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Abstract: Our concern is selecting the concentration matrix’s nonzero co-
efficients for a sparse Gaussian graphical model in a high-dimensional set-
ting. This corresponds to estimating the graph of conditional dependencies
between the variables. We describe a novel framework taking into account a
latent structure on the concentration matrix. This latent structure is used
to drive a penalty matrix and thus to recover a graphical model with a
constrained topology. Our method uses an ℓ1 penalized likelihood crite-
rion. Inference of the graph of conditional dependencies between the vari-
ates and of the hidden variables is performed simultaneously in an iterative
em-like algorithm named SIMoNe (Statistical Inference for Modular Net-
works). Performances are illustrated on synthetic as well as real data, the
latter concerning breast cancer. For gene regulation networks, our method
can provide a useful insight both on the mutual influence existing between
genes, and on the modules existing in the network.
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1. Introduction

Estimating the concentration matrix (namely the inverse of the covariance ma-
trix) of a Gaussian vector in a sparse, high-dimensional setting has received
much attention recently. Graphical models provide a convenient setting for mod-
elling multivariate dependence patterns. In this framework, an undirected graph
is matched to the Gaussian random vector, where each vertex corresponds to
one coordinate of the vector, and an edge is not present between two vertices
if the corresponding random variables are independent, conditional on the re-
maining variables. Now, conditional independence between two coordinates of
the Gaussian random vector corresponds exactly to a zero entry in the concen-
tration matrix. Thus, detecting nonzero elements in the concentration matrix
is equivalent to reconstructing the Gaussian graphical model (GGM, see e.g.
Lauritzen 1996).
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We focus here on the crucial problem of selecting the concentration matrix’s
nonzero coefficients. In other words, we focus on variable selection rather than
estimation. Application areas include gene regulation graph inference in Biology
(using gene expression data), as well as spectroscopy, climate studies, functional
magnetic resonance imaging, etc. We provide a very novel approach driving the
graph selection according to an unobserved modular structure on the vertices.

The idea of covariance selection first appeared in the work of Dempster
(1972). In the so-called ’large p, small n’ setting (namely when the number
of observations is smaller than the dimension of the observed response), the
need for covariance selection is huge, as the empirical covariance matrix is no
longer regular.

The different methods for model selection/estimation in GGMs roughly fall
into three categories. The first contains constraint-based methods, performing
statistical tests. We mention that the procedure in Drton and Perlman (2007; 2008)
relies on asymptotic considerations, a regime never attained in real situations.
Limited-order partial correlations were also considered (Wille and Bühlmann
2006, Castelo and Roverato 2006). The second of these categories is composed
of Bayesian approaches (Dobra et al. 2004, Jones et al. 2005). However, con-
structing priors on the set of concentration matrices is not a trivial task and the
use of MCMC procedures limits the range of applications to moderate-sized net-
works. The third type of method contains score-based methods. Before focusing
on these, let us first introduce regularization procedures.

In the context of linear regression, the Lasso (least absolute shrinkage and
selection operator) technique was introduced by Tibshirani (1996). The idea un-
derlying this procedure is that ordinary least squares criterion may be improved
in a sparse context, using an ℓ1-norm penalty. The ℓ1-norm penalty shrinks the
estimates to zero while preserving the convexity of the optimization problem.
Note that the ℓ1-norm penalization is also known as ’basis pursuit’ in signal
processing (Chen et al. 2001).

Meinshausen and Bühlmann (2006) were the first authors to apply Lasso

techniques for inferring a concentration matrix in a GGM. Their approach is to
solve p different Lasso regression problems, where p is the dimension of the ob-
served vector. The main drawback of such a procedure is that a symmetrization
step is required to obtain the final network. It might, for instance, be the case
that the estimator of the regression coefficient for Xi on Xj is zero, whereas the
estimator for Xj on Xi is not. Meinshausen and Bühlmann propose to use either
an ’AND’ or an ’OR’ final step procedure to recover an undirected correlation
graph. However, these two procedures might result in different estimates and
there is no way of choosing between them. Moreover, as will be argued in this
work (Section 3.4), such a procedure corresponds in fact to a pseudo-likelihood
maximization approach.

Subsequently, two other articles, Banerjee et al. (2008) and Yuan and Lin
(2007), independently provided an improvement of the initial work of
Meinshausen and Bühlmann (2006). In both works, the problem is seen as a
penalized maximum likelihood (PML) problem. Instead of considering p differ-
ent regression problems, these two articles focus on the likelihood of the Gaus-
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sian vector, penalizing the entries of the concentration matrix with an ℓ1-norm
penalty. They explain how the PML estimation may be solved as a ’Lasso-like’
problem. The major issue with PML strategies in the context of the concentra-
tion matrix estimation is to obtain a positive definite estimate. However, the
approach for solving the problem in Yuan and Lin (2007) is not suited to high-
dimensional settings, in contrast to the approach proposed in Banerjee et al.
(2008).

The next improvement in this vein comes with the GLasso of Friedman et al.
(2008). The authors combine the block coordinate descent technique appearing
in Banerjee et al. (2008) with a second coordinate descent method in order to
solve the underlying Lasso problem. Fu (1998) initially proposed a coordinate
optimization procedure to solve the Lasso, recently revisited in Friedman et al.
(2007) and Wu and Lange (2008). In the high dimensional setting, these proce-
dures are attractive in terms of computational cost and represent an alternative
to the homotopy method of Osborne et al. (2000) and Efron et al. (2004). Our
method will make use of the GLasso procedure.

To conclude this part, we remark that a completely different shrinkage esti-
mate was proposed by Schäfer and Strimmer (2005) in the same context. This
approach consists in using a weighted average of two different estimators, the
first being unconstrained (thus having small bias but large variance), the second
being low-dimensional (and thus exhibiting small variance but large bias).

Now let us motivate the use of hidden structures in networks. Modularity is
a property observed in real (biological) networks (see for instance Ihmels et al.
2002). Heterogeneity in the node behaviors is an important property of these
data. For example, so-called ’hubs’ are highly connected nodes, showing a dif-
ferent behavior from the rest of the graph nodes. An interesting model cap-
turing these features is a mixture model for random graphs (see for instance
Daudin et al. 2008). This model has been rediscovered many times in the lit-
erature, and a non exhaustive bibliography should include Frank and Harary
(1982), Snijders and Nowicki (1997), Nowicki and Snijders (2001), Tallberg (2005),
Daudin et al. (2008), Mariadassou and Robin (2007), Zanghi et al. (2008). To
state it simply, this model assumes that each node belongs to some unobserved
group. Conditional on the node groups, the (weighted) edges are independent
and identically distributed (i.i.d.) random variables, whose distribution depends
on the groups of the nodes to be connected. As we are interested in GGMs,
weighted edges correspond to entries of the concentration matrix.

In this work, we aim at estimating a hidden structure, namely node groups,
while discovering the network. This hidden structure should help us in choosing
adaptive penalty parameters. Indeed, we wish to penalize the elements of the
concentration matrix according to the unobserved clusters to which the nodes
belong. For instance, if two nodes belong to the same unobserved group, we wish
to lower the penalty parameter acting on the corresponding entry in the concen-
tration matrix. Conversely, if we increase the penalty parameters on the entries
corresponding to nodes belonging to different groups, we shrink the estimated
coefficient to zero. Our approach is completely new and improves inference of
sparse modular networks.
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Another adaptive Lasso procedure is given in Zou (2006), whose idea is
to lower the bias of the large coefficients by adapting the penalty parameter of
each coefficient so that it automatically scales with the inferred value. Contrarily
to Zou (2006), our procedure rather adapts to the underlying structure of the
graph.

Model. Let us now briefly describe the general approach of our work. The
model will be presented in detail in Section 2. Let X = (X1, . . . , Xp)

⊺ be a
Gaussian random vector in Rp, with zero mean and positive definite covariance
matrix Σ, namely X ∼ N (0p, Σ). We observe i.i.d vectors (X1, . . . , Xn) with
the same distribution as X. The matrix K = Σ−1 is the concentration matrix
of the model. Let S be the empirical covariance matrix. The log-likelihood of
the observations is

L(K) =
n

2
logdet(K) − n

2
Tr(SK) + c

where c is a constant term. The ℓ1-penalized estimator proposed by Banerjee et al.
(2008) is given by

K̂ = arg max
K≻0

log det(K) − Tr(SK) − ρ‖K‖ℓ1 ,

where K ≻ 0 stands for positive definiteness, ρ > 0 is a penalty parameter and
‖K‖ℓ1 =

∑
ij |Kij|. A natural generalization of this approach is to have different

penalty parameters for different entries Kij . Namely,

log det(K) − Tr(SK) − ‖ρ(K)‖ℓ1 ,

where ρ(K) = (ρij(Kij))i,j∈P is a matrix of penalty functions acting on each
entry.

Here, we propose to take into account a hidden structure on the correlations
between the coordinates random variables Xi. Thus, we consider latent i.i.d.
random variables Z1, . . . ,Zp with values in a finite set {1, . . . , Q}. Each variable
Zi describes the class of Xi, and we wish to adapt the penalty function ρij with
respect to the class of Xi, Xj. More precisely, we wish to use a criterion of the
form

logdet(K) − Tr(SK) − ‖ρZ(K)‖ℓ1 ,

where ρZ(K) = (ρZiZj (Kij))i,j∈P is a matrix of random penalty functions whose
entries only depend on the latent structure Z = (Z1, . . . ,Zp). However, the hid-
den structure is not supposed to be known, thus we cannot rely on the previous
criteria. Intuitively, following the principle of Expectation-Maximization (em)
algorithm of Dempster et al. (1977), the idea will be to replace the unobserved
value ‖ρZ(K)‖ℓ1 with its conditional expectation E(‖ρZ(K)‖ℓ1 |{Xk}; K(m)) un-
der some model with parameter K(m), and iterate the following steps

(e) Compute pen(K) = E(‖ρZ(K)‖ℓ1 |{Xk}; K(m))
(m) Update K(m+1) = argmaxK≻0 log det(K) − Tr(SK) − pen(K).
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Note that the ℓ1-norm used here acts on diagonal elements of the matrix K. It
is counter-intuitive to penalize diagonal elements of the concentration matrix,
as these do not reflect sparsity in the correlation structure. However, from a
technical point of view, this strategy ensures that the procedure will select a
positive definite estimator (see Remark 2). This point was not emphasized in
the previous procedures using ℓ1 penalized likelihood of GGMs.

Road-map. In Section 2 we present the model and the penalized maximum
likelihood criterion on which we base our inference procedure, described in Sec-
tion 3. This procedure relies on a variational em algorithm, combined with a
Lasso-like procedure. We also discuss the choice of the penalty parameters and
explain how Meinshausen and Bühlmann’s approach may be interpreted as a
penalized pseudo-likelihood method. Section 4 illustrates the performance of
the method on synthetic data, for which an R–package, SIMoNe (Statistical In-
ference for Modular Network, see Chiquet et al. 2009), is available. We also test
our algorithm on a real data set provided by Hess et al. (2006) and concerning
n = 133 patients with breast cancer treated using chemotherapy. All the proofs
have been postponed to Section 5.

2. A latent structure model for network inference

2.1. Gaussian graphical models: general settings

Let P = {1, . . . , p} be a set of fixed vertices, X = (X1, . . . , Xp)
⊺ a random vector

describing a signal over this set and a sample (X1, . . . , Xn) of size n with the
same distribution as X. The vector X is assumed to be Gaussian with positive
definite covariance matrix Σ = (Σij)(i,j)∈P2. No loss of generality is involved
when centering X, so we may assume that X ∼ N (0p, Σ).

GGMs are based on a classical result originally emphasized by Dempster
(1972), claiming that variables Xi and Xj with i 6= j are independent condi-
tional on all other variables indexed by P\{i, j}, if and only if the entry (Σ−1)ij

is zero. The inverse of the covariance matrix K = (Kij)(i,j)∈P2 = Σ−1, known
as the concentration matrix, thus describes the conditional independence struc-
ture of X. Moreover, each entry Kij , i 6= j is directly linked to the partial
correlation coefficient rij|P\{i,j} between variables Xi and Xj . In fact, we have

rij|P\{i,j} = −Kij/
√

KiiKjj, and also Kii = Var(Xi|XP\i)
−1. Hence, after a

simple rescaling, the matrix K can be interpreted as the adjacency matrix of
an undirected weighted graph G representing the partial correlation structure
between variables X1, . . . , Xp. This graph has no self-loop, with a random set
of edges composed by all pairs (i, j) such that Kij 6= 0. Note that we are con-
sidering only pairs of vertices (i, j) such that i < j, since there is no self-loop,
and since Kij = Kji. Inferring nonzero entries of K is equivalent to inferring G,
and is therefore a highly relevant issue in this framework.
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2.2. Providing the network with a latent structure

The model proposed in Daudin et al. (2008) attempts a better fit of data, as it
places the network G in the mixture framework, in order to take into account
the heterogeneity among vertices. The same general mixture model is adopted
here: vertices of P are distributed among a set Q = {1, . . . , Q} of hidden clusters
that model the latent structure of the network. For any vertex i, the indicator
variable Ziq is equal to 1 if i ∈ q and 0 otherwise, hence describing which cluster
the vertex i belongs to. A vertex is assumed to belong to one cluster only,
thus the random vector Zi = (Zi1, . . . , ZiQ) follows a multinomial distribution.
Namely,

Zi ∼ M(1, α), (1)

where α = (α1, . . . , αQ) is a vector of cluster proportions, so that
∑

q αq = 1.

The concentration matrix structure. We shall now extend the clustering
of vertices from P to the concentration matrix K. Accordingly, both the exis-
tence and the weight of edges, described by the off-diagonal elements of K, will
depend on the cluster each vertex belongs to. Conditional on the events i ∈ q
and j ∈ ℓ where q, ℓ are clusters chosen from Q, each Kij (i 6= j) is a random
variable whose probability density function is denoted by fqℓ, that is,

Kij | {ZiqZjℓ = 1} ∼ fqℓ(·), i 6= j.

It will be remarked that in this formulation the variables Kij are assumed to
be independent, conditional on the clusters the vertices belong to. Moreover,
we are considering only undirected graphs, so we may assume that fqℓ = fℓq .
For technical reasons (see Remark 2), we also assume a distribution on diagonal
elements of K, namely Kii ∼ f0(·).

Our suggestion is to adopt Laplace distributions; hence

∀x ∈ R, fqℓ(x) =
1

2λqℓ
exp

{
− |x|

λqℓ

}
, and f0(x) =

1

2λ0
exp

{
−|x|

λ0

}
, (2)

where λqℓ, λ0 > 0 are scaling parameters and λqℓ = λℓq . Below, the parameter
λ0 will be fixed and not estimated.

The reason for choosing a Laplace distribution is that it is reminiscent of the
ℓ1-norm, itself linked to Lasso-techniques for which appropriate tools are avail-
able. Here, we rely on the well-known fact that ℓ1 penalties might be interpreted
as Laplace priors on the parameters. This interpretation enables us to embed
the Lasso-like procedure in our EM-algorithm.

The affiliation model. This model is a special case of network structure
(to be investigated below), where there are many different clusters, but where
the focus is restricted to two types of edges: edges between nodes of the same
cluster, and edges between nodes from different clusters. In the affiliation model
the densities fqℓ in (2) are of only two kinds; that is, for all q, ℓ ∈ Q, let

fqℓ =

{
fqq = fin(·; λin) if q = ℓ, the intra-cluster density of edges,
fqℓ = fout(·; λout) if q 6= ℓ, the inter-cluster density of edges.

(3)
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2.3. The complete likelihood

We denote as X the n × p matrix that contains the data-set (X1, X2, . . . , Xn)
row-wisely organized, i.e., (Xk)⊺ is the kth row of X. Furthermore, we denote
as Z = {Ziq}i∈P,q∈Q the set of all latent indicator variables for vertices. For the
sake of simplicity, the number of clusters Q and the parameters α = (αq)q∈Q
and λ = {λqℓ}q,ℓ∈Q are assumed to be known for the moment.

The data experiments X are the only observations available, and from these
we want to infer the graph G of conditional dependencies or, equivalently,
nonzero entries of K. In a maximum likelihood framework, the estimate is de-
fined as follows

K̂ = arg max
K≻0

logP(X, K).

where K ≻ 0 stands for positive-definiteness. The distribution of K is only
known conditionally on the latent structure described by Z. We denote as Z
the set of all possible clusterings over nodes from P. The marginalization over
the latent clusters Z leads to

K̂ = arg max
K≻0

log
∑

Z∈Z
Lc(X, K, Z),

where Lc(X, K, Z) = P(X, K, Z) is the so-called complete-data likelihood. Let
us provide a closed form of Lc.

Proposition 1. The following relation holds:

logLc(X, K, Z) =
n

2
(log det(K) − Tr(SK)) − ‖ρZ(K)‖ℓ1

−
∑

i,j∈P,i 6=j
q,ℓ∈Q

ZiqZjℓ log(2λqℓ) +
∑

i∈P,q∈Q
Ziq log αq + c,

where S = n−1(X − X̄)⊺(X − X̄) is the empirical covariance matrix, c is a
constant term and ρZ(K) =

(
ρZiZj(Kij)

)
i,j∈P is defined by

ρZiZj(Kij) =






∑

q,ℓ∈Q
ZiqZjℓ

|Kij|
λqℓ

, if i 6= j,

|Kii|
λ0

, otherwise.

(4)

3. Inference strategy by alternate optimization

In the classical em framework developed by Dempster et al. (1977), where X

is the available data, inferring the unknown parameters K spread over a latent
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structure Z would make use of the following conditional expectation:

Q
(
K|K(m)

)
= E

{
logLc(X, K, Z)

∣∣X; K(m)
}

=
∑

Z∈Z
P
(
Z
∣∣K(m)

)
logLc(X, K, Z), (5)

where K(m) is the estimation of K from the previous step of the algorithm.
The usual em strategy would be to alternate an e-step computing the con-

ditional expectation (5) with an m-step maximizing this quantity over the pa-
rameter of interest K. Unfortunately, no closed form of Q

(
K|K(m)

)
can be

formulated in the present case. The technical difficulty lies in the complex de-
pendency structure contained in the model. Indeed, P(Z|K) cannot be factor-
ized, as argued in Daudin et al. (2008). This makes the direct calculation of
Q
(
K|K(m)

)
impossible. To tackle this problem we use a variational approach

(see, e.g., Jaakkola 2001). In this framework, the conditional distribution of the
latent variables P(Z|K(m)) is approximated by a more convenient distribution
denoted by Rm(Z), which is chosen carefully in order to be tractable. Hence,
our em-like algorithm deals with the following approximation of the conditional
expectation (5)

ERm {logLc(X, K, Z)} =
∑

Z∈Z
Rm(Z) logLc(X, K, Z). (6)

In the following section we develop a variational argument in order to choose an
approximation Rm(Z) of P(Z|K(m)). This enables us to compute the conditional
expectation (6) and proceed to the maximization step.

3.1. Variational estimation of the latent structure (the E-step)

In this part, K is assumed to be known, and we are looking for an approximate
distribution R(·) of the latent variables. The variational approach consists in
maximizing a lower bound J of the log-likelihood logP(X, K), defined as follows:

J (X, K, R(Z)) = logP(X, K) − DKL {R(Z)‖P(Z|K)} (7)

where DKL is the Küllback-Leibler divergence. This measures the difference
between the probability distribution P(·|K) in the underlying model and its ap-
proximation R(·). An intuitively straightforward choice for R(·) is a completely
factorized distribution (see Mariadassou and Robin 2007)

Rτ (Z) =
∏

i∈P
hτ i(Zi), (8)

where hτ i is the density of the multinomial probability distribution M(1, τ i),
and τ i = (τi1, . . . , τiQ) is a random vector containing the parameters to opti-
mize in the variational approach. In the case at hand the variational approach
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intuitively operates as follows: each τiq must be seen as an approximation of
the probability that vertex i belongs to cluster q, conditional on the data, that
is, τiq estimates P(Ziq = 1|K), under the constraint

∑
q τiq = 1. In the ideal

case where P(Z|K) can be factorized as
∏

i P(Zi|K) and the parameters τiq are
chosen as τiq = P(Ziq = 1|K), the Küllback-Leibler divergence is null and the
bound J reaches the log-likelihood.

Starting from (7), classical results on variational methods show that

Jτ (X, K) := J (X, K, Rτ (Z)) = Q̂τ (K) + H(Rτ (Z)),

where H(Rτ (·)) is the entropy of the distribution Rτ (·) and Q̂τ (K) is the ap-
proximation of the complete log-likelihood conditional expectation, computed
under the distribution Rτ . Namely,

Q̂τ (K) = ERτ
{logLc(X, K, Z)} =

∑

Z∈Z
Rτ (Z) logLc(X, K, Z).

The following proposition gives the form of the lower bound J to be maximized
in order to estimate τ . Its proof is trivial and therefore omitted.

Proposition 2. Let us assume that Rτ can be factorized as in (8), then

Jτ (X, K) = c −
∑

i∈P
q∈Q

τiq log τiq +
∑

i∈P
q∈Q

τiq log αq

− ‖ρτ (K)‖ℓ1
−

∑

i,j∈P,i 6=j
q,ℓ∈Q

τiqτjℓ log 2λqℓ, (9)

where c does not depend on τ and ρτ (K) = (ρτ iτ j
(Kij))i,j∈P2 is defined simi-

larly as (4), replacing Ziq by τiq.

The optimal approximate distribution Rτ is then derived by direct maximiza-
tion of Jτ . The following proposition gives the estimate τ̂ that solves the prob-
lem. Its proof is just an adaptation to the Laplace case of Mariadassou and Robin
(2007, Proposition 3) and is therefore omitted.

Proposition 3. Let α and λ be known. The following fixed-point relationship
holds for the optimal variational parameters τ̂ = arg maxτ Jτ

τ̂iq ∝ αq

∏

j∈P\{i}
ℓ∈Q

(
1

2λqℓ
exp

{
−|Kij |

λqℓ

})τ̂jℓ

, (10)

where ∝ means that there is a scaling factor such that
∑

q τ̂iq = 1 for any i ∈ P.

The initial value of τ is chosen using a classification algorithm such as spectral
clustering (see for instance Ng et al. 2002). As a consequence, the initial values

for τiq lie in {0, 1}. We then use an iterative procedure setting τ̂
(m+1) = g(τ̂ (m)),
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where g is the function (implicitly defined above) for which τ̂ is a fixed point.
Note that we cannot ensure uniqueness of the fixed point for g, nor convergence
of this iterative procedure. In practice, we can always use a maximal number of
iterations, and if convergence has not occurred, we keep the initial value of τ

given by the clustering method. In Appendix A.1 we explain that at least in the

affiliation model (3), if the current values K
(m)
ij of the precision matrix are small

enough, and if the parameters λ−1
in and λ−1

out are well-chosen, then uniqueness
of the fixed point is ensured. However, such a result does not hold in general,
which is one of the drawbacks of the variational approach in this context.

Estimation of α and λ. The parameters α and λ have been previously
considered as known to keep the statement as clear as possible. We now want to
make use of the current inferred graph to estimate these parameters. The basic
idea is to include this estimation in the variational method. Unfortunately, the
maximization of Jτ given in equation (9) with respect to τ , λ and α at the
same time is not possible. To tackle this problem, we use an alternate strategy.
The parameter τ is computed with the fixed-point relationship (10) for fixed
values of λ and α. Then we maximize Jτ with respect to λ and α, once Rτ is
fixed (that is, once τ is fixed), as in the following proposition. We successively
iterate these two steps until stabilization.

Proposition 4. For fixed values of τ , the parameters α̂, λ̂ maximizing Jτ are

∀q, ℓ ∈ Q, α̂q =
1

p

∑

i∈P
τiq and λ̂qℓ =

∑
i 6=j τiqτjℓ|Kij|∑

i 6=j τiqτjℓ
.

Note that the parameter λ will play two different roles in our estimation
strategy. In the present e-step, it is the parameter of the Laplace distribution,
whereas in the following m-step, it will play the role of an inverse penalty param-
eter for a Lasso-like procedure. In Subsection 3.3, we suggest that the values
used for λ might not be the same in the two distinct parts (e-step and m-step)
of the procedure and discuss alternative choices to be used during the m-step.
Note that in particular, one might want to tune the penalty in order to obtain
a desired quantity of inferred edges, or to constrain the topology of the graph,
e.g. graphs with hubs.

3.2. A Lasso-like method to estimate the concentration matrix (the
M-step)

Now that we are able to compute the approximate conditional expectation de-
fined by (6), we wish to infer the concentration matrix K, assuming τ is known.
This is the aim of the m-step of our em–like strategy, that deals with the maxi-
mization problem arg maxK≻0 Q̂τ (K).

Using Proposition 1 and the equality ERτ
(ZiqZjℓ) = τiqτjℓ, it is a simple

matter to rewrite the problem as follows

K̂ = argmax
K≻0

{n

2
(log det(K) − Tr(SK)) − ‖ρτ (K)‖ℓ1

}
. (11)
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Hence, our m–step can be seen as a penalized maximum likelihood estimation
problem, exactly like in Banerjee et al. (2008). The likelihood considered here
is P(X|K), that is, the likelihood which corresponds to the n realizations of the
Gaussian vector X for a given concentration matrix K. The difference of our
approach lies in the complexity of the penalty term, and in slight discrepancies
as regards some constant factors.

Remark 1. Since we are using a penalty term 1/λ0 on matrix K’s diagonal
elements, the solution to (11) satisfies

∀i ∈ P, K̂−1
ii = Sii + 2/(nλ0), (12)

when λ−1
0 < n|Sii|/2 for any i ∈ P. Indeed, the sub-gradient equation is

n/2(K−1
ii − Sii) + sgn(Kii)/λ0 = 0, and Kii > 0 since it is the inverse of a

conditional variance.

Let us now look at the solution of the m-step: the following proposition gives
an equivalent formulation of (11) that is more likely to be solved. The result
draws its inspiration from Banerjee et al. (2008).

Proposition 5. The maximization problem (11) over the concentration matrix
K is equivalent to the following, dealing with the covariance matrix Σ

Σ̂ = argmax
‖(Σ−S)·/Pτ‖∞≤1

log det(Σ), (13)

where ·
/

is the term-by-term division and

Pτ = (Pτ iτ j
)i,j∈P with Pτiτ j

=

{
2n−1

∑
q,ℓ τiqτjℓλ

−1
qℓ i 6= j,

2(nλ0)
−1 i = j.

Remark 2. By penalizing the diagonal terms of the concentration matrix K in
the initial problem, the set of matrices Σ over which we maximize our criterion
contains, for instance, the matrix S+2/(nλ0)I, (where I stands for the identity
matrix). Thus, provided that 1/λ0 is set sufficiently high (for instance, such
that S + 2/(nλ0)I is diagonally dominant), this set contains positive definite
matrices. This ensures that our estimator is always invertible. Obviously, when
S is invertible, which is usually true for n greater or equal than p, penalizing
the diagonal terms becomes futile. In this case 1/λ0 is set to zero.

To solve (13) and thus obtain the estimate Σ̂, we successively use two coordi-
nate descent methods. The first corresponds to a block-wise strategy suggested
by Banerjee et al.. The second one is used to solve the resulting Lasso problem
and was suggested by Friedman et al. (2007).

Let us first explain the block-wise strategy. For this purpose, we introduce
the following notation for Σ̂, S and the penalty matrix Pτ

Σ̂ =

[
Σ̂11 σ̂12

σ̂
⊺

12 Σ̂22

]
, S =

[
S11 s12

s
⊺

12 S22

]
, Pτ =

[
P11 p12

p
⊺

12 P22

]
, (14)
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where Σ̂11, S11 and P11 are (p−1)×(p−1) matrices, σ̂12, s12 and p12 are (p−1)

length column vectors and Σ̂22, S22 and P22 are real numbers. We have already
remarked (Remark 1) that the solution to (13) satisfies Σ̂22 = S22 + 2/(nλ0).
Moreover, using Schür complement, the vector σ̂12 satisfies

σ̂12 = argmin
{y:‖(y−s12)·/p12‖∞≤1}

{
y⊺Σ̂

−1

11 y
}

. (15)

We have det(Σ̂) = det(Σ̂11)(Σ̂22 − σ̂
⊺

12Σ̂
−1

11 σ̂12). The full matrix Σ̂ is approx-
imated in the following way: first, if required when p is greater than n, we
initialize the procedure with S+2/(nλ0)I, where λ0 > 0 is chosen so as to make
S + 2/(nλ0)I invertible; secondly, we permute the columns (and thus the rows)

of Σ̂ and iteratively solve problems like (15) until convergence of the procedure.
This convergence is ensured by the following lemma.

Lemma 1. The procedure which starts with a positive definite matrix and iter-
atively updates the columns and rows of this matrix according to the solutions
of (15) converges to the solution Σ̂ of (13).

Then, starting from a result given in Banerjee et al. (2008), an interpretation
of (15) as an ℓ1–penalized problem is given in Friedman et al. (2008). This ℓ1–
penalized problem is reminiscent of the Lasso and may thus be solved using
a coordinate descent strategy (Fu 1998, Friedman et al. 2007). The following
proposition enunciates a result similar to those obtained in Banerjee et al. (2008,
equation (6)) and Friedman et al. (2008, equation (2.4)), although with a more
general penalty term and a factor 1

2 that differs. Since none of these articles
gives an explicit proof for this result, it is fitting that we provide our own here.

Proposition 6. Solving (15) is equivalent to solving the dual problem

β̂ = argmin
β

∥∥∥∥
1

2
Σ̂

1/2

11 β − Σ̂
−1/2

11 s12

∥∥∥∥
2

2

+ ‖p12 ⋆ β‖ℓ1
, (16)

where solution σ̂12 to (15) and β̂ to (16) are linked through

σ̂12 = Σ̂11β̂/2. (17)

Hence, the column σ̂12 of the estimated covariance matrix Σ̂ is computed by
solving the Lasso problem (16) using another coordinate descent method.

Lemma 2. The solution to (16) is computed by updating the jth coordinate of

β̂ via

β̂j = 2S

(
(s12)j −

1

2

∑

k 6=j

(Σ̂11)jkβ̂k ; (p12)j

)
/(Σ̂11)jj, (18)

where S(x; ρ) = sgn(x)(|x| − ρ)+ is the soft-thresholding operator.
Moreover, the procedure which iteratively updates the entries of vector σ̂12 =

Σ̂11β̂/2 according to the solutions β̂ of (18) converges to the solution of (15).
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The proof of this lemma is postponed to Appendix A.2.
Finally, the estimate of concentration matrix K is recovered by inverting Σ̂,

which can be done at low computational cost (see Appendix A.3 for details).
Hence, we solve the initial maximization problem (11) that defines the m-step
of our algorithm.

Implementation of the full em algorithm is outlined in Algorithm 1.

Algorithm 1: The full em–like algorithm

while Q̂τ (K̂(m)) has not stabilized do

//THE E-STEP: LATENT STRUCTURE INFERENCE

Compute τ̂ with the fixed-point relationship (10), using K̂(m−1)

//THE M-STEP: NETWORK INFERENCE

Construct the penalty matrix P according to τ̂

while Σ̂
(m)

has not stabilized do

for each column of Σ̂
(m)

do

Compute σ̂12 by solving the lasso–like problem

Compute K̂(m) by block inversion of Σ̂
(m)

m← m + 1

3.3. Choice of penalty parameters

As previously stated, the penalty parameter λ may be estimated in the e-step
of the algorithm (see subsection 3.1). However, this choice is not necessarily
optimal for the estimation of K, and other choices might in practice lead to a
better solution. Indeed, λ plays two different roles during the procedure: in the
e-step, this is the parameter of a Laplace distribution, while in the m-step, it is
an inverse penalty parameter. Empirically, we observed that the estimated value
of λ gives rise to heavy penalization which might not be suitable in the variable
selection step (m-step). A good strategy is to keep the estimated value of λ in
the e-step that leads to the estimation of τ , and to impose another value of
λ during the m-step (depending on the inferred latent structure). In this part,
we indicate a possible choice for the penalty parameters to use in the m-step,
ensuring a small error on the connectivity components of the estimated graph.

Let us first introduce some notation. For any node i ∈ P, let Ci denote
the connectivity component of node i in the true underlying conditional
dependency graph, and Ĉi the corresponding component resulting from the
estimate K̂ of this graph structure. The following proposition is based on
Meinshausen and Bühlmann (2006, Theorem 2) and Banerjee et al. (2008, The-
orem 2).
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Proposition 7. Fix some ε > 0 and choose the penalty parameters λ such that,
for all q, ℓ ∈ Q,

2p2Fn−2

(
2

nλqℓ

(
max
i 6=j

SiiSjj −
1

λ2
qℓ

)−1/2

(n − 2)1/2

)
≤ ε, (19)

where 1 − Fn−2 is the c.d.f. of Student’s t-distribution with n − 2 degrees of
freedom. Then

P(∃k, Ĉk * Ck) ≤ ε. (20)

Following Banerjee et al. (2008), note that in order to ensure (19), it is enough
to choose the penalty parameter λ such that, for all q, ℓ ∈ Q,

λqℓ(ε) ≥
2

n

(
n − 2 + t2n−2

(
ε

2p2

))1/2(
max
i 6=j

SiiSjj

)−1/2

tn−2

(
ε

2p2

)−1

,

where tn−2(u) is the (1 − u)-quantile of Student’s t-distribution with (n − 2)
degrees of freedom, i.e. Fn−2(tn−2(u)) = u.

Inequality (19) does not take into account that different penalty parameters
are used for different hidden classes q, ℓ ∈ Q. An adaptation of the preceding
strategy is to use current values Z(m) obtained from the probabilities τ (m) of the
hidden classes and to choose the current penalty parameters λ(m) accordingly.
More precisely, let us set, for instance

∀i ∈ P, Z
(m)
iq =

{
1 if q = argmaxℓ τ

(m)
iℓ

0 otherwise.

Then, by choosing for all q, ℓ ∈ Q,

λ
(m)
qℓ (ε) ≥ 2

n

[
n − 2 + t2n−2

(
ε

2p2

)]1/2


 max

i 6=j

Z
(m)

iq
Z

(m)

jℓ
=1

SiiSjj




−1/2

tn−2

(
ε

2p2

)−1

,

(21)

the current estimate K̂(m) will approximately satisfy (20).
Typically, the kind of values obtained with (21) will lead to large penalties

and, consequently, to very sparse graphs: practically, more informative networks
can be obtained by replacing the term ε/2p2 in (21) by greater values. In any
cases, (21) should be seen as a starting value.

3.4. Link with Meinshausen and Bühlmann’s approach

We also want to fill the gap between, on the one hand solving (11) and, on
the other hand, the approach proposed in Meinshausen and Bühlmann (2006),
where p independent penalized regression problems are solved using the Lasso.
In fact, we show that Meinshausen and Bühlmann’s approach is equivalent to
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maximizing the penalized pseudo log-likelihood corresponding to the size-n sam-
ple of the multivariate Gaussian vector X on the set of non symmetric matrices.
Let us denote as L̃ this pseudo-likelihood, defined by

log L̃(X; K) =
∑

i∈P

(
n∑

k=1

log P(Xk
i |Xk

P\i; Ki)

)
,

where Xk
P\i is the kth realization of the Gaussian vector X, once the ith coor-

dinate has been removed. In this section, the ℓ1-norm of matrices is restricted
to off-diagonal elements only, that is, ‖A‖ℓ1 =

∑
i 6=j |Aij|.

Proposition 8. Consider the solution K̂pseudo to the penalized pseudo-likelihood
problem

K̂pseudo = argmax
{Kij,i 6=j}

log L̃(X; K) − ‖P ⋆ K‖ℓ1 , (22)

(whose diagonal is fixed) and the solution K̂MB given in Meinshausen and
Bühlmann (2006) to the p different regression problems, using the matrix penalty
2P/n. The two solutions have exactly the same null entries.

4. Numerical experiments

In this section we present numerical experiments on both synthetic data, to
investigate how well the proposed selection procedure behaves, and real data, to
demonstrate the practical use of GGM covariance selection with latent structure.
In the remainder of this section we focus on an affiliation model (3), the choice
of the penalty used in the m-step being made in line with Section 3.3. More
precisely, during the m-step, we fix the ratio λin/λout = 1.2 and either let the
value 1/λin vary when considering precision/recall curves for synthetic data, or
fix this parameter according to (21) when dealing with real data.

Note that selecting the number of classes Q remains a challenging issue in
this context. We tried to rely on ICL (integrated complete likelihood) criterion,
(Biernacki et al. 2000, Daudin et al. 2008) leading to poor results for synthetic
data. Indeed, ICL heavily relies on the likelihood, which is not correctly esti-
mated in our context, since we are selecting rather than estimating the non-zero
entries of K. However, for the real data-set, we noticed that our procedure is
not very sensitive to the choice of Q. Indeed, we observe that choosing a too
large value of Q ends up in empty classes and may thus be easily detected.

4.1. Synthetic data

We perform numerical experiments to assess the performance of our approach
(SIMoNe, Statistical Inference for Modular Network, Chiquet et al. 2009) and
compare it to already existing methods for GGM covariance selection: GLasso
(Friedman et al. 2008) and GeneNet (Schäfer and Strimmer 2005). The approach
of Meinshausen and Bühlmann was also tested. Its performance is rather similar
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to the one of GLasso. For the sake of clarity, the corresponding results are not
shown.

Data synthesis in our framework requires the simulation of a structured sparse
inverse covariance matrix. To this aim, we first simulate a graph with an affili-
ation structure. We consider a simple binary affiliation model where two types
of edges exist: edges between nodes of the same class and edges between nodes
of different classes. The binary incidence matrix of the graph is transformed
by randomly flipping the sign of some elements in order to simulate both pos-
itively and negatively correlated variables. Positive definiteness of this matrix
is ensured by adding a large enough constant to the diagonal. The matrix is
then further normalized to have a diagonal of ones. A Gaussian sample of size
n with zero mean and the above covariance matrix is then simulated 50 times.
The results we present below are averaged over the 50 samples. At the end of
this section we discuss the performances of our method when there is no latent
structure on the data.

We simulate sparse graphs with p = 200 and n from 100 to 2000 (n/p ∈
{1/2, 2, 3, 6, 10}). We use a probability of intra-cluster connection of 0.125, a
probability of inter-cluster connection of 0.0025, Q = 3 groups and equal group
proportions αi = 1/3. With these settings, the theoretical expected number of
edges is about 862 and the total number of potential edges is 19900. A sample
graph is given in Figure 1. The running times of GLasso and SIMoNe are of the
same order. For the settings described above the running time varies from a few
seconds to a few minutes, according to the penalty parameter.

We focus the experiments on the ability to recover existing edges of the net-
work, that is the nonzero entries of the concentration matrix. This is a binary
decision problem where the compared algorithms are considered as classifiers.
The decision made by a binary classifier can be summarized using four num-
bers: True Positives (TP ), False Positive (FP ), True Negatives (TN) and False
Negatives (FN). We have chosen to draw precision/recall curves to display this
information and compare how well the methods perform (Figure 2).

(a) (b) (c)

Fig 1. Simulation of the structured sparse concentration matrix. Adjacency matrix without
(a) and with (b) rows and columns reorganized according the affiliation structure and corre-
sponding graph (c).
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Precision (TP/(TP + FP )) is the ratio of the number of true nonzero el-
ements to the total number of nonzero elements in the estimated concentra-
tion matrix K̂. Recall that (TP/(TP + FN)) is the ratio of true nonzero el-

ements in K̂ to all nonzero entries of the real concentration matrix K. In a
sparse context where the number of actual positives (TP + FN) is small com-
pared to the number of actual negatives (FP + TN), precision/recall curves
give a more informative picture of an algorithm’s performance than classical
Receiver Operator Characteristic (ROC) curves. Indeed, ROC curves plot the
False Positive Rate (FPR = FP/(FP + TN)) against the True Positive Rate
(TPR = TP/(TP + FN)). When the number of total positives is small com-
pared to the number of total negatives, small variations of FP and TP will
result in small variations of FPR and large variations of TPR, which is not
relevant for comparing performances. In a statistical framework, the recall is
equivalent to the power and the precision is equivalent to one minus the False
Discovery Proportion.

Additionally to the GLasso (Friedman et al. 2008) and GeneNet (Schäfer and
Strimmer 2005) we consider two other procedures:

• When n is greater than p, a straightforward way to obtain an estimate of
the inverse covariance matrix is to invert the empirical covariance matrix.
Although this approach is unlikely to perform well in a selection context
(since it is designed for estimation purposes), it is worth comparing it to
its competitors in order to assess the scale of improvement. We call this
procedure InvCor.

• When the latent structure Z of the concentration matrix is known, our
method can be applied without its e-step and produce a relevant selec-
tion of the nonzero entries of the concentration matrix. This approach
represents the upper limit of our method, since it makes use of an usu-
ally unavailable source of information. This procedure is denoted perfect

SIMoNe.
In some problems the latent structure of the graph is partially known and
this information can be used in the e-step to improve the estimation of the
latent structure. For example, when inferring gene regulation networks, a
subset of identified genes may be known to belong to the same functional
module.

For the methods based on penalization (GLasso, SIMoNe and Perfect SIMoNe),
the precision/recall curves are plotted by varying the penalty parameter (namely
1/λin in our case). The penalty parameter varies from close to zero to a maxi-

mum value which forces all off-diagonal elements of K̂ to be null (see Appendix
A.4). The GeneNet and InvCor methods are plotted by sorting the elements of

K̂ according to their absolute values, and choosing different thresholds to find
nonzero entries.

Even when n is really greater than p (Figures 2 (a–b)) Invcor is always
dominated by the other methods from a selection point of view. This simple
check shows that even in a favorable context with abundant data, penalization
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2

Fig 2. Precision/recall curves comparing the performance of GeneNet, GLasso, SIMoNe and
perfect SIMoNe, when inferring the structure of a simulated graph with p = 200 variables.
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procedures improve the selection of nonzero entries of the concentration matrix,
in comparison with methods based on estimation of these entries.

Although GeneNet and GLasso can provide different results on a given run,
both methods perform similarly on average (50 runs for our experiment). The
only parameter we change in this experimental setting is the n/p ratio.

Perfect SIMoNe’s curves dominate all other curves for any n/p ratio. This
clearly shows that the knowledge of the structure provides a valuable informa-
tion for selecting the nonzero entries of the concentration matrix. When the
structure is hidden, the main problem of our approach is then to find a reliable
estimate of this structure from the initial data.

Perfect SIMoNe and SIMoNe perform equivalently when n = 10p and when
the ratio n/p decreases, Perfect SIMoNe tends to outperform SIMoNe more
clearly. This means that SIMoNe is able to recover the latent structure when
there is enough data, but does not find a substantial structure when n drops
below p.

When p > n, the empirical covariance matrix ceases to be invertible. Thus,
Figures 2 (e–f) do not display the InvCor results. Although it is possible to show
that both GLasso and SIMoNe increase the number of inferred true nonzero
elements with the number of iterations in all settings, precision/recall curves
show the relative poor performances for all tested algorithms when p ≥ n.

Notice that when p > n, the estimated latent structure is not reliable. Never-
theless, the performance of SIMoNe remains comparable to that of GLasso. We
can therefore see that assuming the existence of a latent structure when there
is none does not impair the selection of nonzero entries of the matrix K.

4.2. Breast Cancer data

We tested our algorithm on a gene expression data set provided by Hess et al.
(2006) and concerning 133 patients with stage I − III breast cancer. The pa-
tients were treated with chemotherapy prior to surgery. Patient response to the
treatment is classified as either a pathologic complete response (pCR) or a resid-
ual disease (not-pCR). Hess et al. (2006) and Natowicz et al. (2008) developed
and tested a multigene predictor for treatment response on this data set. They
focused on a set of 26 genes having a high predictive value (see Table 1). We
thus consider a total of n = 133 cases containing p = 26 gene expression levels.

When dealing with gene regulatory networks, we typically observe n inde-
pendent microarray experiments, each giving the expression levels of the same
p genes. If the same experimental conditions are used for all microarrays, these
may be considered as a sample of the same experiment. In the application in
question, cases from the pCR class (34 cases) and from the not-pCR class (99
cases) clearly do not have the same distribution. We apply our algorithm on
each class of patients. Two distinct gene regulatory networks are thus inferred.

Figure 3 plots the resulting networks obtained for three different penaliza-
tions. The penalization parameters were heuristically chosen from the number of
expected nonzero entries. We used Q = 2 latent clusters, and it is interesting to
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Table 1

The key genes that compose the inferred networks

Gene symbol Gene name
MAPT Microtubule-associated protein
BBS4 Bardet-Biedl syndrome 4
THRAP2 Thyroid hormone receptor associated protein 2
MBTP-S1 Hypothetical protein
PDGFRA Human clone 23,948 mRNA sequence
ZNF552 Zinc finger protein 552
RAMP1 Receptor (calcitonin) activity modifying protein 1
BECN1 Beclin 1 (coiled-coil, myosin-like BCL2 interacting protein)
BTG3 BTG family, member 3
SCUBE2 Signal peptide, CUB domain, EGF-like 2
MELK Maternal embryonic leucine zipper kinase
AMFR Autocrine motility factor receptor
CTNND2 Catenin, delta 2
GAMT Guanidinoacetate N-methyl transferase
CA12 Carbonic anhydrase XII
FGFR1OP FGFR1 oncogene partner
KIAA1467 KIAA1467 protein
MTRN Meteorin, glial cell differentiation regulator
FLJ10916 Hypothetical protein FLJ10916
E2F3 E2F transcription factor 3
ERBB4 Verba erythroblastic leukemia viral oncogene homolog 4(avian)
JMJD2B Jumonji domain containing 2B
RRM2 Ribonucleotide reductase M2 polypeptide
FLJ12650 Hypothetical protein FLJ12650
GFRA1 GDNF family receptor 1
IGFBP4 Insulin-like growth factor binding protein 4

note that when assuming more than two clusters, the algorithm systematically
produces exactly two non-empty clusters.

The inferred networks exhibit very different structures according to the class
of patients. This in itself is interesting and suggests that gene regulation differs
with respect to the presence or absence of a pCR.

The network obtained with not-pCR cases displays a two-star pattern. Each
star connects to a unique gene, either SCUBE2 or IGFBP4. Almost all the most
significant connections imply SCUBE2. This star pattern suggests that further
studies of this particular gene would be of interest for understanding residual
disease.

The network estimated with the pCR cases has a different two-cluster struc-
ture. In particular, it groups IGFBP4 and SCUBE2 in the same cluster with a
direct significant link. This again indicates a completely different relationship
between the genes in pCR versus non-pCR.

Results given by GLasso and SIMoNe on this data set are rather close. How-
ever, our method gives results that are easier to interpret as it reveals a class
structure. For example, if we focus on the not-PCR network inferred with
medium penalty, GLasso and SIMoNe disagree on 6 among the 28 inferred edges:
all 6 edges are added by GLasso between clusters and thus hide the structure.
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Fig 3. Inferred graphs for three different penalization’s levels.
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5. Proofs

Proof of Proposition 1. Using the Bayes rule, Lc divides into three terms:

logLc(X, K, Z) = logP(X, K, Z) = logP(X|K) + logP(K|Z) + logP(Z),

where we make use of the fact that log P(X|K, Z) = log P(X|K).
The first term is the likelihood associated with a size-n sample of a multi-

variate Gaussian distribution, since X ∼ N (0p, Σ). Routine computations lead
to

logP(X|K) =
n

2
log det(K) − n

2
Tr(SK) − np

2
log(2π).

As regards the second term, using the expression (2), we have

logP(K|Z) =
∑

i,j∈P,i 6=j
q,ℓ∈Q

ZiqZjℓ log fqℓ(Kij) +
∑

i∈P
log f0(Kii)

= −
∑

i,j∈P,i 6=j
q,ℓ∈Q

ZiqZjℓ

( |Kij|
λqℓ

+ log(2λqℓ)

)
−
∑

i∈P

|Kii|
λ0

− p log(2λ0).

From (1), we have logP(Z) =
∑

i,q Ziq log αq, and the result follows.

Proof of Proposition 4. Once terms that do not depend on the parameters of
interest have been removed from Jτ , the problem becomes

α̂q = argmax
αq

∑

i

τiq logαq and λ̂qℓ = argmax
λqℓ

−
∑

i 6=j

τiqτjℓ

( |Kij|
λqℓ

+ log2λqℓ

)
.

Null-differentiation with respect to αq (under the constraint
∑

q αq = 1) and
λqℓ leads straightforwardly to the result.

Proof of Proposition 5. The penalty term in (11) can be written as follows

‖ρτ (K)‖ℓ1
=
∑

q,ℓ∈Q

∑

i,j∈P
i 6=j

|Kij|
λqℓ

τiqτjℓ +
∑

i∈P

|Kii|
λ0

=
∑

q,ℓ∈Q
‖Tqℓ ⋆ K‖ℓ1

,

where ⋆ is the term-by-term product. The set {Tqℓ}q,ℓ∈Q contains p × p sym-

metric matrices, defined, for each couple (q, ℓ), by

Tqℓ = (Tqℓ;ij)i,j∈P with ∀i 6= j, Tqℓ;ij =
τiqτjℓ

λqℓ
and Tqℓ;ii =

1

λ0Q2
.

Using the fact that ‖A‖ℓ1 = max‖U‖∞≤1 Tr(AU), for a given matrix A,the
optimization problem (11) can be written as

max
K≻0

min
{Uqℓ:‖Uqℓ‖∞≤1}

{
n

2
logdet K− Tr

(
n

2
SK +

∑

q,ℓ∈Q
(Tqℓ ⋆ K) Uqℓ

)}
.
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The dual version of the above expression is obtained by swapping max and
min. The maximization is solved by differentiating with respect to K. To do
this, we recall that in our specific case the matrices T are symmetric, and
thus Tr ((T ⋆ K)U) = Tr (K(T ⋆ U)). Then, applying the usual rules for the
derivative of the trace operator, null-differentiation with respect to K yields

Σ := K−1 = S +
2

n

∑

q,ℓ∈Q
(Uqℓ ⋆ Tqℓ) .

The dual problem therefore becomes

min
{Uqℓ:‖Uqℓ‖∞≤1}

{
−n

2
logdet(Σ) − np

2

}
,

or in other words,
max

{Uqℓ:‖Uqℓ‖∞≤1}
log det(Σ).

Finally, we need to write the constraint as a function of Σ rather than the set
{Uqℓ}. In fact, we simply need to show that

{Uqℓ; ∀q, ℓ ∈ Q, ‖Uqℓ‖∞ ≤ 1} =
{
Σ;
∥∥(Σ − S) ·

/
Pτ

∥∥
∞ ≤ 1

}
.

When ‖Uqℓ‖∞ ≤ 1, we have for each couple (i, j) ∈ P2,

∣∣∣(Σ − S)ij

∣∣∣ =
2

n

∑

q,ℓ

|(Uqℓ)ij · (Tqℓ)ij| ≤
2

n

∑

q,ℓ

Tqℓ;ij = Pτ iτj .

Thus ‖Uqℓ‖∞ ≤ 1 ⇒ ‖(Σ − S) · /Pτ‖∞ ≤ 1. On the other hand, assume that
‖(Σ − S) · /Pτ‖∞ ≤ 1, that is, for all i, j ∈ P,

−Pτiτj
≤ (Σ − S)ij ≤ Pτiτ j

.

This also means that there exists some δij ∈ [0, 1] such that

(Σ − S)ij = δijPτiτ j + (1 − δij)(−Pτ iτ j ) =
2

n

∑

q,ℓ

(2δij − 1)Tqℓ;ij .

We choose Uql such that (Uql)ij = (2δij − 1) for all q, ℓ ∈ Q. Then, since
δij ∈ [0, 1], we have −1 ≤ (Uqℓ)ij ≤ 1, for all i, j ∈ P, which proves that
‖(Σ − S) · /Pτ‖∞ ≤ 1 ⇒ ‖Uqℓ‖∞ ≤ 1.

Proof of Lemma 1. The proof relies on Banerjee et al. (2008, Theorem 3) and
Tseng (2001, Theorem 4.1). Convergence of block-coordinate descent methods is
a well-documented topic in convex optimization literature. Here, we have to bear
in mind that using ℓ1-norm penalty leads to non-differentiable functions. Thus,
we rely on a result by Tseng (2001, Theorem 4.1), which in our case ensures
the convergence of the procedure, provided there is at most one solution to
each minimization problem (15). This point is proved in Banerjee et al. (2008,
Theorem 3).
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Proof of Proposition 6. Problem (15) can be written as follows, by splitting the
constraint:





miny y⊺Σ̂

−1

11 y

subject to −(p12)i ≤ yi − (s12)i − (p12)i ≤ 0, ∀i = 1, . . . , p − 1,
or −(p12)i ≤ −yi + (s12)i − (p12)i ≤ 0, ∀i = 1, . . . , p − 1.

Let us introduce L the so-called Lagrangian, with vectors of Lagrange coeffi-
cients denoted by β1 = (β1

i )i≤p−1, β
2 = (β2

i )i≤p−1 with nonnegative entries.
Also, let β = β2 − β1. The Lagrange version of the above problem is

min
y

{
y⊺Σ̂

−1

11 y + max
β

L(β)
}

, (23)

where, in the present case, L is given by

L(β) =
∑

i

β1
i (yi − (s12)i − (p12)i) +

∑

i

β2
i (−yi + (s12)i − (p12)i) .

The coefficients β1
i and β2

i maximizing L(β) are null when the constraints are
satisfied, and for each index i, at least one coefficient among {β1

i , β2
i } is zero.

Then
‖β‖ℓ1 =

∑

i

|βi| =
∑

i

(
β1

i + β2
i

)
.

Meanwhile, consider the dual problem of (23), swapping min and max: the
solution that minimizes the dual problem with respect to y satisfies the null-

gradient hypothesis. We obtain 2Σ̂
−1

11 y − β = 0, that is y = 1
2 Σ̂11β (which

proves equation (17)). Introducing this result in the dual of (23), we get

max
β

−1

4
β

⊺
Σ̂11β + s

⊺

12β −
∑

i

(
β1

i + β2
i

)
(p12)i,

also equivalent to

min
β

1

4
β

⊺
Σ̂11β − s

⊺

12β + ‖p12 ⋆ β‖ℓ1
.

Expressing this quantity by using the Euclidean norm achieves the proof.

Proof of Proposition 7. Here we simply indicate the main differences between
the proof of Banerjee et al. (2008, Theorem 2) and what is valid in our context.

Note that according to (11), the estimator K̂ must satisfy the following sub-
gradient equation

∀i 6= j,
n

2

(
K̂−1

ij − Sij

)
−
(
∑

q,ℓ

ZiqZjℓ

λqℓ

)
νij = 0
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where νij ∈ sgn(K̂ij). Following the proof of Banerjee et al. (2008, Theorem 2),
we easily get

P(∃k, Ĉk * Ck) ≤ p2 max
i∈P,j /∈Ci

P

(
n

2
|Sij| ≥

∑

q,ℓ

ZiqZjℓ

λqℓ

)
.

Performing some computations involving the correlation between variables Xi

and Xj , we also obtain

P(∃k, Ĉk * Ck) ≤ 2p2 max
q,ℓ∈Q

Fn−2



2(n − 2)1/2

nλqℓ

(
max

i∈P,j /∈Ci

SiiSjj −
1

λ2
qℓ

)−1/2


 ,

which entails the conclusion.

Proof of Proposition 8. Denote by K\i\i and S\i\i, respectively, the matrices
K and S once their ith row and ith column have been removed. Moreover,
Ki\i and Si\i are the ith rows of the matrices with the ith term removed. After
some routine computations, and using classical results for Gaussian multivariate
vectors, it can be shown that

log L̃(X; K) =
n

2

∑

i∈P

(
log Kii − KiiSii − 2Si\iKi\i −

1

Kii
Ki\iS\i\iK

⊺

i\i

)
+ c,

(24)
where c does not depend on K. Thus, if we forget the symmetry constraint on K,
maximizing the pseudo-likelihood (24) with respect to the non-diagonal entries
of K is equivalent to p independent maximization problems with respect to each
column K

⊺

i\i. Consider, for instance, the last column of K, that is, for i = p,

and the relative term in (24). Using notation (14), this term can be written as

− n

2K22
(2K22s

⊺

12K
⊺

12 + K
⊺

12S11K12) = − n

2K22

∥∥∥S1/2
11 K

⊺

12 + K22S
−1/2
11 s12

∥∥∥
2

2
+ c′,

where we use the block-wise notation defined above (14). The term c′ does not
depend on K12, which is the current column of the concentration matrix to
infer. Namely, c′ = −K2

22s
⊺

12S
−1
11 s12.

Consider now the penalized version of the log-likelihood (22): we wish to solve
p penalized problems of minimization as defined above, which can be written as
follows

min
β

∥∥∥S1/2
11 β + K22S

−1/2
11 s12

∥∥∥
2

2
+

2K22

n
‖p12 ⋆ β‖ℓ1

. (25)

Meinshausen and Bühlmann wish to solve p Lasso-problems, for instance for
the last variable p,

min
α

1

n

∥∥Xp −X\pα
∥∥2

2
+
∥∥2n−1p12 ⋆ α

∥∥
ℓ1

, (26)
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where Xp is the pth column of X and X\p is the matrix of data the pth column
has been removed (note that we adapted the penalization term corresponding
to the framework developed here).

The minimum is reached in (25) for null-differentiation, and we get

2S11β + 2K22s12 +
2K22

n
p12 ⋆ ν = 0,

where ν ∈ sign(β). The same for (26), and we get

2

n
X

⊺

\pX\pα − 2

n
X⊺

pX\p + 2n−1p12 ⋆ γ = 0,

where γ ∈ sign(α). Now, just note that n−1X
⊺

\pX\p = S11 and n−1X⊺

pX\p =

s
⊺

12, and problems (25) and (26) are equivalent, provided that α = −β/K22.
Thus, the columns of the concentration matrix (with a removed diagonal

term) inferred from the penalized maximum pseudo-likelihood problem (22),
and those inferred with Meinshausen and Bühlmann’s approach, share exactly
the same null-entries, that is, the same network of conditional dependencies.

6. Conclusion

In this paper, we propose a method for inferring sparse Gaussian graphical
models based on ℓ1-penalized likelihood. We describe a framework taking into
account a latent structure on the concentration matrix. This latent structure
assumes a partition of the variables and drives the penalization. The proposed
estimation strategy is based on a variational em algorithm, in which a Lasso-
like procedure is embedded.

Our simulation study shows that the proposed method, named SIMoNe, really
improves over Glasso when a modular structure underlies the concentration
matrix.

These assumptions of sparsity and modularity are particularly relevant for
inferring gene influence network. In this application framework, the sample is a
set of microarray experiments and variables represent gene expressions.

When analyzing microrarray data, the biologist usually identifies hundreds
of genes among thousands available, which are differentially expressed. From a
practical point of view, our method can provide a useful insight both on the
mutual influence existing between genes, and on the modules existing in the
network.

Appendix A: Appendix section

A.1. Fixed-point study

Let us first introduce some notation. For any i, j ∈ P and any q, ℓ ∈ Q, consider
the random variables

Lijqℓ =
|Kij|
λqℓ

+ log 2λqℓ.
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Let u : RpQ → RpQ be defined by its coordinate functions u = (uiq)i∈P,q∈Q in
the following way: ∀a = (aiq)i∈P,q∈Q ∈ RpQ,

uiq(a) = αq exp

{
−
∑

j 6=i

∑

ℓ

ajℓLijqℓ

}

= αq exp

{
−
∑

j 6=i

∑

ℓ

ajℓ

( |Kij|
λqℓ

+ log2λqℓ

)}
,

and let g = (giq)i∈P,q∈Q : RpQ → RpQ satisfy

∀a ∈ RpQ, giq(a) =
uiq(a)∑
ℓ uiℓ(a)

.

According to Proposition 3, optimal parameter τ̂ is a fixed-point of g.
Now, let

Θ =

{
a = (aiq)i∈P,q∈Q ∈ RpQ; ∀i ∈ P, q ∈ Q, aiq ∈ [0, 1] and

∑

q

aiq = 1

}
.

We wish to study the fixed-points of g in Θ. First, let us note that as Θ is a
compact state space and as function g satisfies g : Θ → Θ and is continuous,
the existence of a fixed-point of g follows from Brouwer’s Theorem.

We now restrict our attention to a smaller set than the whole state space Θ.
For any ε > 0, let

Θε =
{
a ∈ Θ, ∀i ∈ P, q ∈ Q, aiq ∈ [ε, 1− ε]

}
.

Note that we do not claim that g : Θε → Θε. However, existence of a fixed-point
of g is ensured in Θ and if we assume αq > 0 for any q ∈ Q (which is a reasonable
assumption if the number of classes Q is not too large), it can easily be seen
that any fixed-point satisfies aiq > 0, for any i ∈ P and any q ∈ Q. Thus for
sufficiently small ε > 0, the fixed-points of g belong to Θε.

In order to study the behaviour of g in the vicinity of a fixed-point, we need
to look at some kind of contraction property for g. To this end we introduce a
distance d on Θε that will make use of the form of the state space Θε. For all
a, b ∈ Θε, denote by ai = (aiq)q∈Q ∈ RQ and bi = (biq)q∈Q ∈ RQ. Moreover, let

d(a, b) = max
i∈P

d0(ai, bi) = max
i∈P

log

(
maxq∈Q aiq/biq

minq∈Q aiq/biq

)
= max

i∈P
max
q,ℓ∈Q

log

(
aiqbiℓ

biqaiℓ

)
.

It is well known that d0 is a distance in [ε, 1− ε]Q, and it is easy to check that
the resulting d is also a distance in Θε.

Now, fix a, b ∈ RpQ and consider the distance d(g(a), g(b)). It is easily checked
that

d(g(a), g(b)) = max
i∈P

d0(gi(a), gi(b)) = max
i∈P

d0(ui(a), ui(b)) = max
i∈P

d0(ūi(a), ūi(b)),
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where ū = (ūi)i∈P = (ūiq)i∈P,q∈Q is defined in the following way

∀a = (aiq)i∈P,q∈Q ∈ RpQ,

ūiq(a) = exp

{
∑

j 6=i

∑

ℓ

ajℓLijqℓ

}
= exp

{
∑

j 6=i

∑

ℓ

ajℓ

( |Kij|
λqℓ

+ log2λqℓ

)}
.

In the following, fix ε > 0 and a, b ∈ Θε and denote by

∀i ∈ P, ci
1 = min

q∈Q

aiq

biq
, ci

2 = max
q∈Q

aiq

biq
.

With these notations, we have

d(a, b) = max
i∈P

d0(ai, bi) = max
i∈P

log

(
ci
2

ci
1

)
. (27)

We only consider the affiliation model described in (3). Thus, there are only
two different values for λqℓ, namely λin and λout for intra and extra cluster
connectivity.

Lemma 3. If for any i, j ∈ P, i 6= j and any λ ∈ {λin, λout}, we have

0 <
|Kij|

λ
+ log2λ <

ε

2(p − 1)(1 + ε)
almost surely, (28)

then function g satisfies a contraction property on Θε.

Before proving the lemma, let us explain the consequences of this result.
Consider the function hK defined on (0, +∞) by

hK(λ) =
|K|
λ

+ log2λ.

This function first decreases from +∞ to the value 1 + log 2|K| on the interval
(0, |K|) and then increases from 1 + log 2|K| to +∞ on (|K|, +∞).

At any step of the algorithm, if the current values K
(m)
ij of the concentration

matrix are small enough, namely smaller than 1/(2e) ≃ 0.184 then the functions
h

K
(m)

ij

take all the values between 1+log 2|K| < 0 and +∞. Thus, there is room

for choosing λin, λout such that (28) is satisfied. In such a case, the fixed-point
we are looking for is unique and the iterative procedure setting τ̂ (s+1) = g(τ̂ (s))
converges.

Proof. Using that for any j ∈ P and any ℓ ∈ Q, we have cj
1bjℓ ≤ ajℓ ≤ cj

2bjℓ

and Lijqℓ > 0, we get

exp

(
∑

j 6=i

cj
1

∑

ℓ

bjℓLijqℓ

)
≤ ūiq(a) ≤ exp

(
∑

j 6=i

cj
2

∑

ℓ

bjℓLijqℓ

)
.
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Thus, it follows

exp

(
∑

j 6=i

(cj
1−1)

∑

ℓ

bjℓLijqℓ

)
≤ ūiq(a)

ūiq(b)
≤ exp

(
∑

j 6=i

(cj
2−1)

∑

ℓ

bjℓLijqℓ

)
. (29)

In the case of the affiliation model, for fixed i, j ∈ P and q ∈ Q, the set of
random variables {Lijqℓ}ℓ∈Q is reduced to only two random values, namely

Lin
ij =

|Kij|
λin

+ log 2λin, Lout
ij =

|Kij|
λout

+ log 2λout.

For the sake of simplicity, we assume Q = 2 groups (our arguments may be
easily generalized to 3 groups or more). Now, denoting Lmax

ij = max(Lin
ij , L

out
ij )

and Lmin
ij = min(Lin

ij , L
out
ij ), it can easily be seen that (for ε < 1/2),

sup
b∈Θε

∑

ℓ

bjℓLijqℓ = (1 − ε)Lmax
ij + εLmin

ij

inf
b∈Θε

∑

ℓ

bjℓLijqℓ = (1 − ε)Lmin
ij + εLmax

ij ,

almost surely. Note that if we have Q ≥ 3 groups, explicit bounds can also be
obtained (their expression is only slightly more complicated). Coming back to
(29), we get

exp

(
∑

j 6=i

(cj
1 − 1){(1 − ε)Lmin

ij + εLmax
ij }

)

≤ ūiq(a)

ūiq(b)
≤ exp

(
∑

j 6=i

(cj
2 − 1){(1 − ε)Lmax

ij + εLmin
ij }

)
.

This leads to

d0(ūi(a), ūi(b)) = log
maxq∈Q ūiq(a)/ūiq(b)

minq∈Q ūiq(a)/ūiq(b)

≤
∑

j 6=i

(cj
2 − 1){(1 − ε)Lmax

ij + εLmin
ij } −

∑

j 6=i

(cj
1 − 1){(1 − ε)Lmin

ij + εLmax
ij }

≤
∑

j 6=i

Lmax
ij {cj

2 − 1 − ε(cj
2 + cj

1 − 2)} + Lmin
ij {1 − cj

1 + ε(cj
2 + cj

1 − 2)}.

Finally, recall that d(g(a), g(b)) = maxi d0(ūi(a), ūi(b)), leading to

d(g(a), g(b)) ≤ max
i∈P

{(
ci
2 − 1 − ε(ci

2 + ci
1 − 2)

)
∨
(
1 − ci

1 + ε(ci
2 + ci

1 − 2)
)}

× max
i∈P

∑

j 6=i

(Lmax
ij + Lmin

ij ).
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Now, using the inverse triangle inequality, and the fact that ci
1 ≤ 1 ≤ ci

2, we get
for any i ∈ P,

|ci
2 + ci

1 − 2| =
∣∣|ci

2 − 1| − |1 − ci
1|
∣∣ ≤ |ci

2 − ci
1| = ci

2 − ci
1.

Moreover, we have 0 ≤ ci
2 − 1 ≤ ci

2 − ci
1 and 0 ≤ 1 − ci

1 ≤ ci
2 − ci

1. This leads to

d(g(a), g(b)) ≤ (1 + ε)max
i∈P

(ci
2 − ci

1) × max
i∈P

∑

j 6=i

(Lmax
ij + Lmin

ij )

≤ (1 + ε)max
i∈P

(ci
2 − ci

1) × 2(p − 1)max
j 6=i

Lmax
ij . (30)

Since a and b belong to Θε, we get that ci
1, c

i
2 ∈ [ε, ε−1] and thus

ci
2 − ci

1 = exp(log ci
2) − exp(log ci

1) ≤
1

ε
log

(
ci
2

ci
1

)
.

In particular, recalling (27), we have

0 ≤ max
i∈P

ci
2 − ci

1 ≤ 1

ε
d(a, b).

Coming back to (30), we get

d(g(a), g(b)) ≤ (1 + ε−1)2(p − 1)
(

max
j 6=i

Lmax
ij

)
d(a, b). (31)

Now, under assumption (28) the multiplicative random factor (1 + ε−1)2(p −
1)maxj 6=i Lmax

ij is strictly smaller than 1.

A.2. Proof of Lemma 2 (Lasso with pathwise coordinate
optimization)

The following is partly based on Friedman et al. (2007). There are various algo-
rithms for solving the Lasso problem. When there is just one predictor, the
Lasso solution is simply given by soft-thresholding (Donoho and Johnstone
1995). The approach used here is based on iterative soft-thresholding with a
’partial residual’ as a response variable.

The usual formulation of the Lasso problem is the minimization with respect
to β of the quantity

1

2

n∑

i=1

(
yi −

p∑

j=1

xijβj

)2

+ ρ‖β‖ℓ1 ,

where (yi)i=1,...,n is a vector of response and (xij)i=1,...,n;j=1,...,p a matrix of
predictors such that

∑
i xij = 0, with no loss of generality. Using a coordinate-

descent approach, we simply write the above problem in the form

1

2

n∑

i=1

(
yi −

∑

k 6=j

xikβk − xijβj

)2

+ ρ
∑

k 6=j

|βk| + ρ|βj |
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and minimizing this function with respect to βj will lead to the solution

βj(ρ) = S

(
n∑

i=1

xij(yi − ỹ
(j)
i ), ρ

)
N−2

j ,

where ỹ
(j)
i =

∑
k 6=j xikβk(ρ), the normalizing term N2

j satisfies N2
j =

∑n
i=1 x2

ij

and the function S(x, ρ) = sgn(x)(|x| − ρ)+ is the soft-thresholding operator.
This leads to an iterative procedure, repeated on each coordinate of β un-

til stabilization of the full vector. Note that as each coordinate-wise solution
is unique, results from Tseng (2001, Theorem 4.1) imply that the procedure
converges.

Now, we want to apply this approach to solve the problem (16), which can
be written

min
β

1

2

∥∥∥∥
1√
2
Σ̂

1/2

11 β −
√

2Σ̂
−1/2

11 s12

∥∥∥∥
2

2

+ ‖p12 ⋆ β‖ℓ1
.

From the previous lines, the solution for jth entry of β is

βj(p12) = S

(
∑

i

(Σ̂
1/2

11 )ij

(
(Σ̂

−1/2

11 s12)i −
1

2

∑

k 6=j

(Σ̂
1/2

11 )ikβk(p12)

)
, (p12)j

)
N−2

j .

Then, using the symmetry of the matrices, it is easy to see that

∑
i(Σ̂

1/2

11 )ij(Σ̂
−1/2

11 s12)i =
∑

ℓ(Σ̂
1/2

11 Σ̂
−1/2

11 )jℓ(s12)ℓ = (s12)j,
∑

i(Σ̂
1/2

11 )ij

∑
k 6=j(Σ̂

1/2

11 )ikβk(p12) =
∑

k 6=j(Σ̂11)jkβk(p12),

N2
j =

∑
i

(
(Σ̂

1/2

11 )ij√
2

)2

= (Σ̂11/2)jj.

Finally, the solution to (16) is computed by updating the jth coordinate of β

via

βj(p12) = 2S

(
(s12)j −

1

2

∑

k 6=j

(Σ̂11)jkβk(p12); (p12)j

)
/(Σ̂11)jj,

and permuting the rows of Σ̂ until convergence.

A.3. Reconstruction of the concentration matrix

At the end of the block-wise resolution algorithm, a solution Σ̂ is available. In
order to recover K̂, we simply use the fact that Σ̂K̂ = I. Block-wisely, we get

K̂12 = −Σ̂
−1

11 σ̂12K22 = −K22β̂/2,

K̂22 = 1/(σ̂12 − σ̂
⊺

12Σ̂
−1

11 σ̂12) = 1/(σ̂12 − σ̂
⊺

12β̂/2),

thanks to the fact that σ̂12 = Σ̂11β̂/2.
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A.4. Penalization upper bound

The following lemma states that if the penalization parameters λ−1
qℓ and λ−1

0

are chosen large enough (according to the observations), then the penalized
estimator obtained from the Lasso-like iteration step has null entries.

Lemma 4. If for any i, j ∈ P we have

∑

q,ℓ

ZiqZjℓ

λqℓ
≥ n

2
|Sij |, when i 6= j and

1

λ0
≥ n

2
|Sii|, (32)

then the solution Σ̂ = K̂−1 of problem (11) satisfies K̂−1 = 0.

Proof. The sub-gradient equation arising from (11) gives

∀i 6= j,
n

2

(
K̂−1

ij − Sij

)
−
(
∑

q,ℓ

ZiqZjℓ

λqℓ

)
νij = 0

and ∀i ∈ P,
n

2

(
K̂−1

ii − Sii

)
− 1

λ0
νii = 0,

where νij ∈ sgn(K̂ij) and thus νij ∈ [−1, 1]. In particular, we have

∀i 6= j,
n

2

∣∣∣K̂−1
ij − Sij

∣∣∣ ≤
(
∑

q,ℓ

ZiqZjℓ

λqℓ

)
and ∀i ∈ P,

n

2

∣∣∣K̂−1
ii − Sij

∣∣∣ ≤ 1

λ0
.

Now, if the set of penalty parameters satisfies the constraint (32), then the
matrix K−1 = 0 satisfies the sub-gradient equation. Thus, the conclusion comes
from uniqueness of the solution to (11).
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