 0, ∀x ∈ R, f0(x) ≥
c0

1 + |x|2 .

Remark 2. Similar results may be obtained under the more general assumption:
there exists some p ≥ 1 such that f0(x) is bounded from below by c0(1 + |x|p)−2

for large enough x.

Now, the first step is to construct an estimator of
∫

f2. Using the same kernel
estimator (6) and the same random bandwidth (7), we define

T̂n =
2

n(n− 1)

∑∑

1≤k<j≤n

<
1

ĥn

K̂n

( · − Yk

ĥn

)

,
1

ĥn

K̂n

( · − Yj

ĥn

)

> . (11)

Corollary 2. Under assumptions (2) and (A), for any β̄ > β > 0, the es-
timation procedure given by (11) which uses estimator ŝn defined by (4) with
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parameter values: {un,k} given by Proposition 1, δ > β′ + s̄2/(2s), dn ≥ c logn
and c > 2β′, satisfies,

lim sup
n→∞

sup
s∈Sn

sup
β∈[β,β̄]

sup
f∈S(β,L)

(logn)
2β/s

{

Ef,s

∣

∣

∣

∣

T̂n −
∫

f2

∣

∣

∣

∣

2
}1/2

<∞.

Moreover, this rate of convergence is asymptotically adaptive optimal.

The rate of convergence of this procedure is the same as in the case of known
self-similarity index s and known smoothness parameter β. It is thus asymptot-
ically optimal adaptive according to results obtained by [1].

Let us now define, for any f0 ∈ S(β̄, L),

T̂ 0
n =

2

n(n− 1)

∑∑

1≤k<j≤n

<
1

ĥn

K̂n

( · − Yk

ĥn

)

− f0 ,
1

ĥn

K̂n

( · − Yj

ĥn

)

− f0 > .

(12)
This statistic is used for goodness-of-fit testing of the hypothesis H0 versus H1.
The test is constructed as usual

∆⋆
n =

{

1 if |T̂ 0
n |t̂−2

n > C⋆

0 otherwise,
(13)

for some constant C⋆ > 0 and a random threshold t̂2n to be specified.
For computational facilities, we may write using Plancherel formula

T̂ 0
n

=
2

n(n− 1)

∑∑

1≤k<j≤n

1

2π
< ΦK̂n

(

·ĥn

)

ei·Yk − Φf0 , ΦK̂n

(

·ĥn

)

e−i·Yj − Φf0 >

=
1

πn(n− 1)

∑∑

1≤k<j≤n
∫

(

e|u|
ŝn+iuYkIĥn|u|≤1 − Φf0 (u)

)

·
(

e|u|
ŝn−iuYjIĥn|u|≤1 − Φf0(u)

)

du.

Corollary 3. Under assumptions (2) and (A), for any 0 < β < β̄, any L > 0

and for any f0 ∈ S(β̄, L), consider the testing procedure given by (13) which uses
the test statistic (12) with estimator ŝn defined by (4) with parameter values:
{un,k} given by Proposition 1, δ > β′ + s̄2/(2s), dn ≥ c logn and c > 2β′, with
random threshold and (slightly modified) random bandwidth

t̂2n =

(

logn

2

)−2β̄/ŝn

; ĥn =

(

logn

2
− 2β̄

ŝn
log logn

)−1/ŝn

and any large enough positive constant C⋆. This testing procedure satisfies (9)
for any ǫ ∈ (0, 1) with testing rate

Ψn = {ψn,β}β∈[β,β̄] given by ψn,β =

(

logn

2

)−β/s

.
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Moreover, if f0 ∈ S(β̄, cL) for some 0 < c < 1 and if Assumption (T) holds,
then this testing rate is asymptotically adaptive optimal over the family of classes
{S(β, L), β ∈ [β; β̄]} and for any s ∈ Sn (i.e. (10) holds).

Adaptive optimality (namely (10)) of this testing procedure directly follows
from [1] as there is no loss due to adaptation to β nor to s. Note also that the
case of known s and adaptation only with respect to β is included in our results
and is entirely new.

4. Simulations

In this section, we illustrate some of our results on synthetic data. We consider
two different signal densities: the density of the sum of 5 independent Laplace
random variables, Laplace(5) (having standard deviation

√
10) and a Gamma

distribution with parameters (3/2, 1/2) or χ2
3 (with standard deviation

√
6), as

described in Table 1.
The noise densities were selected among 4 different exponentially smooth

distributions as described in Table 2.
The simulation of random variables having Fourier transform Φ[0.5](u) and

Φ[1.5](u) is based on [14]. We thus simulated 8 different samples each one con-
taining n observations, where n ranges from {500; 1000; 2000; 5000}. We used
a scale 0.1 on the signal density in order to have a small signal-to-noise ratio
(defined as the ratio of the standard deviations of the signal with respect to
that of the noise). Note that the noise has finite standard deviation only for
s = 2 and it equals

√
2. In this case, the signal-to-noise ratio equals 0.22 when

the signal has Laplace density and 0.17 for the Gamma distribution.
We then performed selection of s on the finite grid Sn = {0.5, 1, 1.5, 2}. The

points un,k were chosen independently of the size n of the sample. The choice is
based both on theoretical grounds and on a previous simulation study. We fixed
the following values un,1 = 2.5; un,2 = 1.7; un,3 = 1.5; un,4 = 1.45. For each
sample and each sample size, we performed m = 100 iteration of the procedure

Table 1

Signal densities

Signal density Fourier transform

Laplace(5) ΦL(u) = (1 + u2)−5

Gamma( 3
2
, 1

2
) ΦG(u) = (1 − 2iu)−3/2

Table 2

Noise densities

Noise stable density Fourier transform

s = 0.5 Φ[0.5](u) = exp(−|u|1/2)

s = 1 Φ[1](u) = exp(−|u|)

s = 1.5 Φ[1.5](u) = exp(−|u|1.5)

s = 2 Φ[2](u) = exp(−|u|2)



C. Butucea, C. Matias and C. Pouet/Deconvolution with partially known noise 907

Table 3

Number of successes (ŝn = s) for 100 iterations of the procedure, when the signal density is
Laplace

n = 500 n = 1000 n = 2000 n = 5000
s = 0.5 85 93 98 100
s = 1 66 87 95 100
s = 1.5 65 82 93 100
s = 2 73 90 93 99

Table 4

Number of successes (ŝn = s) for 100 iterations of the procedure, when the signal density is
Gamma

n = 500 n = 1000 n = 2000 n = 5000
s = 0.5 94 99 100 100

s = 1 71 88 98 100
s = 1.5 91 98 100 100
s = 2 69 79 84 98

and the results are presented in Table 3 for the Laplace signal density and in 4
for the Gamma signal density.

We naturally observe that increasing the number of observations improves
the performance of the procedure, with almost perfect results when n = 5000.
However, the results obtained with small sample sizes (n = 500) are already
encouraging (more than 65% of success).

In the case where the true parameter s does not belong to the grid, we
observed that the procedure recovers the value of the grid which is closest to s.

5. Proofs

We use C to denote an absolute constant whose values may change along the
lines.

Proof of Proposition 1. We fix the true value s = sk in the grid. Recall that the
size of the grid is at most given by the step dn = c(logn)−1. We want to control

Pf,sk
(ŝn 6= sk) = Pf,sk

(ŝn > sk) + Pf,sk
(ŝn < sk).

The overestimation case, namely ŝn > sk, is the simplest to deal with. By
definition of ŝn, we have,

Pf,sk
(ŝn > sk) ≤ Pf,sk

(

|Φ̂p
n(un,k)| ≤ 1

2
{qβ′Φ[k] + Φ[k+1]}(un,k)

)

+ Pf,sk

(

|Φ̂p
n(un,k)| ≥

1

2
{qβ′Φ[k−1] + Φ[k]}(un,k)

)

. (14)

Considering the first term in the right hand side of the previous inequality, and
using that |Φp(un,k)| ≥ qβ′ (un,k)Φ

[k](un,k), we can write
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Pf,sk

(

|Φ̂p
n(un,k)| ≤ 1

2
{qβ′Φ[k] + Φ[k+1]}(un,k)

)

≤ Pf,sk

(

|Φ̂p
n(un,k) − Φp(un,k)| ≥ |Φp(un,k)| − 1

2

{

qβ′Φ[k] + Φ[k+1]
}

(un,k)

)

≤ Pf,sk

(

|Φ̂p
n(un,k) − Φp(un,k)| ≥ 1

2

{

qβ′(un,k)Φ[k](un,k) − Φ[k+1](un,k)
})

.

We will often use the following lemma.

Lemma 1. For any j ∈ {1, . . . , N − 1} and k ∈ {2, . . . , N}, we have

1

2

{

qβ′Φ[j] − Φ[j+1]
}

(un,j) ≥ 1

2
qβ′ (un,j)Φ

[j](un,j)(1 + o(1)),

and
1

2

{

qβ′Φ[k−1] − Φ[k]
}

(un,k) ≥ 1

2
Φ[k](un,k)(1 + o(1)).

Proof of Lemma 1. By using both that sj+1 −sj ≥ dn and dn log(un,j) → 0, we
have

1

2

{

qβ′Φ[j] − Φ[j+1]
}

(un,j)

=
1

2
Φ[j](un,j)qβ′(un,j)

{

1 −A−1uβ′

n,j exp(u
sj

n,j − u
sj+1

n,j )
}

≥ 1

2
Φ[j](un,j)qβ′(un,j)

{

1 −A−1uβ′

n,j exp
[

u
sj

n,j(1 − exp(dn log un,j))
]

}

=
1

2
Φ[j](un,j)qβ′(un,j)

{

1 −A−1uβ′

n,j exp
[

− u
sj

n,jdn logun,j(1 + o(1))
]

}

=
1

2
Φ[j](un,j)qβ′(un,j)

{

1 − A−1 exp
[

(−c/2 + β′) log(un,j)(1 + o(1))
]}

=
1

2
Φ[j](un,j)qβ′(un,j)(1 + o(1)),

as soon as −c/2 + β′ < 0, i.e. c > 2β′. Similarly, we have

1

2

{

qβ′Φ[j−1] − Φ[j]
}

(un,j)

=
1

2
Φ[j](un,j)

{

qβ′(un,j) exp(u
sj

n,j − u
sj−1

n,j ) − 1
}

≥ 1

2
Φ[j](un,j)

{

A exp(u
sj

n,jdn logun,j − β′ log(un,j)) − 1
}

=
1

2
Φ[j](un,j) {A exp ((c/2 − β′) log(un,j)(1 + o(1))) − 1}

≥ 1

2
Φ[j](un,j)(1 + o(1)),

as soon as c > 2β′. This ends the proof of the lemma.
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Using the first result of this lemma, combined with Hoeffding inequality, we
obtain

Pf,sk

(

|Φ̂p
n(un,k)| ≤ 1

2
{qβ′Φ[k] + Φ[k+1]}(un,k)

)

≤ Pf,sk

(

|Φ̂p
n(un,k) − Φp(un,k)| ≥

1

2
Φ[k](un,k)qβ′(un,k)(1 + o(1))

)

≤ exp
(

−n
4
q2β′(un,k) exp(−2usk

n,k)(1 + o(1))
)

≤ exp

(

−A
2

4
22β′/sk(logn)

2(δ−β′)
sk (1 + o(1)))

)

.

Similarly, by using the bound |Φp(un,k)| ≤ Φ[k](un,k), and the second result of
Lemma 1, the second term in the right hand side of (14) satisfies

Pf,sk

(

|Φ̂p
n(un,k)| ≥ 1

2
{qβ′Φ[k−1] + Φ[k]}(un,k)

)

≤ Pf,sk

(

|Φ̂p
n(un,k) − Φp(un,k)| ≥ 1

2

{

qβ′Φ[k−1] − Φ[k]
}

(un,k)
)

≤ Pf,sk

(

|Φ̂p
n(un,k) − Φp(un,k)| ≥ 1

2
Φ[k](un,k)(1 + o(1))

)

.

Hoeffding inequality leads to

Pf,sk

(

|Φ̂p
n(un,k)| ≥ 1

2
{qβ′Φ[k−1] + Φ[k]}(un,k)

)

≤ exp

(

−1

4
(logn)2δ/sk(1 + o(1))

)

.

Finally, the overestimation probability (14) is bounded by

Pf,sk
(ŝn > sk) ≤ exp

(

−A
2

4
22β′/sk(logn)

2(δ−β′)
sk (1 + o(1))

)

.

Let us now consider the probability of underestimation. The case ŝn = s1 has
to be dealt with separately as it may occur from emptyness of the set Ŝn. By
using the definition of ŝn, we have

Pf,sk
(s1 < ŝn < sk)

≤ Pf,sk

(

∪
2≤j<k

{

|Φ̂p
n(un,j)| ≥

1

2

{

qβ′Φ[j] + Φ[j+1]
}

(un,j)
}

)

≤
k−1
∑

j=2

Pf,sk

(

|Φ̂p
n(un,j) − Φp(un,j)| ≥

1

2

{

qβ′Φ[j] + Φ[j+1]
}

(un,j) − |Φp(un,j)|
)

.
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As |Φp(un,j)| ≤ Φg(un,j) = Φ[k](un,j) ≤ Φ[j+1](un,j), we get

Pf,sk
(s1 < ŝn < sk)

≤
k−1
∑

j=2

Pf,sk

(

|Φ̂p
n(un,j)−Φp(un,j)| ≥

1

2

{

qβ′Φ[j] + Φ[j+1]
}

(un,j)−Φ[j+1](un,j)
)

.

Now, using Lemma 1 again and the Hoeffding inequality

Pf,sk
(s1 < ŝn < sk)

≤
k−1
∑

j=2

Pf,sk

(

|Φ̂p
n(un,j) − Φp(un,j)| ≥

1

2
Φ[j](un,j)qβ′(un,j)(1 + o(1))

)

≤
k−1
∑

j=2

exp
(

−n
4
q2β′(un,j) exp(−2u

sj

n,j)
)

≤ N exp

(

−A
2

4
22β′/sj(logn)

2(δ−β′)
sj (1 + o(1))

)

≤ exp

(

−A
2

4
22β′/s̄(logn)

2(δ−β′)
s̄ (1 + o(1))

)

,

as sj < s̄ and N = O(logn).
The case ŝn = s1 can now be easily handled. Indeed, let us denote by Ej the

event
Ej =

{

|Φ̂p
n(un,1)| ≥ 1/2

(

qβ′Φ[j] + Φ[j+1]
)

(un,j)
}

.

Now, if ŝn = s1 , then either the event E1 happens, or all of the Ejs don’t and
thus in particular, Ek is not satisfied. Thus,

Pf,sk
(ŝn = s1) ≤ Pf,sk

(E1 ∪ Ec
k)

The probability of Ec
k has already been controlled (overestimation probability).

Let us consider the probability of the first event. As previously seen, using
Lemma 1 and Hoeffding inequality,

Pf,sk
(E1)

≤ Pf,sk

(

|Φ̂p
n(un,1) − Φp(un,1)| ≥

1

2

{

qβ′Φ[1] + Φ[2]
}

(un,1) − |Φp(un,1)|
)

≤ Pf,sk

(

|Φ̂p
n(un,1) − Φp(un,1)| ≥

1

2
Φ[1](un,1)qβ′ (un,1)(1 + o(1))

)

≤ exp
(

−n
4
q2β′ (un,1) exp(−2us1

n )
)

≤ exp

(

−A
2

4
22β′/s1(logn)

2(δ−β′)
s1 (1 + o(1))

)

.

Thus, the probability of underestimation is bounded by

Pf,sk
(ŝn < sk) ≤ exp

(

−A
2

4
22β′/s̄(logn)2(δ−β′)/s̄(1 + o(1))

)
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and gathering the results concerning overestimation and underestimation, we
get

Pf,sk
(ŝn 6= sk) ≤ exp

(

−A
2

4
22β′/s̄(logn)2(δ−β′)/s̄(1 + o(1))

)

Proof of Corollary 1. Let the true value of the parameter be some fixed point
sk on the grid. We introduce respectively, hn, the non-random version of the
bandwidth ĥn andKn the non-random version of the kernel K̂n both constructed
with true self-similarity index sk. The Fourier transform ΦKn ofKn thus satisfies

ΦKn(u) = exp

{( |u|
ĥn

)sk
}

1|u|≤1,

where hn =

(

logn

2
− β̄ − sk + 1/2

sk
log logn

)−1/sk

.

We also introduce the corresponding (classical) estimator

fn(x) =
1

nhn

n
∑

i=1

Kn

(

x− Yi

hn

)

,

which corresponds to the case of entirely known noise distribution. Note that
obviously, sk, Kn and hn are unknown to the statistician. These objects are used
only as tools to assess the convergence of the procedure. Now, remark that we
have

Ef,sk
[|f̂n(x) − f(x)|2] = Ef,sk

[|fn(x) − f(x)|21ŝn=sk
]

+ Ef,sk
[|f̂n(x) − f(x)|21ŝn 6=sk

] = T1 + T2,

say. Let us focus on the first term

T1 ≤ Ef,sk
[|fn(x) − f(x)|2] = {Ef,sk

[fn(x)]− f(x)}2 + Varf,sk
{fn(x)},

introducing the bias and the variance of the estimator fn(x). By using classical
results on this estimator, we have

T1 ≤ O(h2β−1
n ) + O

(

h
2(sk−1)
n exp(2/hsk

n )

n

)

.

Now, we prove that the second term T2 is negligible in front of the main term
T1, by using Proposition 1 and uniform bounds on |f̂n(x)| and |f(x)|. First,

|f̂n(x)| ≤
∫

e|t|
s̄

1|t|≤1/ĥn
dt = O(ĥs̄−1

n exp{1/ĥs̄
n})

≤ O(1)(logn)(1−s̄)/s exp{(logn)s̄/s}
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and also

|f(x)| ≤
∫

|Φf(t)|dt = O(

∫

(1 + |t|2β)−1dt) = O(1),

leading to

T2 = O((logn)2(1−s̄)/s exp{2(logn)s̄/s})Pf,sk
(ŝn 6= sk)

= O

(

(logn)2(1−s̄)/s exp

(

2(logn)s̄/s − A2

4
22β′/s̄(logn)2(δ−β′)/s̄(1 + o(1))

))

.

As soon as we choose 2(δ − β′)/s̄ > s̄/s, this second term T2 will be negligible
in front of T1. In conclusion,

Ef,sk
[|f̂n(x) − f(x)|2] = O(h2β−1

n ) +O

(

h2(sk−1)
n

exp(2/hsk
n )

n

)

= O((logn)−(2β−1)/sk).

Proof of Corollary 2. We keep on with the same notations as in the proof of
Corollary 1 and denote by I the functional

∫

f2 and by Tn the estimator using
deterministic parameters sk, Kn and hn. In the same way as in the proof of
Corollary 1, we write

Ef,sk
[|T̂n − I|2] ≤ Ef,sk

[|Tn − I|2] + Ef,sk
[|T̂n − I|21{ŝn 6=sk}]. (15)

Let us first focus on the first term appearing in the right hand side of (15). We
split it into the square of a bias term plus a variance term. The bias is bounded
by

|Ef,sk
Tn − I| ≤ O((logn)−2β/sk).

Concerning the variance term, we easily get

Varf,sk
(Tn) ≤ C1

n2
hsk−1

n exp(4/hsk
n ) +

C2

n
h2β+sk−1

n exp(2/hsk
n ),

where C1 and C2 are positive constants (we refer to [1], Theorem 4 for more
details). Using the form of the bandwidth hn, we have

Ef,sk
|Tn − I|2 = O

(

logn

2

)−4β/sk

.

Let us now focus on the second term appearing in the right hand side of (15).
Denoting by h0 = (logn/2)−1/s, we have

|T̂n| ≤
1

2π

∫

|u|≤1/h0

exp(2|u|s̄)du = O(hs̄−1
0 exp(2/hs̄

0)).

Moreover,

I = ‖f‖2
2 =

1

2π
‖Φf‖2

2
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This leads to

Ef,sk
[|T̂n − I|21{ŝn 6=sk}]

≤ C

(

logn

2

)(1−s̄)/s

exp

{

2

(

logn

2

)s̄/s
}

Pf,sk
(ŝn 6= sk)

≤ C

(

logn

2

)(1−s̄)/s

exp

{

2

(

logn

2

)s̄/s
}

× exp

(

−A
2

4
22β′/s̄(logn)2(δ−β′)/s̄(1 + o(1))

)

,

and this term is negligible in front of the first term appearing in the right hand
side of (15) as soon as 2(δ − β′)/s̄ > s̄/s. This leads to the result.

Proof of Corollary 3. We use the same notations as in the proof of Corollaries 1
and 2. Moreover, T 0

n is the test statistic constructed with the deterministic kernel
Kn and the deterministic bandwidth hn; and t2n is the threshold defined with
the true parameter value sk for the self-similarity index. The first type error of
the test is controlled by

Pf0,sk
(∆⋆

n = 1) = Pf0,sk
(|T̂ 0

n |t̂−2
n > C⋆) ≤ Pf0,sk

(ŝn 6= sk)+Pf0,sk
(|T 0

n |t−2
n > C⋆).

The first term on the right hand side of this inequality converges to zero ac-
cording to Proposition 1. Moreover, Theorem 4 in [1], shows that

Varf0,sk
(T 0

n) ≤ O(1)
hsk−1

n

n2
exp(4/hsk

n ) + O(1)
h2β̄+sk−1

n

n
exp(2/hsk

n ).

Finally, we get

Pf0,sk
(|T 0

n |t−2
n > C⋆) ≤ 1

(C⋆)2t4n

×
{

O(h4β̄
n ) + O(1)

hsk−1
n

n2
exp(4/hsk

n ) + O(1)
h2β̄+sk−1

n

n
exp(2/hsk

n )

}

,

which is actually O(1)/C⋆. Choosing C⋆ large enough achieves the control of the
first error term.

We now turn to the second type error term. Under hypothesis H1(C,Ψn),
there exists some β such that f belongs to S(β, L) and ‖f − f0‖2

2 ≥ Cψn,β. We
write

Pf,sk
(∆⋆

n = 0) = Pf,sk
(|T̂ 0

n |t̂−2
n ≤ C⋆) ≤ Pf,sk

(ŝn 6= sk) + Pf,sk
(|T 0

n |t−2
n ≤ C⋆).

As already seen, the first term in the right hand side of this inequality converges
to zero, so we only deal with the second one. We define Bf,sk

(T 0
n) = Ef,sk

T 0
n −

‖f − f0‖2
2. Thus

Pf,sk
(|T 0

n |t−2
n ≤ C⋆) ≤ Pf,sk

(|T 0
n − Ef,sk

T 0
n | ≥ ‖f − f0‖2

2 − C⋆t2n +Bf,sk
(T 0

n))

≤ Varf,sk
(T 0

n)

(‖f − f0‖2
2 − C⋆t2n + Bf,sk

(T 0
n))2

. (16)
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According to [1], we have
Bf,sk

(T 0
n) ≤ C1h

2β
n

where C1 > 0 is a constant depending only on L and on the noise distribution.
Under hypothesis H1(C,Ψn), we also have ‖f − f0‖2

2 ≥ Cψ2
n,β. Thus,

‖f − f0‖2
2 − C⋆t2n +Bf,sk

(T 0
n)

≥ C
(

logn

2

)−2β/sk

− C⋆

(

logn

2

)−2β̄/sk

− C1

(

logn

2

)−2β/sk

≥ a

(

logn

2

)−2β/sk

.

where a = C − C⋆ − C1 is positive whenever C > C0 := C⋆ − C1. Returning to
(16), we get

Pf,sk
(|T 0

n |t−2
n ) ≤

ψ4
n,β

a2
Varf,sk

(T 0
n).

Computation of the variance follows the same lines as under hypothesis H0. We
obtain

Varf,sk
(T 0

n) ≤ O(1)
hsk−1

n

n
exp(2/hsk

n )

(

h2β
n +

exp(2/hsk
n )

n

)

.

The choice of the bandwidth ensures that the second type error term converges
to zero.
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