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In this paper, we study some invariance principles where the limits are Gaussian random fields sharing many properties with multifractional Brownian sheets. In particular, they satisfy the same type of self-similarity and Hölder regularity properties. We also extend the invariance principles mentioned above in a stable setting.

Introduction

Fractional Brownian motion has been extensively studied because it is a relevant model for many problems where fractal properties occur, which is due in particular to its selfsimilarity, the stationarity of its increments and its regularity properties. It is also universal in the class of fractional processes because it satisfies the following invariance principle. Consider X = {X n , n ∈ N} a centered, stationary and Gaussian sequence and the process

S N H =    1 N H [N t] n=1 X n , t ∈ [0, +∞)   
where H ∈ (0, 1) and [y] is the integer part of the real number y. Then, S N H converges in distribution to a fractional Brownian motion of Hurst index H (see Theorem 7.2.11 of [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance[END_REF]) as soon as one of the three following properties is fulfilled:

• If H ∈ (1/2, 1), there exists σ H > 0 such that E[X 0 X n ] ∼ σ H n 2H-2 as n → ∞ • If H ∈ (0, 1/2), there exists σ H < 0 such that E[X 0 X n ] ∼ σ H n 2H-2 as n → ∞ and ∞ n=-∞ E[X 0 X n ] = 0. • If H = 1/2, ∞ n=1 |E[X 0 X n ]| < ∞ and ∞ n=-∞ E[X 0 X n ] > 0.
The most famous generalization of the fractional Brownian motion is the fractional Brownian field B H = (B H (u)) u∈R d (see [START_REF] Mandelbrot | Fractional Brownian motion, fractional noises and applications[END_REF][START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum[END_REF]). This isotropic Gaussian random field B H , whose increments are stationary, is self-similar of order H, which means that

∀ε ∈ [0, +∞), B H (εu), u ∈ R d dist. = ε H B H (u), u ∈ R d (1) 
where dist.

= stands for the equality of the finite-dimensional distributions. However, a drawback of the model B H is the strong homogeneity of its properties. For instance, the selfsimilarity property (1) is a global property, which is too restrictive for some applications, and the pointwise Hölder exponent of B H at any point t equals to its Hurst parameter H. Thus, many generalizations of fractional Brownian fields have been introduced to model phenomena whose Hölder regularity may vary along the trajectories. The most famous of them is the class of multifractional Brownian fields (see [START_REF] Benassi | Gaussian processes and Pseudodifferential Elliptic operators[END_REF][START_REF] Peltier | Multifractional Brownian motion: definition and preliminary results[END_REF]). Each of them is defined from a Hurst function h instead of a Hurst index, and has locally but not globally (in general) the same properties as a fractional Brownian motion.

Another drawback of fractional Brownian fields is their isotropy property, which is not suitable for applications in medecin [START_REF] Brunet-Imbault | A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform[END_REF] or hydrology [START_REF] Benson | Aquifer operatorscaling and the effect on solute mixing and dispersion[END_REF]. Thus, some fractional anisotropic generalizations of the fractional Brownian motion have also been introduced. In particular, a fractional Brownian sheet (see [START_REF] Kamont | On the fractional anisotropic Wiener field[END_REF][START_REF] Ayache | Drap brownien fractionnaire[END_REF]), that we still denote by B H , of order H = (H 1 , . . . , H d ) ∈ (0, 1) d exhibits different scaling properties in the d orthogonal directions, which is summarized in the following self-similarity property:

∀ε ∈ [0, +∞) d , B H (ε 1 u 1 , . . . , ε d u d ), u ∈ R d dist. = d k=1 ε H k k B H (u), u ∈ R d . (2) 
This property is more general than (1) but is still a global property. Moreover, the rectangular increments of B H are stationnary and its pointwise Hölder regularity may vary with the direction but not along a trajectory (except on the axes). Then, to allow more flexibility, a local version of the property (2) has been introduced in [START_REF] Léger | Analyse stochastique de signaux multi-fractaux et estimations de paramètres[END_REF], following the way [START_REF] Benassi | Gaussian processes and Pseudodifferential Elliptic operators[END_REF] has introduced a local version of [START_REF] Ayache | Drap brownien fractionnaire[END_REF]. As multifractional Brownian fields have been defined, replacing H by a function t → h(t) = (h 1 (t 1 ), . . . , h d (t d )), multifractional Brownian sheets have been defined and studied in [START_REF] Léger | Analyse stochastique de signaux multi-fractaux et estimations de paramètres[END_REF][START_REF] Herbin | From N parameter fractional Brownian motions to N parameter multifractional Brownian motions[END_REF]. Their pointwise Hölder exponent can vary with the point t and with the direction. Observe that multifractional Brownian fields are not in general isotropic but their Hölder regularity do not depend on the directions. As mentioned previously for fractional processes, a question of interest is the existence of universal multifractional processes or, in other words, invariance principles for multifractional processes. This question in the case of long-range dependence is addressed in [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF] whose we describe the main result. We consider a centered Gaussian field X = {X n (H), H ∈ (1/2, 1), n ∈ N}, a continuous function h : R → [a, b] ⊂ (1/2, 1) and for every N ∈ N,

S N h =    [N t] n=1 X n (h(n/N )) N h(n/N ) , t ∈ [0, +∞)    . (3) 
As N goes to ∞, under an assumption of long-range dependence, [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF] proves that the finitedimensional distributions of S N h converge to those of a multifractional Gaussian process S h . More precisely, S h is locally asymptotically self-similar in the sense of [START_REF] Benassi | Gaussian processes and Pseudodifferential Elliptic operators[END_REF] and its pointwise Hölder exponent may vary along the trajectories. This theorem is a generalization of the classical invariance principle ( [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance[END_REF]) in a framework of long-range dependence.

In this paper we generalize to different directions the invariance principles we mention above. Our main results deal a multidimensional version of the sequence (3). More precisely, we consider a sequence of the form

S N h =    [N t 1 ] n 1 =1
. . .

[N t d ] n d =1 X n h N n N r N n , t ∈ [0, +∞) d    where X = X n (H), n ∈ N d , H ∈ (0, 1) d is a
Gaussian or an α-stable (0 < α < 2) random field defined by a harmonizable integral representation. For suitable families h N n n,N and r N n n,N we prove the convergence in distribution of S N h to a multifractional field S h as N goes to ∞. Moreover, in the Gaussian case, we study the local self-similarity and the pointwise Hölder regularity properties of the limit S h . These properties are the same as those satisfied by multifractional Brownian sheets. We also introduce pointwise multi-Hölder exponents which are related to the regularity of the rectangular increments.

The paper is organized as follows. Section 2 is devoted to establish the invariance principle in the Gaussian case. We get limit fields whose we study local self-similarity and regularity properties in Section 3. We extend the invariance principle in a stable setting in Section 4. Some technical lemmas are postponed to the Appendix.

Invariance principle

Let {W H (x), x ∈ R d , H ∈ (0, 1) d } be a real centered Gaussian field such that for every

H ∈ (0, 1) d , K ∈ (0, 1) d , ζ ∈ R d and η ∈ R d , E[W H (ζ)W K (η)] = C(H, K) d j=1 inf(ζ j , η j ), (4) 
with C : (0, 1) d × (0, 1) d → R a symmetric and smooth function. Let us emphasize that

{W H (x), x ∈ R d , H ∈ (0, 1) d } exists if and only if C is a covariance function. We also remark that, if we fix H ∈ (0, 1) d , then {W H (x), x ∈ R d } is a Brownian sheet.
Consider the set

F = f : R d → C, f ∈ L 2 (R d ), ∀ξ ∈ R d , f (ξ) = f (-ξ)
and for each H ∈ (0, 1) d , let W H (dx) be the Fourier transform of the real Gaussian random measure associated with W H (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance[END_REF] for example). Then, for each H, for any f, g ∈ F,

E R d f (x) W H (dx) R d g(x) W K (dx) = C(H, K) R d f (x)g(x)dx. ( 5 
)
Let a : (0, 1) d × R d → C be a measurable and bounded function satisfying

∀H ∈ (0, 1) d , a(H, •) ∈ F. (6) 
Then, the random field

X = {X n (H), n ∈ N d , H ∈ (0, 1) d } such that X n (H) = R d a(H, x) exp(i n, x ) d j=1 exp(ix j ) -1 |x j | 1/2+H j W H (dx)
is well-defined and is a centered real-valued Gaussian field. Using [START_REF] Benson | Aquifer operatorscaling and the effect on solute mixing and dispersion[END_REF], the covariance between X n (H) and X m (K) is

C(H, K) R d a(H, x)a(K, x)e i n-m,x d j=1 |exp(ix j ) -1| 2 |x j | 1+H j +K j dx := r H,K (n -m). ( 7 
)
Our aim is to consider a field S N h defined as a weighted sum of X which converges to a random field sharing many properties with a multifractional Brownian sheet. Before we introduce the weighted sum S N h , let us introduce several notations we use throughout the paper.

Notation

• For any t = (t 1 , . . . , t d ) ∈ [0, +∞) d and N ∈ N * , let

D N t = k = (k 1 , . . . , k d ) ∈ N d / 1 ≤ k j ≤ [N t j ], ∀1 ≤ j ≤ d .
• For any integer 1 ≤ j ≤ d, let us consider a function h j : [0, ∞) → (0, 1) and set

∀t = (t 1 , . . . , t d ) ∈ [0, +∞) d , h(t) = (h 1 (t 1 ), . . . , h d (t d )). (8) 
• In the following, for k

= (k 1 , . . . , k d ), h N k := (h N k,1 , . . . , h N k,d ) where for 1 ≤ j ≤ d, h N k,j = h j (k j /N ).
• In order to simplify some notation, for α = (α 1 , . . . , α d ) ∈ [0, +∞) d , we write |α| = d j=1 α j .

In this section, we study the behavior as N tends to +∞ of the random field

S N h = S N h (t), t ∈ [0, +∞) d defined by S N h (t) := k∈D N t X k (h N k ) N |h N k | = [N t 1 ] k 1 =1 [N t 2 ] k 2 =1 • • • [N t d ] k d =1 X k (h N k ) N d j=1 h N k,j . (9) 
We assume that the function a satisfies the following technical condition.

Condition (A).

There exist two measurable functions a 0 : (0, 1) d → C and a 1 : (0, 1) d × R d → C satisfying the following properties.

• For every (H, x) ∈ (0, 1)

d × R d , a(H, x) = a 0 (H) + a 1 (H, x) .
• The functions a 0 and a 1 are of class C d with respect to H. 

• For every κ = (κ 1 , • • • , κ d ) ∈ {0,
(H,x)∈K×R d {|∂ κ H a 1 (H, x)|} < ∞ with ∂ κ H = ∂ κ 1 H 1 . . . ∂ κ d H d .
These properties imply that for every κ ∈ {0, 1} d and every compact set K of (0, 1) d , sup

(H,x)∈K×R d {|∂ κ H a(H, x)|} < ∞.
They also imply that a 0 is a real-valued function and that a 1 (H, •) ∈ F for any H ∈ (0, 1) d . Now we state the main result of this paper.

Theorem 1. Assume that for any 1 ≤ j ≤ d, h j is a C 1 -function and that Condition (A) is fulfilled. Then, the finite-dimensional distributions of S N h converge to those of the realvalued centered Gaussian field S h whose covariance is given, for all s and t ∈ [0, +∞) d , by [START_REF] Feyel | On fractional Brownian processes[END_REF] with D u = d j=1 [0, u j ] and

E[S h (t)S h (s)] = R d dy Dt×Ds C 0 (h(θ), h(σ))e i y,θ-σ d j=1 |y j | 1-h j (θ j )-h j (σ j ) dθdσ,
C 0 (H, K) = C(H, K)a 0 (H)a 0 (K). ( 11 
)
In the special case where C ≡ 1,

S h f.d.d. =    R d W (dy) Dt a 0 (h(θ))e i y,θ d j=1 |y j | 1/2-h j (θ j ) dθ, t ∈ [0, +∞) d    (12) 
with W the Fourier transform of the real Gaussian measure associated with a Brownian sheet.

Observe that S h (t) = 0 if there exists j such that t j = 0. This is also true for multifractional sheets.

Before we prove this theorem, let us relate it with some previous works [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF][START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance[END_REF][START_REF] Sly | Integrated fractional white noise as an alternative to multifractional Brownian motion[END_REF].

Remark 1. Assume h ≡ H ∈ (0, 1) d . Then according to Theorem 1, the random field

t → N -d j=1 H j [N t 1 ] k 1 =1 [N t 2 ] k 2 =1 • • • [N t d ] k d =1 X k (H)
converges to a fractional Brownian sheet B H of order H. If d = 1, this is the classical principle invariance described in [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance[END_REF]. If h is not a constant function, the limit is not a multifractional Brownian sheet. For instance, if d = 2 and C ≡ 1,

S h (t) = a 0 (h 1 (t 1 ))a 0 (h 2 (t 2 ))B h (t) -R(t)
where B h is the multifractional Brownian sheet defined by

B h (t) = R 2 W (dx) e it 1 x 1 -1 ix 1 |x 1 | h 1 (t 1 )-1/2 e it 2 x 2 -1 ix 2 |x 2 | h 2 (t 2 )-1/2 and R(t) = R 2 W (dx)f 1 (t, x)g 2 (t, x) + R 2 W (dx)f 2 (t, x)g 1 (t, x) - R 2 W (dx)g 1 (t, x)g 2 (t, x) with f k (t, x) = a 0 (h k (t k )) e it k x k -1 ix k |x k | h k (t k )-1/2 and g j (x, t) = t j 0 h j (θ j ) a 0 (h j (θ j )) -a 0 (h j (θ j )) ln |x j | e iθ j x j -1 ix j |x j | h j (θ j )-1/2 dθ j .
Remark 2. Assume that d = 1 and that Condition (A) is fulfilled. Let r H,K be defined by [START_REF] Biermé | Multi-operator scaling random fields[END_REF]. Then one can prove that for any compact set K of (1/2, 1), sup

H,K∈K j 2-H-K r H,K (j) -C(H, K)a 0 (H)a 0 (K) R exp(ix)|x| 1-H-K dx → j→∞ 0.
Hence, the Gaussian process {X H (t), t ∈ R, H ∈ (1/2, 1)} satisfies the assumptions of [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF], in which h takes its values in a compact subset of (1/2, 1). Theorem 1 is then a generalization of Theorem 1 of [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF], with some restrictions on the form of X and the regularity of h, to the case where h takes its values in (0, 1).

Remark 3. Let d = 1. Assume that a ≡ 1 and W H = W does not depend on H. Then under the assumptions of Theorem 1, the finite-dimensional distributions of S N h (t), t ∈ [0, +∞) converge to those of the process {Y h (t), t ∈ [0, +∞)} defined by

Y h (t) = R W (dy) t 0 exp(iyθ) |y| h(θ)-1/2 dθ
with W the Fourier transform of a real Gaussian measure. This process, called integrated fractional white noise, has first been introduced in [START_REF] Sly | Integrated fractional white noise as an alternative to multifractional Brownian motion[END_REF] as an alternative to multifractional Brownian motion because its magnitude is much less sensitive to the variations of the Hölder exponent. Here we give a new motivation to the introduction of the process Y h : it is the limit of an invariance principle, so it can be chosen as a universal multifractional Gaussian model. Note that this has already been noticed in [START_REF] Cohen | Invariance principle, multifractional Gaussian processes and long-range dependence[END_REF] in the case of a function h with values in a compact set of (1/2, 1).

Let us now conclude this section by proving Theorem 1.

Proof. Let t, s ∈ [0, T ] d . Then, E[S N h (t)S N h (s)] = k∈D N t l∈D N s 1 N |h N k | N |h N l | E X l (h N l )X k (h N k ) = R d dx k∈D N t l∈D N s b l N , k N , x e i l-k,x N |h N k | N |h N l | d j=1 |exp(ix j ) -1| 2 |x j | 1+h N l,j +h N k,j
where b(θ, σ, x) = C(h(θ), h(σ))a(h(θ), x)a(h(σ), x). Then, a change of variables leads to

E[S N h (t)S N h (s)] = R d Φ N (s, t, x)dx where Φ N (s, t, x) := k∈D N t l∈D N s b l N , k N , x N d j=1 e ix j /N -1 2 e i(l j -k j )x j /N |x j | 1+h N l,j +h N k,j
.

Let us define the function q by

q(ξ) = 1 -e iξ ξ , ξ ∈ R\{0}.
We can write

Φ N (s, t, x) := q x 1 N N [N s 1 ] l 1 =1 e il 1 x 1 /N |x 1 | h 1 (l 1 /N )-1/2 q x 1 N N [N t 1 ] k 1 =1 e -ik 1 x 1 /N |x 1 | h 1 (k 1 /N )-1/2 • • • q x d N N [N s d ] l d =1 e il d x d /N |x d | h d (l d /N )-1/2 q x d N N [N t d ] k d =1 e -ik d x d /N |x d | h d (k d /N )-1/2 b l N , k N , x N .
Because of the regularity of h, a and C, we can apply 2d times Lemma 3 (stated and proved in the Appendix) with α = 2. This leads to

Φ N (s, t, x) ≤ max κ∈{0,1} 2d sup (θ,σ)∈[0,T ] 2d ∂ κ b θ, σ, x N d j=1 g(x j ) 2
where

∂ κ b = ∂ κ 1 θ 1 • • • ∂ κ d θ d ∂ κ d+1 σ 1 • • • ∂ κ 2d σ d b and g(ξ) = c T,h (1 + |ln |ξ||) 1 |ξ| H + -1/2 I |ξ|<1 + 1 |ξ| H -+1/2 I |ξ|≥1 (13) 
with

H + = max 1≤j≤d max [0,T ] h j , H -= min 1≤j≤d min [0,T ]
h j and c T,h a finite positive constant. which only depends on T and the infinite norm of each

h j on [0, T ]. Since h is C 1 , C is smooth and since Condition (A) is fulfilled, sup y∈R d sup (θ,σ)∈[0,T ] 2d |∂ κ b (θ, σ, y)| < +∞.
The sequence of functions {x → Φ N (s, t, x)} is then uniformly bounded by an L 1 (R d )-function.

In order to use the bounded convergence theorem, it remains to prove the convergence of Φ N (s, t, x) for almost every x. We write

Φ N (s, t, x) = 3 n=0 Φ N n (s, t, x)
where, for n ∈ {0, 1, 2, 3},

Φ N n (s, t, x) = 1 N 2d k∈D N t l∈D N s b n l N , k N , x N d j=1 |q x j N | 2 e i(l j -k j )x j /N |x j | h N l,j +h N k,j -1 with b 0 (θ, σ, y) = C(h(θ), h(σ))a 0 (h(θ))a 0 (h(σ)) := C 0 (h(θ), h(σ)), b 1 (θ, σ, y) = C(h(θ), h(σ))a 1 (h(θ), y)a 0 (h(σ)), b 2 (θ, σ, y) = C(h(θ), h(σ))a 0 (h(θ))a 1 (h(σ), y),
and b 3 (θ, σ, y) = C(h(θ), h(σ))a 1 (h(θ), y)a 1 (h(σ), y).
For each n ∈ {1, 2, 3}, using 2d times Lemma 3 as previously, we obtain that

Φ N n (s, t, x) ≤ max κ∈{0,1} 2d sup (θ,σ)∈[0,T ] 2d ∂ κ b n θ, σ, x N g(x j ) 2
with g defined by [START_REF] Kolmogorov | Wienersche Spiralen und einige andere interessante Kurven in Hilbertsche Raum[END_REF]. Thanks to Condition (A), for almost every x,

lim N →∞ 3 n=1 Φ N n (s, t, x) = 0.
Moreover, by the Riemann sum theorem, for almost every x,

lim N →∞ Φ N 0 (s, t, x) = Dt dθ Ds dσ C 0 (h(θ), h(σ)) d j=1 e i(θ j -σ j )x j |x j | 1-h j (θ j )-h j (σ j ) .
Hence, by the bounded convergence theorem we get lim

N →+∞ E[S N h (t)S N h (s)] = R d dy Dt×Ds C 0 (h(θ), h(σ))e i y,θ-σ d j=1 |y j | 1-h j (θ j )-h j (σ j ) dθdσ.
Since S N h is a real-valued centered Gaussian random field, this proves the convergence of the finite-dimensional distributions of S N h to those of a real-valued centered Gaussian random field S h whose covariance is given by [START_REF] Feyel | On fractional Brownian processes[END_REF]. Moreover, if C ≡ 1, the integral representation [START_REF] Kamont | On the fractional anisotropic Wiener field[END_REF] of S h is a direct consequence of the isometry property of W on the space of square integrable functions.

Sample path properties of the limit field

This section is devoted to the smoothness of the sample paths and the self-similarity properties of the limit field S h . To this aim, let us first introduce and study some directional increments of S h .

Covariance structure of directional increments

As usual, (e 1 , . . . , e d ) denotes the canonical basis of R d . Let us consider a random field

Y = Y (t), t ∈ R d and δ ∈ R. Then for every k = 1, • • • , d and δ ∈ R, the directional increment field ∆ (k) δ Y (t), t ∈ R d is defined by ∆ (k) δ Y (t) = Y (t + δe k ) -Y (t).
Then, the rectangular increment of Y at point t in direction (k 1 , . . . , k p ) of size δ = (δ 1 , . . . , δ p ) is defined by

∆ (k 1 ,...,kp) Y (t, δ) = ∆ (kp) δp ∆ (k p-1 ) δ p-1 • • • ∆ (k 1 ) δ 1 Y (t).
Observe that the increment ∆ (1,...,d) Y (t, s-t) is the classical rectangular increment between t and s of the random field Y . For the sake of simplicity, we set

∆Y (t, s) := ∆ (1,...,d) Y (t, s -t) = (-1) d 1 κ 1 =0 . . . 1 κ d =0 (-1) d l=1 κ l Y (t + κ (s -t))
where for a and b

∈ R k , a b = (a 1 b 1 , a 2 b 2 • • • , a k b k ).
All the properties of S h we study are consequences of the Proposition 1 stated below, which focuses on the behavior of the covariance

E ∆ (k 1 ,...,kp) S h (t, ν u)∆ (k 1 ,...,kp) S h (t, ν u) (14) 
as ν tends to 0 R p + for any (k 1 , . . . , k p ). In particular, since S h is a real-valued Gaussian random field, these behaviors are related to some local asymptotic self-similarity properties and to some Hölder smoothness properties, see Sections 3.2 to 3.5.

Proposition 1. Let p ∈ {1, • • • , d} and k = (k 1 , . . . , k p ) ∈ {1, • • • , d} p with k l = k j if l = j. Then, for every T ∈ R + , lim ν→0 R p + sup u,v∈[0,T ] p t∈[0,T ] d E[∆ (k 1 ,••• ,kp) S h (t, ν u)∆ (k 1 ,••• ,kp) S h (t, ν v)] ν 2h k 1 (t k 1 ) 1 • • • ν 2h kp (t kp ) p -E k h,1 (t, u, v)E k h,2 (t) = 0
where

E k h,1 (t, u, v) = R p dy p j=1
(e iy j u j -1)(e -iy j v j -1)

|y j | 2h k j (t k j )+1 (15) 
and

E k h,2 (t) = R d-p dy D k t ×D k t dξdη j∈J(k)
e iy j (ξ j -η j )

|y j | h j (ξ j )+h j (η j )-1 C 0 h ξ k,t , h η k,t (16) 
with

J(k) = {1, . . . , d}\{k 1 , . . . , k p }, D k t = j∈J(k) [0, t j ] and ζ k,t j = ζ j if j ∈ J(k) t j else.
Here, by convention, E

(1,...,d) h,2 (t) = C 0 (h(t), h(t)) = a 0 (h(t)) 2 C(h(t), h(t)). Remark 4. E k h,1 (t, •, •)
is the covariance function of the fractional Brownian sheet B (hk 1 (tk 1 ),...,hk p (tk p )) defined by

B (hk 1 (tk 1 ),...,hk p (tk p )) (u) = R p p j=1 e iy j u j -1 iy j |y j | h k j (t k j )-1/2 W (dy), u ∈ R p + . (17) 
Moreover, if we denote

J(k) = {k p+1 , . . . k d } with k l < k l+1 , then E k h,2 (t) = Var S(t k p+1 , . . . , t k d ) ∈ R +
where S satisfies the same kind of invariance principle as S h (that is, which can be introduced by Theorem 1 replacing d by d -p and with suitable functions C, a and h).

Let us now prove Proposition 1.

Proof. Let u, v ∈ [0, T ] p , t ∈ [0, T ] d and ν ∈ (0, 1] p .
Because of the symmetry properties of (10), we can assume without loss of generality that k = (1, . . . , p). Then, we study

I ν (t, u, v) = E[∆ (1,••• ,p) S h (t, ν u)∆ (1,••• ,p) S h (t, ν v)] ν 2h 1 (t 1 ) 1 • • • ν 2hp(tp) p
.

By definition of ∆ (1,••• ,p) S h and by [START_REF] Feyel | On fractional Brownian processes[END_REF], we have:

I ν (t, u, v) = p j=1 ν -2h j (t j ) j R d dx Dt,ν u×Dt,ν v dθdσ d j=1 e i(θ j -σ j )x j |x j | h j (θ j )+h j (σ j )-1 C 0 (h(θ), h(σ))
where for all δ ∈ R p + , D t,δ = p j=1 [t j , t j + δ j ] × d j=p+1 [0, t j ]. Some substitutions lead to

I ν (t, u, v) = R d dy Dt,u×Dt,v dξdη Φ 1,t,ν (y, ξ, η)Φ 2 (y, ξ, η)C 0 (h(ξ(t p , ν)), h(η(t p , ν)))
where for all w ∈ R d + , w p = (w 1 , . . . , w p ), Φ 1,t,ν (y, ξ, η) = p j=1 e i(ξ j -η j )y j ν h j (ν j ξ j +t j )+h j (ν j η j +t j )-2h j (t j ) j |y j | h j (ν j ξ j +t j )+h j (ν j η j +t j )-1

,

Φ 2 (y, ξ, η) = d j=p+1 e i(ξ j -η j )y j |y j | h j (ξ j )+h j (η j )-1
and

∀ϑ ∈ R p + , (ζ(ϑ, ν)) j = ν j ζ j + ϑ j if 1 ≤ j ≤ p ζ j if p + 1 ≤ j ≤ d.
Note that Φ 1,t,ν (y, ξ, η) (respectively Φ 2 (y, ξ, η)) does not depend on (y j , ξ j , η j , t j ) p+1≤j≤d (respectively (y j , ξ j , η j , t j ) 1≤j≤p ).

Let us fix y ∈ R d with y j = 0 for every j ∈ {1, . . . , d}. First let us consider C y ∈ C(R p × R p , C) the function defined by

C y (ϑ, ς) = D (1,...,p) t ×D (1,...,p) t dξ p+1 . . . dξ d dη p+1 . . . dη d Φ 2 (y, ξ, η)C 0 (h(ξ(ϑ, 0)), h(η(ς, 0))) with D (1,...,p) t = d j=p+1 [0, t j ]. Let j ∈ {1, • • • , p}. We define the operator I ρ j,1 from C([0, 2T ] j ×[0, 2T ] j-1 , C) to C([0, 2T ] j-1 × [0, 2T ] j-1 , C) by I ρ j,1 ϕ(ϑ, ς) =            u j 0 dθ ρ h j (ρθ+t j )-h j (t j ) e iy j θ
|y j | h j (ρθ+t j )-1/2 ϕ(ϑ, t j + ρθ, ς)

if ρ ∈ (0, 1] u j 0 dθ e iy j θ
|y j | h j (t j )-1/2 ϕ(ϑ, t j , ς) = e iy j u j -1

iy j |y j | h j (t j )-1/2 ϕ(ϑ, t j , ς) if ρ = 0 for any ϑ ∈ [0, 2T ] j-1 , ς ∈ [0, 2T ] j-1 and ϕ ∈ C([0, 2T ] j × [0, 2T ] j-1 , C).
For the sake of simplicity, we do not emphasize the dependence of the operator I ρ j,1 on (y, u).

We also define the operator

I ρ j,2 from C([0, 2T ] j × [0, 2T ] j , C) to C([0, 2T ] j × [0, 2T ] j-1 , C) by I ρ j,2 ϕ(ϑ, ς) =            v j 0 dσ ρ h j (ρσ+t j )-h j (t j ) e -iy j σ |y j | h j (ρσ+t j )-1/2 ϕ(ϑ, ς, t j + ρσ) if ρ ∈ (0, 1] v j 0 dσ e -iy j σ |y j | h j (t j )-1/2 ϕ(ϑ, ς, t j ) = 1 -e -iy j v j iy j |y j | h j (t j )-1/2 ϕ(ϑ, ς, t j ) if ρ = 0 for any ϑ ∈ [0, 2T ] j , ς ∈ [0, 2T ] j-1 and ϕ ∈ C([0, 2T ] j × [0, 2T ] j , C).
As for I ρ j,1 we do not emphasize the dependence of the operator I ρ j,2 on (y, v).

We also consider the operator I ρ j = I ρ j,1 I ρ j,2 . Then the Fubini Theorem leads to

I ν (t, u, v) = R d dy I ν 1 1 • • • I νp p C y .
By the Fubini Theorem, we also have

R d dy I 0 1 • • • I 0 p C y = E k h,1 (t, u, v)E k h,2 (t) 
with E k h,1 (t, u, v) defined by ( 15) and E k h,2 (t) by [START_REF] Léger | Analyse stochastique de signaux multi-fractaux et estimations de paramètres[END_REF]. Therefore

I ν (t, u, v) -E k h,1 (t, u, v)E k h,2 (t) = R d dy I ν 1 1 • • • I νp p -I 0 1 • • • I 0 p C y ≤ p j=1 R d dy I ν 1 1 • • • I y,u,ν j-1 j-1 I ν j j,1 -I 0 j,1 I 0 j,2 I 0 j+1 • • • I 0 p C x + R d dy I ν 1 1 • • • I ν j-1 j-1 I ν j j,1 I ν j j,2 -I 0 j,2 I 0 j+1 • • • I 0 p C x
Thanks to Lemma 5 we have the following properties for I ρ j,1 and I ρ j,2 . Let y ∈ R d + with y j = 0 and ρ ∈ (0, 1].

(i) Let ϕ ∈ C([0, 2T ] j × [0, 2T ] j-1 , C). Then, for every ϑ, ς ∈ [0, 2T ] j-1 . (I ρ j,1 -I 0 j,1 )ϕ(ϑ, ς) ≤ c 1 ρ| ln(ρ)|g(y j ) max max w∈[0,2T ] |ϕ(ϑ, w, ς)|, max w∈[0,2T ] |∂ w ϕ(ϑ, w, ς)|
where c 1 = c 1 (T, h) only depends on T and h and g(r) = 1

|r| 1/2+H - 1 |r|≥1 + 1 |r| H + -1/2 1 |r|<1 (1 + |ln |r||) (18) 
with

H + = max 1≤k≤d max [0,2T ] h k and H -= min 1≤k≤d min [0,2T ] h k . Moreover, I ρ j,1 ϕ(ϑ, ς ) ≤ c 1 g(y j ) max max w∈[0,2T ] |ϕ(ϑ, w, ς)|, max w∈[0,2T ] |∂ w ϕ(ϑ, w, ς)|
Let us remark that this last inequality also holds for ρ = 0 choosing c 1 ≥ 1.

(ii

) Let ϕ ∈ C([0, 2T ] j × [0, 2T ] j , C). Then for every ϑ ∈ [0, 2T ] j and ς ∈ [0, 2T ] j-1 , (I ρ j,2 -I 0 j,2 )ϕ(ϑ, ς) ≤ c 1 ρ| ln(ρ)|g(y j ) max max w∈[0,2T ] |ϕ(ϑ, ς, w)|, max w∈[0,2T ]
|∂ w ϕ(ϑ, ς, w)| and

I ρ j,2 ϕ(ϑ, ς) ≤ c 1 g(y j ) max max w∈[0,2T ] |ϕ(ϑ, ς, w)|, max w∈[0,2T ] |∂ w ϕ(ϑ, ς, w)| .
Let us remark that this last inequality also holds for ρ = 0.

Since

∂ w I ρ j,k ϕ = I ρ j,k ∂ w ϕ (k ∈ {1, 2})
, by applying (i) and (ii), we obtain:

I ν (t, u, v) -E k h,1 (t, u, v)E k h,2 (t) ≤ 2c p 1 p j=1 ν j | ln ν j | R d dy p j=1 g(y j ) 2 max ε∈{0,1} 2p sup ϑ,ς∈[0,2T ] p ∂ ε 1 ϑ 1 • • • ∂ εp ϑp ∂ ε p+1 ς 1 • • • ∂ ε 2p ςp C x
Moreover, applying Lemma 4, we obtain:

max ε∈{0,1} 2p sup ϑ,ς∈[0,2T ] p ∂ ε 1 ϑ 1 • • • ∂ εp ϑp ∂ ε p+1 ς 1 • • • ∂ ε 2p ςp C x ≤ c 2 d j=p+1 g(x k ) 2 max ε∈{0,1} 2d sup ϑ,ς∈[0,2T ] d ∂ ε 1 ϑ 1 • • • ∂ ε d ϑ d ∂ ε d+1 ς 1 • • • ∂ ε 2d ς d C0
where C0 (ϑ, ς) = C 0 (h(ϑ), h(ς)) and where the finite positive constant c 2 only depends on (T, h). Therefore,

I ν (t, u, v) -E k h,1 (t, u, v)E k h,2 (t) ≤ c 3 p j=1 ν j | ln ν j | with c 3 = 2c p 1 c 2 g 2d L 2 (R) max ε∈{0,1} 2d sup ϑ,ς∈[0,2T ] d ∂ ε 1 ϑ 1 • • • ∂ ε d ϑ d ∂ ε d+1 ς 1 • • • ∂ ε 2d ς d C0 .
One can easily check that c 3 < ∞, which concludes the proof.

Local asymptotic self-similarity properties

In general, a multifractional Brownian sheet satisfies neither a global self-similarity property (1) or (2) nor a local asymptotically self-similarity property in the sense of [START_REF] Benassi | Gaussian processes and Pseudodifferential Elliptic operators[END_REF]. However, restricted on a line directed by e k , it is locally self-similar. Moreover, it also satisfies a local version, introduced in [START_REF] Léger | Analyse stochastique de signaux multi-fractaux et estimations de paramètres[END_REF], of the self-similarity property (2). This local property, which involves its rectangular increments, takes account of its local anisotropic behavior. The next proposition proves, in particular, that all these self-similarity properties also hold for the limit field S h . Since S h is a centered real-valued Gaussian random field, it is a direct consequence of Proposition 1.

Proposition 2. Let p ∈ {1, . . . , d} and k = (k 1 , . . . , k p ) ∈ {1, . . . , d} p with k l = k j if l = j. Then, for any t ∈ [0, +∞) d ,

lim ε→0 + R p      p j=1 ε -h k j (t k j ) j   ∆ (k 1 ,...,kp) S h (t, ε u), u ∈ [0, +∞) p    dist. = {T h,k,t (u), u ∈ [0, +∞) p } where T h,k,t (u) = E k h,2 (t) 1/2 B (hk 1 (t k 1 ),...,h kp (t kp )) (u)
with E k h,2 (t) defined by ( 16) and B (hk 1 (t k 1 ),...,h kp (t kp )) the fractional Brownian sheet defined by [START_REF] Mandelbrot | Fractional Brownian motion, fractional noises and applications[END_REF].

Observe that the limit field T h,k,t is non-degenerate if and only if E k h,2 (t) = 0. In the following remark, we assume that T h,k,t is a non-degenerate random field. Remark 5. Choosing p = 1 and k ∈ {1, • • • , d}, Proposition 2 can be written as

lim ε→0 + ε -h k (t k ) (S h (t + εue k ) -S h (t)), u ∈ [0, +∞) dist.
= {T h,k,t (u), u ∈ [0, +∞)}, [START_REF] Meerschaert | Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields[END_REF] where the tangent process T h,k,t is a fractional Brownian motion of order h k (t k ). In other words, S h is locally asymptotically self-similar with respect to k th -component at point t with tangent field a fractional Brownian motion.

Modulus of continuity and Hölder exponents

Since S h is a centered real-valued Gaussian random field, its sample path properties are related to the behavior of its variogram. Hence, we start by giving an upper bound this variogram, that is we give a Kolmogorov-type estimate for the increments of S h which takes account of the anisotropic behavior of S h . Lemma 1. Let T ∈ [0, +∞). There exists two finite positive constants c > 0 and η > 0 such that, for every t and s in [0, T ] d with t -s ≤ η,

E[(S h (t) -S h (s)) 2 ] ≤ c   d j=1 |t j -s j | h j (min (t j ,s j ))   2 . ( 20 
)
Proof. Let s, t ∈ [0, T ] d . Observe that we can assume without loss of generality that t j = s j for all 1 ≤ j ≤ d. Otherwise S h (t) = S h (s) and ( 20) holds for any c ∈ (0, +∞).

Let us now consider the sequence u (j) 0≤j≤d of [0, T ] d defined by u(0) = t and u(j + 1) = u(j) + (s j+1 -t j+1 )e j+1 .

Observe that u(d) = s and for any 0 ≤ j ≤ d -1, u(j + 1) -u(j) = (s j+1 -t j+1 )e j+1 .

Then using the Minkowski inequality, we have

E (S h (t) -S h (s)) 2 ≤   d j=1 E {S h (u(j)) -S h (u(j -1))} 2 1/2   2 .
Let 1 ≤ j ≤ d. By Proposition 1 (applied with p = 1 and k = j), there exists r j such that for all ν ∈ (0, r j ),

sup v∈[0,T ] d ν -2h j (v j ) E (S h (v) -S h (v + νe j )) 2 -E j h,1 (v, e j , e j )E j h,2 (v) ≤ 1.
with E j h,1 and E j h,2 defined by ( 15) and ( 16). Since for any 1 ≤ j ≤ d, v → E j h,1 (v, e j , e j ) and v → E j h,2 (v) are continuous on the compact set [0, T ] d , there exists a finite positive constant c such that for all 1 ≤ j ≤ d, for all ν ∈ (0, min 1≤k≤d r k ) and for all v ∈ [0, T ] d ,

E (S h (v) -S h (v + νe j )) 2 ≤ cν 2h j (v j ) .
Applying this inequality with v = u(j -1) and ν = s j -t j (respectively v = u(j) and ν = t j -s j ) if s j > t j (respectively if s j < t j ), one obtains that there exists η ∈ (0, 1) such that E (S h (u(j)) -S h (u(j -1))) 2 ≤ c|t j -s j | 2h j (min(t j ,s j ))

for s, t ∈ [0, T ] d with t -s ≤ η. This leads to the conclusion.

Observe that, by Lemma 1, for any compact set K of R d , there exists a finite positive constant c = c(K) such that

∀s, t ∈ K, E (S h (t) -S h (s)) 2 ≤ cρ K (s, t) 2 (21) 
with ρ K the metric defined on R d by

ρ K (s, t) := d j=1 |s j -t j | min K h j , ∀s, t ∈ R d . ( 22 
)
Henceforth S h admits a continuous version on R d , which we still denote by S h .

To conclude this section, we are interested in the modulus of continuity of the continuous Gaussian random field S h . Many authors have studied moduli of continuity in a Gaussian setting, e.g. see [START_REF] Kôno | On the modulus of continuity of sample functions of Gaussian processes[END_REF][START_REF] Orey | Sample functions of the n-parameter Wiener process[END_REF][START_REF] Benassi | Gaussian processes and Pseudodifferential Elliptic operators[END_REF][START_REF] Ayache | Asymptotic properties and hausdorff dimensions of fractional Brownian sheets[END_REF][START_REF] Xiao | Sample path properties of anisotropic gaussian random fields[END_REF][START_REF] Meerschaert | Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields[END_REF]. In particular, [START_REF] Ayache | Asymptotic properties and hausdorff dimensions of fractional Brownian sheets[END_REF] establishes a sharp modulus of continuity for fractional Brownian sheets using a wavelet expansion. Here, we cannot follow the approach of [START_REF] Ayache | Asymptotic properties and hausdorff dimensions of fractional Brownian sheets[END_REF] since it is based on an integral representation. Nevertheless, the upper bound we give is sufficient to obtain the Hölder regularity properties of S h . Proposition 3. For any non-empty compact set K of R d and any η > 0,

lim δ→0 sup s,t∈K 0< t-s ≤δ |S h (t) -S h (s)| ρ K (s, t)|log ρ K (s, t)| 1/2+η = 0 almost surely
where the metric ρ K is defined by [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance[END_REF].

Proof. Let K be a non-empty compact set of R d and E be the diagonal matrix given by

E = diag 1 min K h 1 , . . . , 1 min K h d .
Since the eigenvalues of E are positive, according to Chapter 6 of [START_REF] Meerschaert | Limit distributions for sums of independent random vectors[END_REF], there exists an unit sphere S E (for a suitable norm) such that we can write any ξ ∈ R d \{0} uniquely as

ξ = τ E (t) E E (t)
with τ E (t) > 0 and

E (t) ∈ S E . By convention τ E (0) = 0. Then, for any t, s ∈ R d such that t = s, ρ K (t, s) = ρ K (0, t -s) = τ E (t -s)ρ K (0, E (t -s))
by definition of E and ρ K . Therefore by continuity and positiveness of u → ρ K (0, u) on the compact set S E , there exists two finite positive constants c 1 and c 2 such that

∀s, t ∈ R d , c 1 τ E (t -s) ≤ ρ K (t, s) ≤ c 2 τ E (t -s). (23) 
The upper bound in [START_REF] Sly | Integrated fractional white noise as an alternative to multifractional Brownian motion[END_REF] and Lemma 1 prove that the centered Gaussian random field S h satisfies the assumption of Proposition 5.3 of [START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF] (with β = 0). Both this proposition and (23) lead to the conclusion.

The following corollary is a direct consequence of the previous proposition.

Corollary 1. Let K = d j=1 [a j , b j ] be a non-empty compact set of R d . Let H j = min [a j ,b j ] h j for 1 ≤ j ≤ d and let H = min 1≤j≤d H j .
1. Then for any ε ∈ (0, H), S h is Hölderian on K of order H -ε.

2. Let t ∈ K and K j = {t + re j ∈ K / r ∈ R}. Then, for any ε ∈ (0, H j ), S h is Hölderian on K j of order H j -ε.

Multi-Hölder continuity property

The notion of double Hölder continuity has been introduced in [START_REF] Feyel | On fractional Brownian processes[END_REF]. This property, which is defined in the framework of functions of two variables, is related to rectangular increments and can be readily extended to functions of d variables as follows.

Definition 1. Let U ⊂ R d . A function ϕ : U → R is said to be multi-Hölder continuous on U of indexes (α 1 , • • • , α d ) ∈ (0, ∞) d if there exists a finite constant c > 0 such that ∀s, t ∈ U, |∆ϕ(t, s)| ≤ c d j=1 |s j -t j | α j
where ∆ϕ(t, s) is the rectangular increment of ϕ between s and t (see Section 3.1).

D. Feyel and A. De La

Pradelle have also introduced in [START_REF] Feyel | On fractional Brownian processes[END_REF] a framework to study double Hölder continuity property for a two-variable random field Y . More precisely, they prove a Kolmogorov-type lemma (Lemma 17 page 283 of [START_REF] Feyel | On fractional Brownian processes[END_REF]) by means of Liouville spaces. By following the same lines as their proof, one obtains the lemma below.

Lemma 2. Let Y = (Y (t), t ∈ [0, ∞) d ) be a continuous real-valued random field and let K ⊂ [0, ∞) d be a non-empty compact set. Assume that there exist c ∈ (0, ∞), q ∈ (0, ∞), η ∈ (0, 1] and a vector of indexes

(β 1 , • • • , β d ) ∈ (0, ∞) d such that, for every (s, t) ∈ K × K satisfying t -s ≤ η, E[(∆Y (s, t)) q ] ≤ c d j=1 |t j -s j | 1+β j . (24) 
Then, for every

(α 1 , • • • , α d ) ∈ d j=1 [0, β j /q), almost surely, Y is multi-Hölder on K of indexes (α 1 , • • • , α d ).
We can now establish a multi-Hölder continuity property for S h .

Proposition 4. Let K = d j=1 [a j , b j ] be a non-empty compact set of [0, ∞) d . Then, almost surely, the random field S h is multi-Hölder on K of indexes (α 1 , • • • , α d ) for every (α 1 , • • • , α d ) ∈ d j=1 [0, min [a j ,b j ] h j ). Proof. Let s, t ∈ K. We can check that |∆S h (t, s)| = |∆S h (min(s, t), max(s, t))|
where min(s, t) = (min(t 1 , s 1 ), . . . , min(t d , s d )) and max(s, t) = (max(t 1 , s 1 ), . . . , max(t d , s d )). Hence, without loss of generality, we assume that t j ≥ s j for each j = 1, • • • , d. Because of Lemma 1, there exists η ∈ (0, 1] so that for every ν ∈ (0, ∞) d with ν ≤ η and every

v ∈ K E[(∆S h (v, v + ν)) 2 ] ≤ (1 + E (1,...,d) h,1 (v, 1, 1)E (1,...,d) h,2 (v)) d j=1 ν 2h j (v j ) j ≤ sup u∈K (1 + E (1,...,d) h,1 (u, 1, 1)E (1,...,d) h,2 (u)) d j=1 ν 2 min [a j ,b j ] h j j where 1 = (1, 1, • • • , 1) ∈ R d . Observe that C = sup u∈K (1 + E (1,...,d) h,1 (u, 1, 1)E (1,...,d) h,2 (u)) < ∞.
Then, choosing v = t and ν = t -s and since S h is Gaussian, Y = S h satisfies (24) on K with β j = min [a j ,b j ] h j -1/q. The conclusion follows from Lemma 2.

Hölder exponents

Let us first focus on the pointwise Hölder exponent

H S h ,k (t) := sup H > 0 : lim r→0 S h (t + re k ) -S h (t) |r| H
of S h at point t on the direction e k and on the global pointwise Hölder exponent

H S h (t) := sup H > 0 : lim s→0 S h (t + s) -S h (t) s H
of S h at point t. We briefly explain how to derive them from the previous sections. On one hand, Corollary 1 gives a lower bound of these exponents, which is improved by applying Proposition 4 when t has at a least one null coordinate. On the other hand, the upper bound is derived from Proposition 2 in which the limit field has to be non-degenerate.

Proposition 5. Let 1 ≤ k ≤ d, t = (t 1 , • • • , t d ) ∈ R d + and N t = {1 ≤ l ≤ d; t l = 0}. 1. (a) If N t \{k} = ∅, H S h ,k (t) = +∞ almost surely. (b) If N t \{k} = ∅ and E k h,2 (t) = 0, then H S h ,k (t) = h k (t k ) almost surely. 2. (a) Assume that h k (t k ) = min 1≤j≤d h j (t j ). If E k h,2 (t) = 0, then almost surely H S h (t) = h k (t k ) = min 1≤j≤d h j (t j ). (b) Assume that N t = {k 1 , . . . , k p } with 1 ≤ p ≤ d. If E (k 1 ,...,kp) h,2 (t) 
= 0, then almost surely

H S h (t) = p j=1 h k j (0) = l∈Nt h l (t l ).
Let us now comment the assumption of the previous proposition.

Remark 6. The condition

E k h,2 (t) = 0. ( 25 
)
is equivalent to assuming that the tangent field T h,k,t is non-degenerate. Then, in view of [START_REF] Léger | Analyse stochastique de signaux multi-fractaux et estimations de paramètres[END_REF], k has to be chosen (as done in the previous proposition) such that t j = 0 for j / ∈ {k 1 , . . . , k p }. Moreover, (25) also implies that there exist θ, σ ∈ D t , such that

a 0 (h(θ))a 0 (h(σ))C(h(θ), h(σ)) = 0. ( 26 
)
It would be interesting to exhibit necessary and sufficient conditions on t and the functions C, a and h such that condition (25) holds. However, we have chosen not to focus on this question. We can easily check that E k h,2 (t) = 0 in many cases, as for instance when (26) holds for any θ, σ ∈ D t or when for t small enough if (26) holds for θ = σ = 0.

Before we prove the previous proposition, observe that the pointwise Hölder exponents may vary with the position and that the directional pointwise Hölder exponent may also depend on the direction as in the framework of multifractional Brownian sheets (see [START_REF] Léger | Analyse stochastique de signaux multi-fractaux et estimations de paramètres[END_REF][START_REF] Herbin | From N parameter fractional Brownian motions to N parameter multifractional Brownian motions[END_REF]). Let us also mention that our proof holds for multifractional or fractional Brownian sheets. The statements of Theorem 6.11 of [START_REF] Léger | Analyse stochastique de signaux multi-fractaux et estimations de paramètres[END_REF] and Proposition 13 of [START_REF] Herbin | From N parameter fractional Brownian motions to N parameter multifractional Brownian motions[END_REF] have to be slightly rectified in the case where N t = ∅.

Proof.

1. If N t \{k} = ∅, then S h (t + re k ) = S h (t) = 0 for any r and H S h ,k (t) = +∞. Assume now that N t \{k} = ∅ and E k h,2 (t) = 0. By proposition 2

S h (t + εe k ) -S h (t) ε h k (t k )
dist.

----→

ε→0 + T h,k,t (1) = 0 almost surely since T h,k,t (1) = E k,1 h,2 (t)B h k (t k ) (1) with B h k (t k )
the fractional Brownian motion defined by [START_REF] Mandelbrot | Fractional Brownian motion, fractional noises and applications[END_REF]. This implies that H S h ,k (t) ≤ h k (t k ) almost surely (see for example the proof of Proposition 2.3 of [START_REF] Benassi | Identification and properties of real harmonizable fractional Lévy motions[END_REF]). We conclude the proof of assertion 1. by applying Corollary 1.

By definition, H S h (t)

≤ min 1≤j≤d H S h ,j (t). Then if h k (t k ) = min 1≤j≤d h j (t j ) and E k h,2 (t) = 0, assertion 2.(a) is a direct consequence of assertion 1. and of Corollary 1. Let us now assume that N t = {k 1 , . . . , k p } with 1 ≤ p ≤ d.

• Let us prove, using the multi-Hölder continuity property, that H S h (t) ≥ p j=1 h k j (0). To this aim, observe that for any s, S h (t + s) = ∆S h (0, t + s) since S h vanishes on the axes. Then let T ∈ (0, 1). Applying Proposition 4, one can find a finite positive random variable c(t p+1 , . . . , t d ) such that

∀s ∈ [0, T ] d , |S h (t + s)| = |∆S h (0, t + s)| ≤ c p j=1 |s j | min [0,T ] h k j -ε ,
which proves that H S h (t) ≥ p j=1 min [0,T ] h k j -2pε for ε small enough. Therefore, letting ε and T tends to 0, by continuity of each h j , we obtain that

H S h (t) ≥ p j=1 h k j (0)
• Since S h vanishes on the axes and t k j = 0 for 1 ≤ j ≤ p, we have:

∀δ ∈ R p + , ∆ (k 1 ,...,kp) S h (t, δ) = S h   t + p j=0 δ j e k j   Then, since E (k 1 ,...,kp) h,2
(t) = 0, Proposition 2 implies that

S h (t + εu) ε p j=1 h k j (t k j ) = ∆ (k 1 ,...,kp) S h t, ε 1 R p ε p j=1 h k j (t k j )
dist.

----→ ε→0 + T h,(k 1 ,...,kp),t 1 R p = 0 almost surely.

where we have set u = p j=0 e k j . Therefore, H S h (t) ≤ p j=1 h k j t k j almost surely, which concludes the proof.

One can also consider the local Hölder exponent at point t, which is related to the Hölder property fulfilled around t. In our framework and under the assumptions of Proposition 5, one can prove that it is equal to min 1≤j≤d h j (t). Observe that the pointwise and the local Hölder exponent at point t are different if t = 0. This is also true for multifractional or fractional sheets.

Observe that pointwise and local exponents of S h do not directly involve all the values of h j (t j ) with t j ∈ [0, +∞) and 1 ≤ j ≤ d. However, the knowledge of all these values is required to obtain pointwise multi-Hölder exponents which are introduced below. This proves that all the range of h is involved in the regularity of the sample paths. ∆ϕ(t,s) d j=1 |t j -s j | α j does not converge when s → t. In our framework and also in the framework of multifractional sheets, this exponent is given by the function h. Proposition 6. Assume a 0 (h(t))C(h(t), h(t)) = 0. Then the pointwise multi-Hölder exponent of S h at point t is almost surely equal to h(t).

Proof. Since ∆S h (t, t + ε) = ∆ (1,...,d) S h (t, ε), by Proposition 2,

lim ε→0 + R d ∆S h (t, t + ε) d j=1 ε h j (t j ) j dist. = |a 0 (h(t))| C(h(t), h(t))B h(t) (1, . . . , 1)
where B h(t) is the fractional Brownian sheet defined by [START_REF] Mandelbrot | Fractional Brownian motion, fractional noises and applications[END_REF]. Then, since B h(t) (1, . . . , 1) = 0 almost surely, for any α ∈ R d + \ d j=1 (0, h j (t j )], there exists a sequence (ε (n) ) n∈N which converges to 0 + R d and such that

∆S h (t, t + ε (n) ) d j=1 ε (n) j α j - → ∞
almost surely. Therefore property (ii) of the definition 2 holds with H j = h j (t j ), 1 ≤ j ≤ d.

Then, one concludes applying Proposition 4.

Extension to stable fields

Let 0 < α ≤ 2 and W α (dξ) be a complex isotropic α-stable random measure on R d with Lebesgue control measure (see [START_REF] Samorodnitsky | Stable non-Gaussian random processes, Stochastic models with infinite variance[END_REF] p.281). If α = 2, W α (dξ) is a complex isotropic Gaussian random measure. We recall that, for any function g :

R d → C in L α (dx), W α (g) = R d g(x)W α (dx)
is well-defined and is an isotropic α-stable random variable. Moreover, if for any function g : R d → C in L α (dx), we have:

∀z ∈ C, E exp i z R d g(ξ)W α (dξ) = exp -c α α |z| α R d |g(x)| α dx (27) with c α = 1 2π π 0 |cos (x)| α dx 1/α .
Let a : (0, 1) d × R d → C be a measurable and bounded function. Then, the random field

X α = {X n,α (H), n ∈ N d , H ∈ (0, 1) d } such that X n,α (H) =   R d a(H, x) exp(i n, x ) d j=1 exp(ix j ) -1 |x j | 1/α+H j W α (dx)  
is well-defined and is a real-valued symmetric α-stable random field. Observe that if a satisfies (6) and if α = 2, then the field X α has the same distribution as the field defined in Section 3 with C ≡ 1/2.

For any integer 1 ≤ j ≤ d, let us consider a function h j : [0, ∞) → (0, 1). Then, let us define h : [0, ∞) d → (0, 1) d by [START_REF] Brunet-Imbault | A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform[END_REF]. We now consider

∀t ∈ [0, +∞) d , S N h,α (t) := k∈D N t X k,α (h N k ) N |h N k |
where D N t and h N k are defined in Section 2. The next theorem is the analogous of Theorem 1 for S N h,α .

Theorem 2. Assume that the function a satisfies Condition (A). Then, the finite dimensional distributions of S N h,α converge to those of S h,α defined by

∀t ∈ [0, +∞) d , S h,α (t) =   R d W α (dx) Dt a 0 (h(θ))e i x,θ d j=1 |x j | 1-1/α-h j (θ j ) dθ   , where D t = d j=1 [0, t j ].
Observe that if h ≡ H, the limit field S h,α is a real harmonizable fractional stable field of order H. and λ l ∈ R. In order to simplify the notation, we set D N,l := D N t (l) . Then, using the linearity of the integral with respect to W α and (27), we obtain that

E exp i m l=1 λ l S N h,α (t (l) ) = exp (-c α α I α (N )) (28) 
with

I α (N ) := R d m l=1 λ l k∈D N,l a(h N k , x) exp (i k, x ) d j=1 exp (ix j ) -1 N h j (k j /N ) |x j | 1/α+h j (k j /N ) α dx.
The change of variables y = N x leads to

I α (N ) = R d Φ N α (y) α dy with Φ N α (y) := m l=1 λ l k∈D N,l a(h N k , y N )e i k,y/N d j=1 e iy j /N -1 |y j | 1/α+h j (k j /N ) .
As in the proof of Theorem 1, we apply The sequence of functions {x → Φ N α (s, t, x)} α } N is then uniformly bounded by an

L 1 (R d )-function.
Then, in order to obtain the convergence I α (N ), it remains to prove the convergence of each Φ N α,l (y) for almost every y. To this aim, we write:

Φ N α,l (y) = Φ N α,l,0 (y) + Φ N α,l,1 (y) 
where

Φ N α,l,0 (y) = k∈D N,l a 0 h k N d j=1
e ik j y j /N e iy j /N -1

|y j | 1/α+h j (k j /N ) and Φ α,l,1 (y) = k∈D N,l a 1 h k N , y N d j=1
e ik j y j /N e iy j /N -1 |y j | 1/α+h j (k j /N ) .

As in the proof of Theorem 1, Lemma 3 and Condition (A) lead to lim and concludes the proof.

Let us mention that one can prove an analogous of Theorem 2 for the stable limit field S h,α studying the characteristic function of each quantity of the form m l=1 λ l ∆ (k 1 ,...,kp) S h,α (t, ε u l ).

However, the arguments used in the Gaussian framework cannot be applied to study the regularity of the limit field S h,α . Since this field is α-stable, such study can certainly be done using a series representation (see [START_REF] Kôno | Hölder continuity of sample paths of some self-similar stable processes[END_REF][START_REF] Biermé | Hölder regularity for operator scaling stable random fields[END_REF][START_REF] Biermé | Multi-operator scaling random fields[END_REF] for example) but this is out of the scope of this paper. e i(k-1)x/N -1

Technical lemmas

ix|x| -1+1/α φ k N 1 |x| h(k/N ) - 1 |x| h((k-1)/N ) ≤ max T 2 , 2T h ∞ φ ∞ g α (x).( 32 
)
Applying the mean value theorem to the continuously differentiable function φ, we also obtain

[N t] k=1 e i(k-1)x/N -1 ix|x| h((k-1)/N )-1+1/α φ k N -φ k -1 N max T 2 , 2T φ ∞ g α (x). (33) 
Equations ( 30), (31), ( 32) and (33) lead to the conclusion. Proof. This is a direct consequence of Lemma 3 in which we make N go to infinity. |y| h(νθ+t)-1/2 φ(νθ + t)dθ ≤ c T,h g(y)

with g = g 2 defined by (29) and c T,h is a finite positive constant which only depends on T and on max [0,2T ] |h |.

Proof.

  Let m, M ∈ N\{0} and T > 0. For any l = 1 . . . m, let t (l) = t

e

  d times Lemma 3 to each function Φ N α,l (1 ≤ l ≤ m) defined by Φ N α,l (y) :=k∈D N,l ik j y j /N e iy j /N -1|y j | 1/α+h j (k j /N ) with b(θ, x) = a(h(θ), x). ) = c T,h (1 + |ln |ξ||) 1 |ξ| H + -1+1/α I |ξ|<1 + 1 |ξ| H -+1/α I |ξ|≥1with H + = max 1≤j≤d max [0,T ] h j , H -= min 1≤j≤d min [0,T ] h j and c T,h a finite positive constant which only depends on T and of each infinite norm of h j on [0, T ]. Moreover, using the smoothness of h and Condition (A), we see that sup θ∈[0,T ] d

iy j e iy j θ j |y j | 1 /e iy j θ j |y j | 1 /

 11 α+h j (θ j ) dθ.Hence, by the bounded convergence theorem we get the convergence of I α (N ), which leads (combined with (28)α+h j (θ j )-1 dθ

Lemma 3 .e-N 2

 32 Let φ : [0, T ] → C and h : [0, T ] → (0, 1) be two continuously differentiable functions and α ∈ (0, 2]. Let H + = max [0,T ] h and H -= min [0,T ] h. Then, for every x ∈ R\{0}, for every N ∈ N\{0} and every t ∈ [0, T ],1 -e -ix/N ix[N t] k=1 φ k N e ikx/N |x| 1-1/α-h(k/N ) ≤ c T,h max φ ∞ , φ ∞ g α (x)whereg α (x) = (1 + |ln |x||) 1 |x| H + -1+1/α I |x|<1 + 1 |x| H -+1/α I |x|≥1(29)and c T,h is a finite positive constant which only depends on T and on max [0,T ] |h |.Proof. Let x ∈ R\{0}, N ∈ N\{0} and t ∈ [0, T ]. Let us now setg N (t, x) = 1 -e -ix/N ix ikx/N -e i(k-1)x/N ix|x| h(k/N )-1+1/α .Then,g N (t, x) = φ [N t] N e i[N t]x/N -1 ix|x| h([N t]/N )-1+1/α remark that φ [N t] N e i[N t]x/N -1 ix|x| h([N t]/N )-1+1/α ≤ max (2, T ) φ ∞ g α (x)(31) with g α defined by (29). Moreover, since h is continuously differentiable, by the mean value theorem, |x| H + -1+1/α + I |x|≥1 2[N t]| ln |x|| N |x| H -+1/α

Lemma 4 .

 4 Let φ : [0, T ] → C and h : [0, T ] → (0, 1) be two continuously differentiable functions. Let α ∈ (0, 2]. Then, for every x ∈ R\{0} and every t ∈ [0, T ],t 0 φ(θ)e iθx |x| 1-1/α-h(θ) dθ ≤ c T,h max φ ∞ , φ ∞ g α (x)with g α defined by (29) and c T,h a finite positive constant which only depends on T and on max [0,T ] |h |.

Lemma 5 . 0 e 0 e

 500 Let φ : [0, 2T ] → C and h : [0, 2T ] → (0, 1) be two continuously differentiable functions. LetH + = max [0,2T ] h and H -= min [0,2T ] h. Then, for all u ∈ [0, T ], y ∈ R\{0}, t ∈ [0, T ] and ν ∈ (0, 1] u iyθ |ν| h(νθ+t)-h(t) |y| h(νθ+t)-1/2 φ(νθ + t)dθ -φ(t) e iyu -1 iy|y| h(t)-1/2 ≤ c T,h ν|ln(ν)| max φ ∞ , φ ∞ g(y)(34)and u iyθ |ν| h(νθ+t)-h(t) 

  Definition 2. Let us consider ϕ a real-valued function defined on a neighborhood U of t. The pointwise multi-Hölder exponent of ϕ at point t ∈ R d + is the only multi-indexes (H 1 , . . . , H d ) such that (i) for any α ∈ d j=1 (0, H j ) , lim s→t

	∆ϕ(t,s) j=1 |t j -s j | α j = 0 d
	(ii) and for any α ∈ R d + \ d j=1 (0, H j ],

Proof. Let u ∈ [0, T ], y ∈ R\{0}, t ∈ [0, T ] and ν ∈ (0, 1]. Let us consider

An integration by parts leads to

Then,

Let us remark that for every θ ∈ [0, u],

with g 2 defined by (29). Therefore,

we have:

ρ|ln ρ| + 1 max φ ∞ , φ ∞ g 2 (y), which concludes the proof.