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ABSTRACT
Summary: The R package SIMoNe enables inference of gene-
regulatory networks based on partial correlation coefficients from
microarray experiments. Modelling gene expression data with a
Gaussian Graphical Model (hereafter GGM), the algorithm estimates
nonzero entries of the concentration matrix, in a sparse and possibly
high-dimensional setting. Its originality lies in the fact that it searches
for a latent modular structure to drive the inference procedure through
adaptive penalization of the concentration matrix.
Availability: Under the GNU General Public Licence at
http://cran.r-project.org/web/packages/simone/

Contact: julien.chiquet@genopole.cnrs.fr

1 INTRODUCTION
The uncovering of gene-regulatory networks, which play a cen-
tral role in the cell’s system, has received much attention recently.
High throughput data from molecular biology offers a way of peer-
ing into this mechanism by inferring the dependencies between the
expression levels of a large number of genes.

The SIMoNe (Statistical Inference for MOdular NEtworks) algo-
rithm addresses this problem by combining the estimation of sparse
undirected graphs with mixture model-based network clustering.
Under the assumption that genes involved in a same cellular process
are more likely inter-connected than genes involved in different pro-
cesses, it is intuitive to search preferentially for links between genes
belonging to the same group.

2 MODEL
Conditional dependency between the expression levels of two genes
may reveal a regulation link between these genes. Thus, we in-
fer a graph for which an edge is not present between two genes
if the corresponding expression levels, considered as random vari-
ables, are independent conditional on the remaining variables. Such
a graphical representation may be interpreted as a co-expression
graph between genes, thus describing an influence network rather
than the regulations themselves.

GGMs (Lauritzen, 1996) provide an appropriate and commonly-
used framework, where the repeated microarray measurements are
considered as i.i.d. occurrences of a Gaussian multivariate random
vector. The conditional dependencies are encoded in the partial

∗to whom correspondence should be addressed

correlations between the variables, which may be computed us-
ing the inverse covariance matrix (hereafter concentration matrix).
Detecting nonzero entries in this matrix is in fact equivalent to
reconstructing the graph of conditional dependencies.

Ideally, the concentration matrix can be estimated by inverting
the empirical covariance matrix. However, in the high-dimensional
setting the latter is not invertible. Moreover, such a procedure does
not lead to a sparse estimate, whereas biological evidence advocates
for sparse networks. Sparsity means that the concentration matrix
has a large number of zero entries. In this context, several estimation
methods have been proposed based on `1 penalization (Meinshausen
and Bühlmann, 2006; Friedman et al., 2007; Banerjee et al., 2008).

Our method can be seen as a mixture version of the graphical
lasso (hereafter GLasso) by Friedman et al. (2007). Like GLasso,
SIMoNe algorithm favors the network sparsity. Moreover, it may
take into account a latent network structure in order to improve esti-
mation accuracy (Ambroise et al., 2008). The latent structure relies
on a mixture model for random graphs (Daudin et al., 2006), which
assumes that each node belongs to some unobserved group. Con-
ditional on the node groups, the (weighted) edges are i.i.d. random
variables, whose distribution depends on the groups of the nodes to
be connected. This latent structure is further used to drive a penal-
ization procedure towards the inference of a modular network. More
precisely, let Zi = (Zi1, . . . , ZiQ) ∼M(1,α) be a random vector
denoting which class node i belongs to. Here, α = (α1, . . . , αQ)
is a vector of cluster proportions, so that

P
q αq = 1. Condi-

tional on the node clusters, the entries Kij of the concentration
matrix K are independent and follow a Laplace distribution, that
is, Kij | {ZiqZj` = 1} ∼ f(·) where

f(x) =
1

2λq`
exp


− |x|
λq`

ff
,

which mimics the role of an `1 penalization in a maximum like-
lihood framework. The data is assumed to be sampled from a
multivariate Gaussian distribution with covariance matrix K−1.

3 ALGORITHM
The SIMoNe algorithm consists in a global EM-like strategy that
alternates inference of the network latent structure and inference of
the network’s edges:

The E-step: cluster inference. Assuming that the concentration ma-
trix K (i.e. the edges) is known, the parameters of the mixture model
(cluster proportions α, cluster distribution parameters λq` and node
clustering Zi) are estimated by a variational algorithm initialized
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with spectral clustering. The user must specify how many classes Q
the algorithm should search for.

The M-step: edge inference. The edge inference is based on a modi-
fied version of the GLasso offering the possibility to apply different
types of penalties to the concentration matrix entries. Each entry
Kij (or edge) is penalized according to the latent classes of the cor-
responding Gaussian variables (gene expression levels or nodes). In
this way, when assuming for instance an affiliation structure, we pe-
nalize more heavily inter-class than intra-class edges.

Initialization of this EM-like algorithm relies on the GLasso.
This first structure is used in the clustering E-step. Then, the node
clustering information is used to build a new structured penalty
matrix, allowing an updated estimation (M-step) of the regulation
network topology. These two steps are repeated iteratively until
convergence of the node clustering and network topology.

4 FEATURES AND EXAMPLES
The package is built around a core of necessary functions, inter-
facing R with C/C++ sub-routines. The previously described two
steps of the algorithm are implemented separately in the functions
InferEdges and InferClasses. These two are combined in
the function simone. The InferEdges function implements
three alternative estimation procedures based on the `1 penalization:
the two Lasso estimation strategies of Meinshausen and Bühlmann
(2006), with either an AND or an OR rule; and the GLasso
estimation strategy of Friedman et al. (2007).

Two different representations of the inferred network are available
via the functions Mplot and Gplot (see Figure 1). The Mplot
function plots the adjacency matrix of the network, whose columns
may be rearranged according to an optional node classification vec-
tor (Figure 1 left). The Gplot proposes a more classical display of
the graph (Figure 1 right).

Figure 1. A simulated graph with modular structure: adjacency matrix with
rows and columns reorganized according to the affiliation structure (using
Mplot) and the corresponding graph (using Gplot).

Let us for instance investigate the gene expression data set pro-
vided by Hess et al. (2006), concerning 133 patients with stage
I − III breast cancer. The patients were treated with chemother-
apy prior to surgery. Patient response to the treatment is classified
as either a pathologic complete response (pCR) or a residual disease
(not-pCR). We apply our algorithm on each class of patients: two
distinct gene-regulatory networks are inferred from the execution of
the following R code:

library(simone)
## load the data set
data(cancer)
## SIMoNe inference
pcr <- simone(cancer.pcr, Q=2, rho=5000)
not <- simone(cancer.notpcr,Q=2, rho=20000)
## Plot the results
par(mfrow=c(1,2))
Gplot(pcr$K.hat, pcr$cl, labels=gene.names, main="pCR")
Gplot(not$K.hat, not$cl, labels=gene.names, main="not pCR")

The inferred networks plotted on Figure 2 exhibit very different
structures according to the class of patients. Gene regulation differs
with respect to the presence or absence of a pCR and this stresses
the fact that the whole dataset cannot be considered as i.i.d.
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Figure 2. Inferred graphs for Hess dataset (not-pCR and pCR).

The computational complexity of SIMoNe is O(p3), where p is
the number of genes. Inferring a network with a thousand genes
requires about a minute on a dual core computer for sparse networks,
and about a hour for dense networks.
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