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Abstract

In this paper, we study some invariance principles where the limits are Gaussian
random fields sharing many properties with multifractional Brownian sheets. In par-
ticular, they satisfy the same type of self-similarity and Hölder regularity properties.
We also extend the invariance principles mentioned above in a stable setting.
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1 Introduction

Fractional Brownian motion has been extensively studied because it is a relevant model
for many problems where fractal properties occur, which is due in particular to its self-
similarity, the stationarity of its increments and its regularity properties. It is also universal
in the class of fractional processes because it satisfies the following invariance principle.
Consider X = {Xn, n ∈ N} a centered, stationary and Gaussian sequence and the process

SNH =

 1

NH

[Nt]∑
n=1

Xn, t ∈ [0,+∞)


where H ∈ (0, 1) and [y] is the integer part of the real number y. Then, SNH converges in
distribution to a fractional Brownian motion of Hurst index H (see Theorem 7.2.11 of [22])
as soon as one of the three following properties is fulfilled:

• If H ∈ (1/2, 1), there exists σH > 0 such that E[X0Xn] ∼ σHn2H−2 as n→∞

• If H ∈ (0, 1/2), there exists σH < 0 such that E[X0Xn] ∼ σHn
2H−2 as n → ∞ and∑∞

n=−∞ E[X0Xn] = 0.

• If H = 1/2,
∑∞

n=1 |E[X0Xn]| <∞ and
∑∞

n=−∞ E[X0Xn] > 0.
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The most famous generalization of the fractional Brownian motion is the fractional
Brownian field BH = (BH(u))u∈Rd (see [17, 13]). This isotropic Gaussian random field BH ,
whose increments are stationary, is self-similar of order H, which means that

∀ε ∈ [0,+∞),
{
BH(εu), u ∈ Rd

}
dist.

= εH
{
BH(u), u ∈ Rd

}
(1)

where
dist.

= stands for the equality of the finite-dimensional distributions. However, a draw-
back of the model BH is the strong homogeneity of its properties. For instance, the self-
similarity property (1) is a global property, which is too restrictive for some applications,
and the pointwise Hölder exponent of BH at any point t equals to its Hurst parameter H.
Thus, many generalizations of fractional Brownian fields have been introduced to model
phenomena whose Hölder regularity may vary along the trajectories. The most famous of
them is the class of multifractional Brownian fields (see [4, 21]). Each of them is defined
from a Hurst function h instead of a Hurst index, and has locally but not globally (in
general) the same properties as a fractional Brownian motion.

Another drawback of fractional Brownian fields is their isotropy property, which is not
suitable for applications in medecin [8] or hydrology [5]. Thus, some fractional anisotropic
generalizations of the fractional Brownian motion have also been introduced. In par-
ticular, a fractional Brownian sheet (see [12, 1]), that we still denote by BH , of order
H = (H1, . . . ,Hd) ∈ (0, 1)d exhibits different scaling properties in the d orthogonal direc-
tions, which is summarized in the following self-similarity property:

∀ε ∈ [0,+∞)d,
{
BH(ε1u1, . . . , εdud), u ∈ Rd

}
dist.

=
d∏

k=1

εHkk

{
BH(u), u ∈ Rd

}
. (2)

This property is more general than (1) but is still a global property. Moreover, the rect-
angular increments of BH are stationnary and its pointwise Hölder regularity may vary
with the direction but not along a trajectory (except on the axes). Then, to allow more
flexibility, a local version of the property (2) has been introduced in [16], following the
way [4] has introduced a local version of (1). As multifractional Brownian fields have been
defined, replacing H by a function t 7→ h(t) = (h1(t1), . . . , hd(td)), multifractional Brown-
ian sheets have been defined and studied in [16, 11]. Their pointwise Hölder exponent can
vary with the point t and with the direction. Observe that multifractional Brownian fields
are not in general isotropic but their Hölder regularity do not depend on the directions.

As mentioned previously for fractional processes, a question of interest is the exis-
tence of universal multifractional processes or, in other words, invariance principles for
multifractional processes. This question in the case of long-range dependence is ad-
dressed in [9] whose we describe the main result. We consider a centered Gaussian field
X = {Xn(H), H ∈ (1/2, 1), n ∈ N}, a continuous function h : R→ [a, b] ⊂ (1/2, 1) and for
every N ∈ N,

SNh =


[Nt]∑
n=1

Xn(h(n/N))

Nh(n/N)
, t ∈ [0,+∞)

. (3)

As N goes to∞, under an assumption of long-range dependence, [9] proves that the finite-
dimensional distributions of SNh converge to those of a multifractional Gaussian process Sh.
More precisely, Sh is locally asymptotically self-similar in the sense of [4] and its pointwise
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Hölder exponent may vary along the trajectories. This theorem is a generalization of the
classical invariance principle ([22]) in a framework of long-range dependence.

In this paper we generalize to different directions the invariance principles we men-
tion above. Our main results deal a multidimensional version of the sequence (3). More
precisely, we consider a sequence of the form

SNh =


[Nt1]∑
n1=1

. . .

[Ntd]∑
nd=1

Xn

(
hNn
)

N rNn
, t ∈ [0,+∞)d


where X =

{
Xn(H), n ∈ Nd, H ∈ (0, 1)d

}
is a Gaussian or an α-stable (0 < α < 2) ran-

dom field defined by a harmonizable integral representation. For suitable families
(
hNn
)
n,N

and
(
rNn
)
n,N

we prove the convergence in distribution of SNh to a multifractional field Sh
as N goes to ∞. Moreover, in the Gaussian case, we study the local self-similarity and
the pointwise Hölder regularity properties of the limit Sh. These properties are the same
as those satisfied by multifractional Brownian sheets. We also introduce pointwise multi-
Hölder exponents which are related to the regularity of the rectangular increments.

The paper is organized as follows. Section 2 is devoted to establish the invariance
principle in the Gaussian case. We get limit fields whose we study local self-similarity and
regularity properties in Section 3. We extend the invariance principle in a stable setting
in Section 4. Some technical lemmas are postponed to the Appendix.

2 Invariance principle

Let {WH(x), x ∈ Rd, H ∈ (0, 1)d} be a real centered Gaussian field such that for every
H ∈ (0, 1)d, K ∈ (0, 1)d, ζ ∈ Rd and η ∈ Rd,

E[WH(ζ)WK(η)] = C(H,K)

d∏
j=1

inf(ζj , ηj), (4)

with C : (0, 1)d × (0, 1)d → R a symmetric and smooth function. Let us emphasize that
{WH(x), x ∈ Rd, H ∈ (0, 1)d} exists if and only if C is a covariance function. We also
remark that, if we fix H ∈ (0, 1)d, then {WH(x), x ∈ Rd} is a Brownian sheet.

Consider the set

F =
{
f : Rd → C, f ∈ L2(Rd), ∀ξ ∈ Rd, f(ξ) = f(−ξ)

}
and for each H ∈ (0, 1)d, let ŴH(dx) be the Fourier transform of the real Gaussian random
measure associated with WH (see [22] for example). Then, for each H, for any f, g ∈ F ,

E
(∫

Rd
f(x)ŴH(dx)

∫
Rd
g(x)ŴK(dx)

)
= C(H,K)

∫
Rd
f(x)g(x)dx. (5)

Let a : (0, 1)d × Rd → C be a measurable and bounded function satisfying

∀H ∈ (0, 1)d, a(H, ·) ∈ F . (6)
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Then, the random field X = {Xn(H), n ∈ Nd, H ∈ (0, 1)d} such that

Xn(H) =

∫
Rd
a(H,x) exp(i〈n, x〉)

d∏
j=1

exp(ixj)− 1

|xj |1/2+Hj
ŴH(dx)

is well-defined and is a centered real-valued Gaussian field. Using (5), the covariance
between Xn(H) and Xm(K) is

C(H,K)

∫
Rd
a(H,x)a(K,x)ei〈n−m,x〉

d∏
j=1

|exp(ixj)− 1|2

|xj |1+Hj+Kj
dx := rH,K (n−m). (7)

Our aim is to consider a field SNh defined as a weighted sum of X which converges to
a random field sharing many properties with a multifractional Brownian sheet. Before we
introduce the weighted sum SNh , let us introduce several notations we use throughout the
paper.

Notation

• For any t = (t1, . . . , td) ∈ [0,+∞)d and N ∈ N∗, let

DNt =
{
k = (k1, . . . , kd) ∈ Nd / 1 ≤ kj ≤ [Ntj ], ∀1 ≤ j ≤ d

}
.

• For any integer 1 ≤ j ≤ d, let us consider a function hj : [0,∞)→ (0, 1) and set

∀t = (t1, . . . , td) ∈ [0,+∞)d, h(t) = (h1(t1), . . . , hd(td)). (8)

• In the following, for k = (k1, . . . , kd), h
N
k := (hNk,1, . . . , h

N
k,d) where for 1 ≤ j ≤ d,

hNk,j = hj(kj/N).

• In order to simplify some notation, for α = (α1, . . . , αd) ∈ [0,+∞)d, we write
|α| =

∑d
j=1 αj .

In this section, we study the behavior as N tends to +∞ of the random field SNh ={
SNh (t), t ∈ [0,+∞)d

}
defined by

SNh (t) :=
∑
k∈DNt

Xk(h
N
k )

N |hNk |
=

[Nt1]∑
k1=1

[Nt2]∑
k2=1

· · ·
[Ntd]∑
kd=1

Xk(h
N
k )

N
∑d
j=1 h

N
k,j

. (9)

We assume that the function a satisfies the following technical condition.
Condition (A). There exist two measurable functions a0 : (0, 1)d → C and a1 : (0, 1)d ×
Rd → C satisfying the following properties.

• For every (H,x) ∈ (0, 1)d × Rd, a(H,x) = a0(H) + a1(H,x) .

• The functions a0 and a1 are of class Cd with respect to H.

• For every κ = (κ1, · · · , κd) ∈ {0, 1}d and every compact set K of (0, 1)d,

lim
x→0

sup
H∈K
{|∂κHa1(H,x)|} = 0 and sup

(H,x)∈K×Rd
{|∂κHa1(H,x)|} <∞

with ∂κH = ∂κ1H1
. . . ∂κdHd .

4



These properties imply that for every κ ∈ {0, 1}d and every compact set K of (0, 1)d,

sup
(H,x)∈K×Rd

{|∂κHa(H,x)|} <∞.

They also imply that a0 is a real-valued function and that a1(H, ·) ∈ F for any H ∈ (0, 1)d.

Now we state the main result of this paper.

Theorem 1. Assume that for any 1 ≤ j ≤ d, hj is a C1-function and that Condition (A)
is fulfilled. Then, the finite-dimensional distributions of SNh converge to those of the real-
valued centered Gaussian field Sh whose covariance is given, for all s and t ∈ [0,+∞)d, by

E[Sh(t)Sh(s)] =

∫
Rd
dy

∫
Dt×Ds

C0(h(θ), h(σ))ei〈y,θ−σ〉
d∏
j=1

|yj |1−hj(θj)−hj(σj)dθdσ, (10)

with Du =
∏d
j=1[0, uj ] and

C0(H,K) = C(H,K)a0(H)a0(K). (11)

In the special case where C ≡ 1,

Sh
f.d.d.
=


∫
Rd
Ŵ (dy)

∫
Dt
a0(h(θ))ei〈y,θ〉

d∏
j=1

|yj |1/2−hj(θj)dθ, t ∈ [0,+∞)d

 (12)

with Ŵ the Fourier transform of the real Gaussian measure associated with a Brownian
sheet.

Observe that Sh(t) = 0 if there exists j such that tj = 0. This is also true for multi-
fractional sheets.

Before we prove this theorem, let us relate it with some previous works [9, 22, 23].

Remark 1. Assume h ≡ H ∈ (0, 1)d. Then according to Theorem 1, the random field

t 7→ N−
∑d
j=1Hj

[Nt1]∑
k1=1

[Nt2]∑
k2=1

· · ·
[Ntd]∑
kd=1

Xk(H)

converges to a fractional Brownian sheet BH of order H. If d = 1, this is the classical
principle invariance described in [22].
If h is not a constant function, the limit is not a multifractional Brownian sheet. For
instance, if d = 2 and C ≡ 1,

Sh(t) = a0(h1(t1))a0(h2(t2))Bh(t)−R(t)

where Bh is the multifractional Brownian sheet defined by

Bh(t) =

∫
R2

Ŵ (dx)

(
eit1x1 − 1

ix1|x1|h1(t1)−1/2

)(
eit2x2 − 1

ix2|x2|h2(t2)−1/2

)
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and

R(t) =

∫
R2

Ŵ (dx)f1(t, x)g2(t, x) +

∫
R2

Ŵ (dx)f2(t, x)g1(t, x)−
∫
R2

Ŵ (dx)g1(t, x)g2(t, x)

with

fk(t, x) = a0(hk(tk))

(
eitkxk − 1

ixk|xk|hk(tk)−1/2

)
and

gj(x, t) =

∫ tj

0
h′j(θj)

(
a′0(hj(θj))− a0(hj(θj)) ln |xj |

)( eiθjxj − 1

ixj |xj |hj(θj)−1/2

)
dθj .

Remark 2. Assume that d = 1 and that Condition (A) is fulfilled. Let rH,K be defined
by (7). Then one can prove that for any compact set K of (1/2, 1),

sup
H,K∈K

∣∣∣∣j2−H−KrH,K (j)− C(H,K)a0(H)a0(K)

∫
R

exp(ix)|x|1−H−Kdx
∣∣∣∣ →j→∞ 0.

Hence, the Gaussian process {XH(t), t ∈ R, H ∈ (1/2, 1)} satisfies the assumptions of [9],
in which h takes its values in a compact subset of (1/2, 1). Theorem 1 is then a general-
ization of Theorem 1 of [9], with some restrictions on the form of X and the regularity of
h, to the case where h takes its values in (0, 1).

Remark 3. Let d = 1. Assume that a ≡ 1 and WH = W does not depend on H. Then un-
der the assumptions of Theorem 1, the finite-dimensional distributions of

{
SNh (t), t ∈ [0,+∞)

}
converge to those of the process {Yh(t), t ∈ [0,+∞)} defined by

Yh(t) =

∫
R
Ŵ (dy)

∫ t

0

exp(iyθ)

|y|h(θ)−1/2
dθ

with Ŵ the Fourier transform of a real Gaussian measure. This process, called integrated
fractional white noise, has first been introduced in [23] as an alternative to multifractional
Brownian motion because its magnitude is much less sensitive to the variations of the
Hölder exponent. Here we give a new motivation to the introduction of the process Yh: it
is the limit of an invariance principle, so it can be chosen as a universal multifractional
Gaussian model. Note that this has already been noticed in [9] in the case of a function h
with values in a compact set of (1/2, 1).

Let us now conclude this section by proving Theorem 1.

Proof. Let t, s ∈ [0, T ]d. Then,

E[SNh (t)SNh (s)] =
∑
k∈DNt

∑
l∈DNs

1

N |hNk |N |hNl |
E
[
Xl(h

N
l )Xk(h

N
k )
]

=

∫
Rd
dx

∑
k∈DNt

∑
l∈DNs

b
(
l
N ,

k
N , x

)
ei〈l−k,x〉

N |hNk |N |hNl |

d∏
j=1

|exp(ixj)− 1|2

|xj |1+hNl,j+h
N
k,j
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where b(θ, σ, x) = C(h(θ), h(σ))a(h(θ), x)a(h(σ), x). Then, a change of variables leads to

E[SNh (t)SNh (s)] =

∫
Rd

ΦN (s, t, x)dx

where

ΦN (s, t, x) :=
∑
k∈DNt

∑
l∈DNs

b

(
l

N
,
k

N
,
x

N

) d∏
j=1

∣∣eixj/N − 1
∣∣2ei(lj−kj)xj/N

|xj |1+hNl,j+h
N
k,j

.

Let us define the function q by

q(ξ) =
1− eiξ

ξ
, ξ ∈ R\{0}.

We can write

ΦN (s, t, x) :=
q
(
x1
N

)
N

[Ns1]∑
l1=1

eil1x1/N

|x1|h1(l1/N)−1/2

q
(
x1
N

)
N

[Nt1]∑
k1=1

e−ik1x1/N

|x1|h1(k1/N)−1/2

· · ·
q
(
xd
N

)
N

[Nsd]∑
ld=1

eildxd/N

|xd|hd(ld/N)−1/2

q
(
xd
N

)
N

[Ntd]∑
kd=1

e−ikdxd/N

|xd|hd(kd/N)−1/2
b

(
l

N
,
k

N
,
x

N

)
.

Because of the regularity of h, a and C, we can apply 2d times Lemma 3 (stated and
proved in the Appendix) with α = 2. This leads to

∣∣ΦN (s, t, x)
∣∣ ≤ max

κ∈{0,1}2d
sup

(θ,σ)∈[0,T ]2d

∣∣∣∂κb(θ, σ, x
N

)∣∣∣ d∏
j=1

g(xj)
2

where ∂κb = ∂κ1θ1 · · · ∂
κd
θd
∂
κd+1
σ1 · · · ∂κ2dσd

b and

g(ξ) = c
T,h

(1 + |ln |ξ||)

(
1

|ξ|H+−1/2
I|ξ|<1 +

1

|ξ|H−+1/2
I|ξ|≥1

)
(13)

with H+ = max1≤j≤d max[0,T ] hj , H− = min1≤j≤d min[0,T ] hj and c
T,h

a finite positive
constant. which only depends on T and the infinite norm of each h′j on [0, T ].

Since h is C1, C is smooth and since Condition (A) is fulfilled,

sup
y∈Rd

sup
(θ,σ)∈[0,T ]2d

|∂κb (θ, σ, y)| < +∞.

The sequence of functions {x 7→ ΦN (s, t, x)} is then uniformly bounded by an L1(Rd)−function.
In order to use the bounded convergence theorem, it remains to prove the convergence of
ΦN (s, t, x) for almost every x. We write

ΦN (s, t, x) =
3∑

n=0

ΦN
n (s, t, x)

7



where, for n ∈ {0, 1, 2, 3},

ΦN
n (s, t, x) =

1

N2d

∑
k∈DNt

∑
l∈DNs

bn

(
l

N
,
k

N
,
x

N

) d∏
j=1

|q
(xj
N

)
|2ei(lj−kj)xj/N

|xj |h
N
l,j+h

N
k,j−1

with

b0(θ, σ, y) = C(h(θ), h(σ))a0(h(θ))a0(h(σ)) := C0(h(θ), h(σ)),

b1(θ, σ, y) = C(h(θ), h(σ))a1(h(θ), y)a0(h(σ)),

b2(θ, σ, y) = C(h(θ), h(σ))a0(h(θ))a1(h(σ), y),

and b3(θ, σ, y) = C(h(θ), h(σ))a1(h(θ), y)a1(h(σ), y).

For each n ∈ {1, 2, 3}, using 2d times Lemma 3 as previously, we obtain that∣∣ΦN
n (s, t, x)

∣∣ ≤ max
κ∈{0,1}2d

sup
(θ,σ)∈[0,T ]2d

∣∣∣∂κbn (θ, σ, x
N

)∣∣∣g(xj)
2

with g defined by (13). Thanks to Condition (A), for almost every x,

lim
N→∞

3∑
n=1

ΦN
n (s, t, x) = 0.

Moreover, by the Riemann sum theorem, for almost every x,

lim
N→∞

ΦN
0 (s, t, x) =

∫
Dt
dθ

∫
Ds
dσ C0(h(θ), h(σ))

d∏
j=1

ei(θj−σj)xj |xj |1−hj(θj)−hj(σj).

Hence, by the bounded convergence theorem we get

lim
N→+∞

E[SNh (t)SNh (s)] =

∫
Rd
dy

∫
Dt×Ds

C0(h(θ), h(σ))ei〈y,θ−σ〉
d∏
j=1

|yj |1−hj(θj)−hj(σj)dθdσ.

Since SNh is a real-valued centered Gaussian random field, this proves the convergence
of the finite-dimensional distributions of SNh to those of a real-valued centered Gaussian
random field Sh whose covariance is given by (10). Moreover, if C ≡ 1, the integral

representation (12) of Sh is a direct consequence of the isometry property of Ŵ on the
space of square integrable functions.

3 Sample path properties of the limit field

This section is devoted to the smoothness of the sample paths and the self-similarity
properties of the limit field Sh. To this aim, let us first introduce and study some directional
increments of Sh.
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3.1 Covariance structure of directional increments

As usual, (e1, . . . , ed) denotes the canonical basis of Rd. Let us consider a random field
Y =

{
Y (t), t ∈ Rd

}
and δ ∈ R. Then for every k = 1, · · · , d and δ ∈ R, the directional

increment field
{

∆
(k)
δ Y (t), t ∈ Rd

}
is defined by

∆
(k)
δ Y (t) = Y (t+ δek)− Y (t).

Then, the rectangular increment of Y at point t in direction (k1, . . . , kp) of size δ =
(δ1, . . . , δp) is defined by

∆(k1,...,kp)Y (t, δ) = ∆
(kp)
δp

∆
(kp−1)
δp−1

· · ·∆(k1)
δ1

Y (t).

Observe that the increment ∆(1,...,d)Y (t, s−t) is the classical rectangular increment between
t and s of the random field Y . For the sake of simplicity, we set

∆Y (t, s) := ∆(1,...,d)Y (t, s− t) = (−1)d
1∑

κ1=0

. . .

1∑
κd=0

(−1)
∑d
l=1 κlY (t+ κ ? (s− t))

where for a and b ∈ Rk,
a ? b = (a1b1, a2b2 · · · , akbk).

All the properties of Sh we study are consequences of the Proposition 1 stated below,
which focuses on the behavior of the covariance

E
(

∆(k1,...,kp)Sh(t, ν ? u)∆(k1,...,kp)Sh(t, ν ? u)
)

(14)

as ν tends to 0Rp+ for any (k1, . . . , kp). In particular, since Sh is a real-valued Gaussian

random field, these behaviors are related to some local asymptotic self-similarity properties
and to some Hölder smoothness properties, see Sections 3.2 to 3.5.

Proposition 1. Let p ∈ {1, · · · , d} and k = (k1, . . . , kp) ∈ {1, · · · , d}p with kl 6= kj if
l 6= j. Then, for every T ∈ R+,

lim
ν→0Rp+

sup
u,v∈[0,T ]p

t∈[0,T ]d

∣∣∣∣∣E[∆(k1,··· ,kp)Sh(t, ν ? u)∆(k1,··· ,kp)Sh(t, ν ? v)]

ν
2hk1 (tk1 )

1 · · · ν2hkp (tkp )
p

− Ekh,1(t, u, v)Ekh,2(t)

∣∣∣∣∣ = 0

where

Ekh,1(t, u, v) =

∫
Rp
dy

p∏
j=1

(eiyjuj − 1)(e−iyjvj − 1)

|yj |2hkj (tkj )+1
(15)

and

Ekh,2(t) =

∫
Rd−p

dy

∫
Dkt×Dkt

dξdη
∏

j∈J(k)

eiyj(ξj−ηj)

|yj |hj(ξj)+hj(ηj)−1
C0

(
h
(
ξk,t
)
, h
(
ηk,t
))

(16)

with J(k) = {1, . . . , d}\{k1, . . . , kp}, Dkt =
∏
j∈J(k)[0, tj ] and

(
ζk,t
)
j

=

{
ζj if j ∈ J(k)

tj else.

Here, by convention, E
(1,...,d)
h,2 (t) = C0(h(t), h(t)) = a0(h(t))2C(h(t), h(t)).

9



Remark 4. Ekh,1(t, ·, ·) is the covariance function of the fractional Brownian sheet B(hk1(tk1),...,hkp(tkp))
defined by

B(hk1(tk1),...,hkp(tkp))
(u) =

∫
Rp

p∏
j=1

eiyjuj − 1

iyj |yj |hkj (tkj )−1/2
Ŵ (dy), u ∈ Rp+. (17)

Moreover, if we denote J(k) = {kp+1, . . . kd} with kl < kl+1, then

Ekh,2(t) = VarS̃(tkp+1 , . . . , tkd) ∈ R+

where S̃ satisfies the same kind of invariance principle as Sh (that is, which can be intro-
duced by Theorem 1 replacing d by d− p and with suitable functions C, a and h).

Let us now prove Proposition 1.

Proof. Let u, v ∈ [0, T ]p, t ∈ [0, T ]d and ν ∈ (0, 1]p. Because of the symmetry properties
of (10), we can assume without loss of generality that k = (1, . . . , p). Then, we study

Iν(t, u, v) =
E[∆(1,··· ,p)Sh(t, ν ? u)∆(1,··· ,p)Sh(t, ν ? v)]

ν
2h1(t1)
1 · · · ν2hp(tp)

p

.

By definition of ∆(1,··· ,p)Sh and by (10), we have:

Iν(t, u, v) =

p∏
j=1

ν
−2hj(tj)
j

∫
Rd
dx

∫
Dt,ν?u×Dt,ν?v

dθdσ
d∏
j=1

ei(θj−σj)xj

|xj |hj(θj)+hj(σj)−1
C0(h(θ), h(σ))

where for all δ ∈ Rp+, Dt,δ =
∏p
j=1[tj , tj + δj ]×

∏d
j=p+1[0, tj ]. Some substitutions lead to

Iν(t, u, v) =

∫
Rd
dy

∫
Dt,u×Dt,v

dξdηΦ1,t,ν(y, ξ, η)Φ2(y, ξ, η)C0(h(ξ(tp, ν)), h(η(tp, ν)))

where for all w ∈ Rd+, wp = (w1, . . . , wp),

Φ1,t,ν(y, ξ, η) =

p∏
j=1

ei(ξj−ηj)yj ν
hj(νjξj+tj)+hj(νjηj+tj)−2hj(tj)
j

|yj |hj(νjξj+tj)+hj(νjηj+tj)−1
,

Φ2(y, ξ, η) =
d∏

j=p+1

ei(ξj−ηj)yj

|yj |hj(ξj)+hj(ηj)−1

and

∀ϑ ∈ Rp+, (ζ(ϑ, ν))j =

{
νjζj + ϑj if 1 ≤ j ≤ p

ζj if p+ 1 ≤ j ≤ d.

Note that Φ1,t,ν(y, ξ, η) (respectively Φ2(y, ξ, η)) does not depend on (yj , ξj , ηj , tj)p+1≤j≤d
(respectively (yj , ξj , ηj , tj)1≤j≤p).

Let us fix y ∈ Rd with yj 6= 0 for every j ∈ {1, . . . , d}. First let us consider Cy ∈
C(Rp × Rp,C) the function defined by

Cy(ϑ, ς) =

∫
D(1,...,p)
t ×D(1,...,p)

t

dξp+1 . . . dξddηp+1 . . . dηdΦ2(y, ξ, η)C0(h(ξ(ϑ, 0)), h(η(ς, 0)))
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with D(1,...,p)
t =

∏d
j=p+1[0, tj ].

Let j ∈ {1, · · · , p}. We define the operator Iρj,1 from C([0, 2T ]j×[0, 2T ]j−1,C) to C([0, 2T ]j−1×
[0, 2T ]j−1,C) by

Iρj,1ϕ(ϑ, ς) =



∫ uj

0
dθ
ρhj(ρθ+tj)−hj(tj)eiyjθ

|yj |hj(ρθ+tj)−1/2
ϕ(ϑ, tj + ρθ, ς) if ρ ∈ (0, 1]

∫ uj

0
dθ

eiyjθ

|yj |hj(tj)−1/2
ϕ(ϑ, tj , ς) =

eiyjuj − 1

iyj |yj |hj(tj)−1/2
ϕ(ϑ, tj , ς) if ρ = 0

for any ϑ ∈ [0, 2T ]j−1, ς ∈ [0, 2T ]j−1 and ϕ ∈ C([0, 2T ]j × [0, 2T ]j−1,C). For the sake of
simplicity, we do not emphasize the dependence of the operator Iρj,1 on (y, u).

We also define the operator Iρj,2 from C([0, 2T ]j × [0, 2T ]j ,C) to C([0, 2T ]j × [0, 2T ]j−1,C)
by

Iρj,2ϕ(ϑ, ς) =



∫ vj

0
dσ
ρhj(ρσ+tj)−hj(tj)e−iyjσ

|yj |hj(ρσ+tj)−1/2
ϕ(ϑ, ς, tj + ρσ) if ρ ∈ (0, 1]

∫ vj

0
dσ

e−iyjσ

|yj |hj(tj)−1/2
ϕ(ϑ, ς, tj) =

1− e−iyjvj

iyj |yj |hj(tj)−1/2
ϕ(ϑ, ς, tj) if ρ = 0

for any ϑ ∈ [0, 2T ]j , ς ∈ [0, 2T ]j−1 and ϕ ∈ C([0, 2T ]j × [0, 2T ]j ,C). As for Iρj,1 we do not
emphasize the dependence of the operator Iρj,2 on (y, v).

We also consider the operator Iρj = Iρj,1I
ρ
j,2. Then the Fubini Theorem leads to

Iν(t, u, v) =

∫
Rd
dy Iν11 · · · I

νp
p Cy.

By the Fubini Theorem, we also have∫
Rd
dy I0

1 · · · I0
pCy = Ekh,1(t, u, v)Ekh,2(t)

with Ekh,1(t, u, v) defined by (15) and Ekh,2(t) by (16). Therefore∣∣∣Iν(t, u, v)− Ekh,1(t, u, v)Ekh,2(t)
∣∣∣ =

∣∣∣∣∫
Rd
dy
(
Iν11 · · · I

νp
p − I0

1 · · · I0
p

)
Cy

∣∣∣∣
≤

p∑
j=1

(∫
Rd
dy
∣∣∣Iν11 · · · I

y,u,νj−1

j−1

(
I
νj
j,1 − I

0
j,1

)
I0
j,2I

0
j+1 · · · I0

pCx

∣∣∣
+

∫
Rd
dy
∣∣∣Iν11 · · · I

νj−1

j−1 I
νj
j,1

(
I
νj
j,2 − I

0
j,2

)
I0
j+1 · · · I0

pCx

∣∣∣)

Thanks to Lemma 5 we have the following properties for Iρj,1 and Iρj,2. Let y ∈ Rd+ with
yj 6= 0 and ρ ∈ (0, 1].

(i) Let ϕ ∈ C([0, 2T ]j × [0, 2T ]j−1,C). Then, for every ϑ, ς ∈ [0, 2T ]j−1.∣∣∣(Iρj,1 − I0
j,1)ϕ(ϑ, ς)

∣∣∣ ≤ c1ρ| ln(ρ)|g(yj) max

(
max

w∈[0,2T ]
|ϕ(ϑ,w, ς)|, max

w∈[0,2T ]
|∂wϕ(ϑ,w, ς)|

)
11



where c1 = c1(T, h) only depends on T and h and

g(r) =

(
1

|r|1/2+H−
1|r|≥1 +

1

|r|H+−1/2
1|r|<1

)
(1 + |ln |r||) (18)

with H+ = max
1≤k≤d

max
[0,2T ]

hk and H− = min
1≤k≤d

min
[0,2T ]

hk. Moreover,

∣∣∣Iρj,1ϕ(ϑ, ς)

∣∣∣ ≤ c1g(yj) max

(
max

w∈[0,2T ]
|ϕ(ϑ,w, ς)|, max

w∈[0,2T ]
|∂wϕ(ϑ,w, ς)|

)
Let us remark that this last inequality also holds for ρ = 0 choosing c1 ≥ 1.

(ii) Let ϕ ∈ C([0, 2T ]j × [0, 2T ]j ,C). Then for every ϑ ∈ [0, 2T ]j and ς ∈ [0, 2T ]j−1,∣∣∣(Iρj,2 − I0
j,2)ϕ(ϑ, ς)

∣∣∣ ≤ c1ρ| ln(ρ)|g(yj) max

(
max

w∈[0,2T ]
|ϕ(ϑ, ς, w)|, max

w∈[0,2T ]
|∂wϕ(ϑ, ς, w)|

)
and ∣∣∣Iρj,2ϕ(ϑ, ς)

∣∣∣ ≤ c1g(yj) max

(
max

w∈[0,2T ]
|ϕ(ϑ, ς, w)|, max

w∈[0,2T ]
|∂wϕ(ϑ, ς, w)|

)
.

Let us remark that this last inequality also holds for ρ = 0.

Since ∂wI
ρ
j,kϕ = Iρj,k∂wϕ (k ∈ {1, 2}), by applying (i) and (ii), we obtain:∣∣∣Iν(t, u, v)− Ekh,1(t, u, v)Ekh,2(t)

∣∣∣
≤ 2cp1

p∑
j=1

νj | ln νj |
∫
Rd
dy

p∏
j=1

g(yj)
2 max
ε∈{0,1}2p

sup
ϑ,ς∈[0,2T ]p

∣∣∣∂ε1ϑ1 · · · ∂εpϑp∂εp+1
ς1 · · · ∂ε2pςp Cx

∣∣∣
Moreover, applying Lemma 4, we obtain:

max
ε∈{0,1}2p

sup
ϑ,ς∈[0,2T ]p

∣∣∣∂ε1ϑ1 · · · ∂εpϑp∂εp+1
ς1 · · · ∂ε2pςp Cx

∣∣∣
≤ c2

d∏
j=p+1

g(xk)
2 max
ε∈{0,1}2d

sup
ϑ,ς∈[0,2T ]d

∣∣∣∂ε1ϑ1 · · · ∂εdϑd∂εd+1
ς1 · · · ∂ε2dςd

C̃0

∣∣∣
where C̃0(ϑ, ς) = C0(h(ϑ), h(ς)) and where the finite positive constant c2 only depends on
(T, h). Therefore,

∣∣∣Iν(t, u, v)− Ekh,1(t, u, v)Ekh,2(t)
∣∣∣ ≤ c3

p∑
j=1

νj | ln νj |

with c3 = 2cp1c2‖g‖2dL2(R) maxε∈{0,1}2d supϑ,ς∈[0,2T ]d

∣∣∣∂ε1ϑ1 · · · ∂εdϑd∂εd+1
ς1 · · · ∂ε2dςd

C̃0

∣∣∣. One can eas-

ily check that c3 <∞, which concludes the proof.
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3.2 Local asymptotic self-similarity properties

In general, a multifractional Brownian sheet satisfies neither a global self-similarity prop-
erty (1) or (2) nor a local asymptotically self-similarity property in the sense of [4]. How-
ever, restricted on a line directed by ek, it is locally self-similar. Moreover, it also satisfies
a local version, introduced in [16], of the self-similarity property (2). This local property,
which involves its rectangular increments, takes account of its local anisotropic behavior.
The next proposition proves, in particular, that all these self-similarity properties also
hold for the limit field Sh. Since Sh is a centered real-valued Gaussian random field, it is
a direct consequence of Proposition 1.

Proposition 2. Let p ∈ {1, . . . , d} and k = (k1, . . . , kp) ∈ {1, . . . , d}p with kl 6= kj if l 6= j.
Then, for any t ∈ [0,+∞)d,

lim
ε→0+Rp


 p∏
j=1

ε
−hkj (tkj )

j

∆(k1,...,kp)Sh(t, ε ? u), u ∈ [0,+∞)p

 dist.

= {Th,k,t(u), u ∈ [0,+∞)p}

where

Th,k,t(u) =
(
Ekh,2(t)

)1/2
B(hk1 (tk1 ),...,hkp (tkp ))(u)

with Ekh,2(t) defined by (16) and B(hk1 (tk1 ),...,hkp (tkp )) the fractional Brownian sheet defined

by (17).

Observe that the limit field Th,k,t is non-degenerate if and only if Ekh,2(t) 6= 0. In the
following remark, we assume that Th,k,t is a non-degenerate random field.

Remark 5. Choosing p = 1 and k ∈ {1, · · · , d}, Proposition 2 can be written as

lim
ε→0+

{
ε−hk(tk)(Sh(t+ εuek)− Sh(t)), u ∈ [0,+∞)

}
dist.

= {Th,k,t(u), u ∈ [0,+∞)}, (19)

where the tangent process Th,k,t is a fractional Brownian motion of order hk(tk). In other
words, Sh is locally asymptotically self-similar with respect to kth-component at point t with
tangent field a fractional Brownian motion.

3.3 Modulus of continuity and Hölder exponents

Since Sh is a centered real-valued Gaussian random field, its sample path properties are
related to the behavior of its variogram. Hence, we start by giving an upper bound this
variogram, that is we give a Kolmogorov-type estimate for the increments of Sh which
takes account of the anisotropic behavior of Sh.

Lemma 1. Let T ∈ [0,+∞). There exists two finite positive constants c > 0 and η > 0
such that, for every t and s in [0, T ]d with ‖t− s‖ ≤ η,

E[(Sh(t)− Sh(s))2] ≤ c

 d∑
j=1

|tj − sj |hj(min (tj ,sj))

2

. (20)
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Proof. Let s, t ∈ [0, T ]d. Observe that we can assume without loss of generality that tj 6= sj
for all 1 ≤ j ≤ d. Otherwise Sh(t) = Sh(s) and (20) holds for any c ∈ (0,+∞).
Let us now consider the sequence

(
u(j)
)

0≤j≤d of [0, T ]d defined by

u(0) = t and u(j + 1) = u(j) + (sj+1 − tj+1)ej+1.

Observe that u(d) = s and for any 0 ≤ j ≤ d − 1, u(j + 1) − u(j) = (sj+1 − tj+1)ej+1.
Then using the Minkowski inequality, we have

E
[
(Sh(t)− Sh(s))2

]
≤

 d∑
j=1

E
[
{Sh (u(j))− Sh (u(j − 1))}2

]1/2

2

.

Let 1 ≤ j ≤ d. By Proposition 1 (applied with p = 1 and k = j), there exists rj such that
for all ν ∈ (0, rj),

sup
v∈[0,T ]d

∣∣∣ν−2hj(vj)E
[
(Sh (v)− Sh (v + νej))

2
]
− Ejh,1(v, ej , ej)E

j
h,2(v)

∣∣∣ ≤ 1.

with Ejh,1 and Ejh,2 defined by (15) and (16). Since for any 1 ≤ j ≤ d, v 7→ Ejh,1(v, ej , ej)

and v 7→ Ejh,2(v) are continuous on the compact set [0, T ]d, there exists a finite positive

constant c such that for all 1 ≤ j ≤ d, for all ν ∈ (0,min1≤k≤d rk) and for all v ∈ [0, T ]d,

E
[
(Sh (v)− Sh (v + νej))

2
]
≤ cν2hj(vj).

Applying this inequality with v = u(j − 1) and ν = sj − tj (respectively v = u(j) and
ν = tj − sj) if sj > tj (respectively if sj < tj), one obtains that there exists η ∈ (0, 1) such
that

E
[
(Sh (u(j))− Sh (u(j − 1)))2

]
≤ c|tj − sj |2hj(min(tj ,sj))

for s, t ∈ [0, T ]d with ‖t− s‖ ≤ η. This leads to the conclusion.

Observe that, by Lemma 1, for any compact set K of Rd, there exists a finite positive
constant c = c(K) such that

∀s, t ∈ K, E
[
(Sh(t)− Sh(s))2

]
≤ cρK (s, t)2 (21)

with ρK the metric defined on Rd by

ρK (s, t) :=
d∑
j=1

|sj − tj |minK hj , ∀s, t ∈ Rd. (22)

Henceforth Sh admits a continuous version on Rd, which we still denote by Sh.

To conclude this section, we are interested in the modulus of continuity of the con-
tinuous Gaussian random field Sh. Many authors have studied moduli of continuity in a
Gaussian setting, e.g. see [14, 20, 4, 2, 24, 19]. In particular, [2] establishes a sharp modu-
lus of continuity for fractional Brownian sheets using a wavelet expansion. Here, we cannot
follow the approach of [2] since it is based on an integral representation. Nevertheless, the
upper bound we give is sufficient to obtain the Hölder regularity properties of Sh.

14



Proposition 3. For any non-empty compact set K of Rd and any η > 0,

lim
δ→0

sup
s,t∈K

0<‖t−s‖≤δ

|Sh(t)− Sh(s)|
ρK (s, t)|log ρK (s, t)|1/2+η

= 0 almost surely

where the metric ρK is defined by (22).

Proof. Let K be a non-empty compact set of Rd and E be the diagonal matrix given by

E = diag

(
1

minK h1
, . . . ,

1

minK hd

)
.

Since the eigenvalues of E are positive, according to Chapter 6 of [18], there exists an unit
sphere SE (for a suitable norm) such that we can write any ξ ∈ Rd\{0} uniquely as

ξ = τE (t)E`E (t)

with τE (t) > 0 and `E (t) ∈ SE . By convention τE (0) = 0. Then, for any t, s ∈ Rd such
that t 6= s,

ρK (t, s) = ρK (0, t− s) = τE (t− s)ρK (0, `E (t− s))

by definition of E and ρK . Therefore by continuity and positiveness of u 7→ ρK (0, u) on
the compact set SE , there exists two finite positive constants c1 and c2 such that

∀s, t ∈ Rd, c1τE (t− s) ≤ ρK (t, s) ≤ c2τE (t− s). (23)

The upper bound in (23) and Lemma 1 prove that the centered Gaussian random field Sh
satisfies the assumption of Proposition 5.3 of [6] (with β = 0). Both this proposition and
(23) lead to the conclusion.

The following corollary is a direct consequence of the previous proposition.

Corollary 1. Let K =
∏d
j=1[aj , bj ] be a non-empty compact set of Rd. Let Hj =

min[aj ,bj ] hj for 1 ≤ j ≤ d and let H = min1≤j≤dHj.

1. Then for any ε ∈ (0, H), Sh is Hölderian on K of order H − ε.

2. Let t ∈ K and Kj = {t+ rej ∈ K /r ∈ R}. Then, for any ε ∈ (0, Hj), Sh is Hölde-
rian on Kj of order Hj − ε.

3.4 Multi-Hölder continuity property

The notion of double Hölder continuity has been introduced in [10]. This property, which is
defined in the framework of functions of two variables, is related to rectangular increments
and can be readily extended to functions of d variables as follows.

Definition 1. Let U ⊂ Rd. A function ϕ : U → R is said to be multi-Hölder continuous
on U of indexes (α1, · · · , αd) ∈ (0,∞)d if there exists a finite constant c > 0 such that

∀s, t ∈ U, |∆ϕ(t, s)| ≤ c
d∏
j=1

|sj − tj |αj

where ∆ϕ(t, s) is the rectangular increment of ϕ between s and t (see Section 3.1).
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D. Feyel and A. De La Pradelle have also introduced in [10] a framework to study
double Hölder continuity property for a two-variable random field Y . More precisely, they
prove a Kolmogorov-type lemma (Lemma 17 page 283 of [10]) by means of Liouville spaces.
By following the same lines as their proof, one obtains the lemma below.

Lemma 2. Let Y = (Y (t), t ∈ [0,∞)d) be a continuous real-valued random field and let
K ⊂ [0,∞)d be a non-empty compact set. Assume that there exist c ∈ (0,∞), q ∈ (0,∞),
η ∈ (0, 1] and a vector of indexes (β1, · · · , βd) ∈ (0,∞)d such that, for every (s, t) ∈ K×K
satisfying ‖t− s‖ ≤ η,

E[(∆Y (s, t))q] ≤ c
d∏
j=1

|tj − sj |1+βj . (24)

Then, for every (α1, · · · , αd) ∈
∏d
j=1[0, βj/q), almost surely, Y is multi-Hölder on K of

indexes (α1, · · · , αd).

We can now establish a multi-Hölder continuity property for Sh.

Proposition 4. Let K =
∏d
j=1[aj , bj ] be a non-empty compact set of [0,∞)d. Then,

almost surely, the random field Sh is multi-Hölder on K of indexes (α1, · · · , αd) for every
(α1, · · · , αd) ∈

∏d
j=1[0,min[aj ,bj ] hj).

Proof. Let s, t ∈ K. We can check that

|∆Sh(t, s)| = |∆Sh(min(s, t),max(s, t))|

where min(s, t) = (min(t1, s1), . . . ,min(td, sd)) and max(s, t) = (max(t1, s1), . . . ,max(td, sd)).
Hence, without loss of generality, we assume that tj ≥ sj for each j = 1, · · · , d.
Because of Lemma 1, there exists η ∈ (0, 1] so that for every ν ∈ (0,∞)d with ‖ν‖ ≤ η and
every v ∈ K

E[(∆Sh(v, v + ν))2] ≤ (1 + E
(1,...,d)
h,1 (v,~1,~1)E

(1,...,d)
h,2 (v))

d∏
j=1

ν
2hj(vj)
j

≤ sup
u∈K

(1 + E
(1,...,d)
h,1 (u,~1,~1)E

(1,...,d)
h,2 (u))

d∏
j=1

ν
2 min[aj,bj ]

hj

j

where ~1 = (1, 1, · · · , 1) ∈ Rd. Observe that C = supu∈K(1 + E
(1,...,d)
h,1 (u,~1,~1)E

(1,...,d)
h,2 (u)) <

∞. Then, choosing v = t and ν = t− s and since Sh is Gaussian, Y = Sh satisfies (24) on
K with βj = min[aj ,bj ] hj − 1/q. The conclusion follows from Lemma 2.

3.5 Hölder exponents

Let us first focus on the pointwise Hölder exponent

HSh,k(t) := sup

{
H > 0 : lim

r→0

Sh(t+ rek)− Sh(t)

|r|H

}
of Sh at point t on the direction ek and on the global pointwise Hölder exponent

HSh(t) := sup

{
H > 0 : lim

s→0

Sh(t+ s)− Sh(t)

‖s‖H

}
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of Sh at point t. We briefly explain how to derive them from the previous sections. On one
hand, Corollary 1 gives a lower bound of these exponents, which is improved by applying
Proposition 4 when t has at a least one null coordinate. On the other hand, the upper
bound is derived from Proposition 2 in which the limit field has to be non-degenerate.

Proposition 5. Let 1 ≤ k ≤ d, t = (t1, · · · , td) ∈ Rd+ and Nt = {1 ≤ l ≤ d; tl = 0}.

1. (a) If Nt\{k} 6= ∅, HSh,k(t) = +∞ almost surely.

(b) If Nt\{k} = ∅ and Ekh,2(t) 6= 0, then HSh,k(t) = hk(tk) almost surely.

2. (a) Assume that hk(tk) = min1≤j≤d hj(tj). If Ekh,2(t) 6= 0, then almost surely

HSh(t) = hk(tk) = min
1≤j≤d

hj(tj).

(b) Assume that Nt = {k1, . . . , kp} with 1 ≤ p ≤ d. If E
(k1,...,kp)
h,2 (t) 6= 0, then almost

surely

HSh(t) =

p∑
j=1

hkj (0) =
∑
l∈Nt

hl(tl).

Let us now comment the assumption of the previous proposition.

Remark 6. The condition
Ekh,2(t) 6= 0. (25)

is equivalent to assuming that the tangent field Th,k,t is non-degenerate. Then, in view
of (16), k has to be chosen (as done in the previous proposition) such that tj 6= 0 for
j /∈ {k1, . . . , kp}. Moreover, (25) also implies that there exist θ, σ ∈ Dt, such that

a0(h(θ))a0(h(σ))C(h(θ), h(σ)) 6= 0. (26)

It would be interesting to exhibit necessary and sufficient conditions on t and the functions
C, a and h such that condition (25) holds. However, we have chosen not to focus on this
question. We can easily check that Ekh,2(t) 6= 0 in many cases, as for instance when (26)
holds for any θ, σ ∈ Dt or when for t small enough if (26) holds for θ = σ = 0.

Before we prove the previous proposition, observe that the pointwise Hölder exponents
may vary with the position and that the directional pointwise Hölder exponent may also
depend on the direction as in the framework of multifractional Brownian sheets (see [16,
11]). Let us also mention that our proof holds for multifractional or fractional Brownian
sheets. The statements of Theorem 6.11 of [16] and Proposition 13 of [11] have to be
slightly rectified in the case where Nt 6= ∅.

Proof. 1. If Nt\{k} 6= ∅, then Sh(t + rek) = Sh(t) = 0 for any r and HSh,k(t) = +∞.
Assume now that Nt\{k} = ∅ and Ekh,2(t) 6= 0. By proposition 2

Sh(t+ εek)− Sh(t)

εhk(tk)

dist.−−−−→
ε→0+

Th,k,t(1) 6= 0 almost surely

since Th,k,t(1) =
√
Ek,1h,2(t)Bhk(tk)(1) with Bhk(tk) the fractional Brownian motion

defined by (17). This implies that HSh,k(t) ≤ hk(tk) almost surely (see for example
the proof of Proposition 2.3 of [3]). We conclude the proof of assertion 1. by applying
Corollary 1.
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2. By definition, HSh(t) ≤ min1≤j≤dHSh,j(t). Then if hk(tk) = min1≤j≤d hj(tj) and
Ekh,2(t) 6= 0, assertion 2.(a) is a direct consequence of assertion 1. and of Corollary 1.

Let us now assume that Nt = {k1, . . . , kp} with 1 ≤ p ≤ d.

• Let us prove, using the multi-Hölder continuity property, thatHSh(t) ≥
∑p

j=1 hkj (0).
To this aim, observe that for any s,

Sh(t+ s) = ∆Sh(0, t+ s)

since Sh vanishes on the axes. Then let T ∈ (0, 1). Applying Proposition 4, one can
find a finite positive random variable c(tp+1, . . . , td) such that

∀s ∈ [0, T ]d, |Sh(t+ s)| = |∆Sh(0, t+ s)| ≤ c
p∏
j=1

|sj |min[0,T ] hkj−ε,

which proves that HSh(t) ≥
∑p

j=1 min[0,T ] hkj − 2pε for ε small enough. Therefore,
letting ε and T tends to 0, by continuity of each hj , we obtain that

HSh(t) ≥
p∑
j=1

hkj (0)

• Since Sh vanishes on the axes and tkj = 0 for 1 ≤ j ≤ p, we have:

∀δ ∈ Rp+, ∆(k1,...,kp)Sh(t, δ) = Sh

t+

p∑
j=0

δjekj


Then, since E

(k1,...,kp)
h,2 (t) 6= 0, Proposition 2 implies that

Sh(t+ εu)

ε
∑p
j=1 hkj (tkj )

=
∆(k1,...,kp)Sh

(
t, ε~1Rp

)
ε
∑p
j=1 hkj (tkj )

dist.−−−−→
ε→0+

Th,(k1,...,kp),t

(
~1Rp
)
6= 0 almost surely.

where we have set u =
∑p

j=0 ekj . Therefore, HSh(t) ≤
∑p

j=1 hkj
(
tkj
)

almost surely,
which concludes the proof.

One can also consider the local Hölder exponent at point t, which is related to the
Hölder property fulfilled around t. In our framework and under the assumptions of Propo-
sition 5, one can prove that it is equal to min1≤j≤d hj(t). Observe that the pointwise and
the local Hölder exponent at point t are different if t = 0. This is also true for multifrac-
tional or fractional sheets.

Observe that pointwise and local exponents of Sh do not directly involve all the values
of hj(tj) with tj ∈ [0,+∞) and 1 ≤ j ≤ d. However, the knowledge of all these values
is required to obtain pointwise multi-Hölder exponents which are introduced below. This
proves that all the range of h is involved in the regularity of the sample paths.

Definition 2. Let us consider ϕ a real-valued function defined on a neighborhood U
of t. The pointwise multi-Hölder exponent of ϕ at point t ∈ Rd+ is the only multi-indexes
(H1, . . . ,Hd) such that

18



(i) for any α ∈
∏d
j=1(0, Hj) , lims→t

∆ϕ(t,s)∏d
j=1 |tj−sj |

αj
= 0

(ii) and for any α ∈ Rd+\
∏d
j=1(0, Hj ],

∆ϕ(t,s)∏d
j=1 |tj−sj |

αj
does not converge when s→ t.

In our framework and also in the framework of multifractional sheets, this exponent is
given by the function h.

Proposition 6. Assume a0(h(t))C(h(t), h(t)) 6= 0. Then the pointwise multi-Hölder expo-
nent of Sh at point t is almost surely equal to h(t).

Proof. Since ∆Sh(t, t+ ε) = ∆(1,...,d)Sh(t, ε), by Proposition 2,

lim
ε→0+

Rd

∆Sh(t, t+ ε)∏d
j=1 ε

hj(tj)
j

dist.
= |a0(h(t))|

√
C(h(t), h(t))Bh(t)(1, . . . , 1)

whereBh(t) is the fractional Brownian sheet defined by (17). Then, sinceBh(t)(1, . . . , 1) 6= 0

almost surely, for any α ∈ Rd+\
∏d
j=1(0, hj(tj)], there exists a sequence (ε(n))n∈N which

converges to 0+
Rd and such that ∣∣∆Sh(t, t+ ε(n))

∣∣∏d
j=1

(
ε

(n)
j

)αj −→∞

almost surely. Therefore property (ii) of the definition 2 holds with Hj = hj(tj), 1 ≤ j ≤ d.
Then, one concludes applying Proposition 4.

4 Extension to stable fields

Let 0 < α ≤ 2 and Wα(dξ) be a complex isotropic α-stable random measure on Rd with
Lebesgue control measure (see [22] p.281). If α = 2, Wα(dξ) is a complex isotropic Gaussian
random measure. We recall that, for any function g : Rd → C in Lα(dx),

Wα(g) =

∫
Rd
g(x)Wα(dx)

is well-defined and is an isotropic α-stable random variable. Moreover, if for any function
g : Rd → C in Lα(dx), we have:

∀z ∈ C, E
(

exp

[
i<
(
z̄

∫
Rd
g(ξ)Wα(dξ)

)])
= exp

(
−cαα|z|

α
∫
Rd
|g(x)|αdx

)
(27)

with cα =

(
1

2π

∫ π

0
|cos (x)|αdx

)1/α

.

Let a : (0, 1)d × Rd → C be a measurable and bounded function. Then, the random field
Xα = {Xn,α(H), n ∈ Nd, H ∈ (0, 1)d} such that

Xn,α(H) = <

∫
Rd
a(H,x) exp(i〈n, x〉)

d∏
j=1

exp(ixj)− 1

|xj |1/α+Hj
Wα(dx)


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is well-defined and is a real-valued symmetric α-stable random field. Observe that if a
satisfies (6) and if α = 2, then the field Xα has the same distribution as the field defined
in Section 3 with C ≡ 1/2.

For any integer 1 ≤ j ≤ d, let us consider a function hj : [0,∞)→ (0, 1). Then, let us
define h : [0,∞)d → (0, 1)d by (8). We now consider

∀t ∈ [0,+∞)d, SNh,α(t) :=
∑
k∈DNt

Xk,α(hNk )

N |hNk |

where DNt and hNk are defined in Section 2. The next theorem is the analogous of Theorem 1
for SNh,α.

Theorem 2. Assume that the function a satisfies Condition (A). Then, the finite dimen-
sional distributions of SNh,α converge to those of Sh,α defined by

∀t ∈ [0,+∞)d, Sh,α(t) = <

∫
Rd
Wα(dx)

∫
Dt
a0(h(θ))ei〈x,θ〉

d∏
j=1

|xj |1−1/α−hj(θj)dθ

,
where Dt =

∏d
j=1[0, tj ].

Observe that if h ≡ H, the limit field Sh,α is a real harmonizable fractional stable field
of order H.

Proof. Let m,M ∈ N\{0} and T > 0. For any l = 1 . . .m, let t(l) =
(
t
(l)
1 , . . . , t

(l)
d

)
∈ [0, T ]d

and λl ∈ R. In order to simplify the notation, we set DN,l := DN
t(l)
. Then, using the

linearity of the integral with respect to Wα and (27), we obtain that

E

(
exp

(
i

m∑
l=1

λlS
N
h,α(t(l))

))
= exp (−cααIα(N)) (28)

with

Iα(N) :=

∫
Rd

∣∣∣∣∣∣
m∑
l=1

λl
∑

k∈DN,l
a(hNk , x) exp (i〈k, x〉)

d∏
j=1

exp (ixj)− 1

Nhj(kj/N)|xj |1/α+hj(kj/N)

∣∣∣∣∣∣
α

dx.

The change of variables y = Nx leads to Iα(N) =

∫
Rd

∣∣ΦN
α (y)

∣∣αdy with

ΦN
α (y) :=

m∑
l=1

λl
∑

k∈DN,l
a(hNk ,

y

N
)ei〈k,y/N〉

d∏
j=1

eiyj/N − 1

|yj |1/α+hj(kj/N)
.

As in the proof of Theorem 1, we apply d times Lemma 3 to each function ΦN
α,l (1 ≤ l ≤ m)

defined by

ΦN
α,l(y) :=

∑
k∈DN,l

b

(
k

N
,
y

N

) d∏
j=1

eikjyj/N
eiyj/N − 1

|yj |1/α+hj(kj/N)
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with b(θ, x) = a(h(θ), x). This leads to

∣∣ΦN
α (y)

∣∣ ≤ max
κ∈{0,1}d

sup
θ∈[0,T ]d

∣∣∣δκθ b(θ, yN )∣∣∣
m∑
l=1

|λl|
d∏
j=1

g̃α(yj)

where

g̃α(ξ) = c
T,h

(1 + |ln |ξ||)

(
1

|ξ|H+−1+1/α
I|ξ|<1 +

1

|ξ|H−+1/α
I|ξ|≥1

)
with H+ = max1≤j≤d max[0,T ] hj , H− = min1≤j≤d min[0,T ] hj and c

T,h
a finite positive

constant which only depends on T and of each infinite norm of h′j on [0, T ]. Moreover,
using the smoothness of h and Condition (A), we see that

sup
θ∈[0,T ]d

∣∣∣δκθ b(θ, yN )∣∣∣ < +∞.

The sequence of functions {x 7→
∣∣ΦN

α (s, t, x)}
∣∣α}N is then uniformly bounded by an

L1(Rd)−function. Then, in order to obtain the convergence Iα(N), it remains to prove the
convergence of each ΦN

α,l(y) for almost every y. To this aim, we write:

ΦN
α,l(y) = ΦN

α,l,0(y) + ΦN
α,l,1(y)

where

ΦN
α,l,0(y) =

∑
k∈DN,l

a0

(
h

(
k

N

)) d∏
j=1

eikjyj/N
eiyj/N − 1

|yj |1/α+hj(kj/N)

and

Φα,l,1(y) =
∑

k∈DN,l
a1

(
h

(
k

N

)
,
y

N

) d∏
j=1

eikjyj/N
eiyj/N − 1

|yj |1/α+hj(kj/N)
.

As in the proof of Theorem 1, Lemma 3 and Condition (A) lead to lim
N→+∞

ΦN
α,l,1(y) = 0.

Then, using Riemann sum,

lim
N→+∞

ΦN
α,l(y) = lim

N→+∞
ΦN
α,l,0(y) =

∫
D
t(l)

a0(h(θ))
d∏
j=1

iyje
iyjθj

|yj |1/α+hj(θj)
dθ.

Hence, by the bounded convergence theorem we get the convergence of Iα(N), which leads
(combined with (28)) to

lim
N→∞

E

(
exp

(
i
m∑
l=1

λlS
N
h,α(t(l))

))
= exp

−cαα ∫
Rd

∣∣∣∣∣∣
m∑
l=1

λl

∫
D
t(l)

a0(h(θ))
d∏
j=1

eiyjθj

|yj |1/α+hj(θj)−1
dθ

∣∣∣∣∣∣
α

dy

.
and concludes the proof.
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Let us mention that one can prove an analogous of Theorem 2 for the stable limit field
Sh,α studying the characteristic function of each quantity of the form

m∑
l=1

λl∆
(k1,...,kp)Sh,α(t, ε ? ul).

However, the arguments used in the Gaussian framework cannot be applied to study the
regularity of the limit field Sh,α. Since this field is α-stable, such study can certainly be
done using a series representation (see [15, 6, 7] for example) but this is out of the scope
of this paper.

5 Technical lemmas

Lemma 3. Let φ : [0, T ] → C and h : [0, T ] → (0, 1) be two continuously differentiable
functions and α ∈ (0, 2]. Let H+ = max[0,T ] h and H− = min[0,T ] h. Then, for every
x ∈ R\{0}, for every N ∈ N\{0} and every t ∈ [0, T ],∣∣∣∣∣∣1− e

−ix/N

ix

[Nt]∑
k=1

φ

(
k

N

)
eikx/N |x|1−1/α−h(k/N)

∣∣∣∣∣∣ ≤ cT,h max
(
‖φ‖∞,

∥∥φ′∥∥∞)gα(x)

where

gα(x) = (1 + |ln |x||)

(
1

|x|H+−1+1/α
I|x|<1 +

1

|x|H−+1/α
I|x|≥1

)
(29)

and c
T,h

is a finite positive constant which only depends on T and on max[0,T ] |h′|.

Proof. Let x ∈ R\{0}, N ∈ N\{0} and t ∈ [0, T ]. Let us now set

gN (t, x) =
1− e−ix/N

ix

[Nt]∑
k=1

φ

(
k

N

)
eikx/N |x|1−1/α−h(k/N) =

[Nt]∑
k=1

φ

(
k

N

)
eikx/N − ei(k−1)x/N

ix|x|h(k/N)−1+1/α
.

Then,

gN (t, x) = φ

(
[Nt]

N

)
ei[Nt]x/N − 1

ix|x|h([Nt]/N)−1+1/α

−
[Nt]∑
k=1

ei(k−1)x/N − 1

ix|x|1/α−1
φ

(
k

N

)(
1

|x|h(k/N)
− 1

|x|h((k−1)/N)

)

−
[Nt]∑
k=1

ei(k−1)x/N − 1

ix|x|h((k−1)/N)−1+1/α

(
φ

(
k

N

)
− φ

(
k − 1

N

))
. (30)

Let us first remark that∣∣∣∣∣φ
(

[Nt]

N

)
ei[Nt]x/N − 1

ix|x|h([Nt]/N)−1+1/α

∣∣∣∣∣ ≤ max (2, T )‖φ‖∞gα(x) (31)
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with gα defined by (29). Moreover, since h is continuously differentiable, by the mean
value theorem,∣∣∣∣∣∣

[Nt]∑
k=1

ei(k−1)x/N − 1

ix|x|−1+1/α
φ

(
k

N

)(
1

|x|h(k/N)
− 1

|x|h((k−1)/N)

)∣∣∣∣∣∣
≤ ‖φ‖∞

∥∥h′∥∥∞
I|x|<1

[Nt]∑
k=1

(k − 1)| ln |x||
N2|x|H+−1+1/α

+ I|x|≥1
2[Nt]| ln |x||
N |x|H−+1/α

,
which implies that∣∣∣∣∣∣
[Nt]∑
k=1

ei(k−1)x/N − 1

ix|x|−1+1/α
φ

(
k

N

)(
1

|x|h(k/N)
− 1

|x|h((k−1)/N)

)∣∣∣∣∣∣ ≤ max
(
T 2, 2T

)∥∥h′∥∥∞‖φ‖∞gα(x).(32)

Applying the mean value theorem to the continuously differentiable function φ, we also
obtain∣∣∣∣∣∣

[Nt]∑
k=1

ei(k−1)x/N − 1

ix|x|h((k−1)/N)−1+1/α

(
φ

(
k

N

)
− φ

(
k − 1

N

))∣∣∣∣∣∣max
(
T 2, 2T

)∥∥φ′∥∥∞gα(x). (33)

Equations (30), (31), (32) and (33) lead to the conclusion.

Lemma 4. Let φ : [0, T ] → C and h : [0, T ] → (0, 1) be two continuously differentiable
functions. Let α ∈ (0, 2]. Then, for every x ∈ R\{0} and every t ∈ [0, T ],∣∣∣∣∫ t

0
φ(θ)eiθx|x|1−1/α−h(θ)dθ

∣∣∣∣ ≤ cT,h max
(
‖φ‖∞,

∥∥φ′∥∥∞)gα(x)

with gα defined by (29) and c
T,h

a finite positive constant which only depends on T and on
max[0,T ] |h′|.

Proof. This is a direct consequence of Lemma 3 in which we make N go to infinity.

Lemma 5. Let φ : [0, 2T ] → C and h : [0, 2T ] → (0, 1) be two continuously differentiable
functions. Let H+ = max[0,2T ] h and H− = min[0,2T ] h. Then, for all u ∈ [0, T ], y ∈ R\{0},
t ∈ [0, T ] and ν ∈ (0, 1]∣∣∣∣∣
∫ u

0

eiyθ|ν|h(νθ+t)−h(t)

|y|h(νθ+t)−1/2
φ(νθ + t)dθ − φ(t)

eiyu − 1

iy|y|h(t)−1/2

∣∣∣∣∣ ≤ cT,hν|ln(ν)|max
(
‖φ‖∞,

∥∥φ′∥∥∞)g(y)(34)

and ∣∣∣∣∣
∫ u

0

eiyθ|ν|h(νθ+t)−h(t)

|y|h(νθ+t)−1/2
φ(νθ + t)dθ

∣∣∣∣∣ ≤ cT,hg(y)

with g = g2 defined by (29) and c
T,h

is a finite positive constant which only depends on T
and on max[0,2T ] |h′|.
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Proof. Let u ∈ [0, T ], y ∈ R\{0}, t ∈ [0, T ] and ν ∈ (0, 1]. Let us consider

G1(t, y, u, ν) =

∫ u

0

eiyθνh(νθ+t)−h(t)

|y|h(νθ+t)−1/2
φ(νθ + t)dθ.

An integration by parts leads to

G1(t, y, u, ν) = φ(t)
eiyu − 1

iy|y|h(t)−1/2
−G2(t, y, u, ν)

with

G2(t, y, u, ν) = ν1−h(t)|y|1/2
∫ u

0

eiyθ − eiyu

iy

∣∣∣∣νy
∣∣∣∣h(νθ+t)(

φ′(νθ + t) + h′(νθ + t) ln

∣∣∣∣νy
∣∣∣∣φ(νθ + t)

)
dθ.

Then,

|G2(t, y, u, ν)| ≤ max
(
1,
∥∥h′∥∥∞)max

(
‖φ‖∞,

∥∥φ′∥∥∞)ν|ln ν|∫ u

0

∣∣eiy(θ−u) − 1
∣∣

|y|1/2+h(νθ+t)
νh(νθ+t)−h(t)dθ.

Let us remark that for every θ ∈ [0, u],

νh(νθ+t)−h(t) ≤ exp
(
ν|ln ν|T

∥∥h′∥∥∞) ≤ exp
(
T
∥∥h′∥∥∞)

Moreover, ∫ u

0

∣∣eiy(θ−u) − 1
∣∣

|y|1/2+h(νθ+t)
dθ ≤ max(2T, T 2)g2(y)

with g2 defined by (29). Therefore,

|G2(t, y, u, v)| ≤ A(h, T ) max
(
‖φ‖∞,

∥∥φ′∥∥∞)ν|ln ν|g2(y)

with A(h, T ) = exp (T‖h′‖∞) max (1, ‖h′‖∞) max
(
T 2, 2T

)
. This is (34). Since∣∣∣∣∣φ(t)

eiyu − 1

iy|y|h(t)−1/2

∣∣∣∣∣ ≤ ‖φ‖∞g2(y),

we have:

|G1(t, y, u, ν)| ≤ A(h, T )

(
sup
ρ∈(0,1]

ρ|ln ρ|+ 1

)
max

(
‖φ‖∞,

∥∥φ′∥∥∞)g2(y),

which concludes the proof.
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