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A. J. Berrick, V. Gebhardt and L. Paris

May 12, 2011

Abstract

Let g ≥ 3 and n ≥ 0, and let Mg,n be the mapping class group of a surface of genus g
with n boundary components. We prove that Mg,n contains a unique subgroup of index
2g−1(2g − 1) up to conjugation, a unique subgroup of index 2g−1(2g + 1) up to conjugation,
and the other proper subgroups ofMg,n are of index greater than 2g−1(2g+1). In particular,
the minimum index for a proper subgroup of Mg,n is 2g−1(2g − 1).

AMS Subject Classification. Primary: 57M99. Secondary: 20G40, 20E28.

0 Introduction and statement of results

The interaction between mapping class groups and finite groups has long been a topic of interest.
The famous Hurwitz bound of 1893 showed that a closed Riemann surface of genus g has an
upper bound of 84(g − 1) for the order of its finite subgroups, and Kerckhoff showed that the
order of finite cyclic subgroups is bounded above by 4g + 2 [18], [19].
The subject of finite index subgroups of mapping class groups was brought into focus by Gross-
man’s discovery that the mapping class group Mg,n = π0(Homeo(Σg,n)) of an oriented surface
Σg,n of genus g and n boundary components is residually finite, and thus well-endowed with
subgroups of finite index [16]. (Homeo(Σg,n) denotes the space of those homeomorphisms of
Σg,n that preserve the orientation and are the identity on the boundary.) This prompts the
“dual” question: –

What is the minimum index mi(Mg,n) of a proper subgroup of finite index in Mg,n ?

Results to date have suggested that, like the maximum finite order question, the minimum
index question should have an answer that is linear in g. The best previously published bound
is mi(Mg,n) > 4g + 4 for g ≥ 3 (see [25]). This inequality is used by Aramayona and Souto
to prove that, if g ≥ 6 and g′ ≤ 2g − 1, then any nontrivial homomorphism Mg,n → Mg′,n′ is
induced by an embedding [1]. It is also an important ingredient in the proof of Zimmermann
[33] that, for g = 3 and 4, the minimal nontrivial quotient of Mg,0 is Sp2g(F2).

The “headline” result of this paper is the following exact, exponential bound.

Theorem 0.1. For g ≥ 3 and n ≥ 0,

mi(Mg,n) = mi(Sp2g(Z)) = mi(Sp2g(F2)) = 2g−1(2g − 1) .

This exponential bound is all the more surprising since in similar questions we get linear (ex-
pected) bounds. For instance, Bridson [6, 7] has proved that a mapping class group of a surface
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of genus g cannot act by semisimple isometries, without a global fixed point, on a CAT(0) space
of dimension less than g. The exact minimal dimension for such an action is unknown. On the
other hand, it has been also shown by Bridson (see [6]) that Mg,n has only finitely many irre-
ducible linear representations over any algebraically closed field, up to dimension (g+1). Later,
Funar [15] showed that there is no linear representation with infinite image up to dimension
about

√
g + 1. However, there is an obvious linear representation of rank 2g which comes from

the action of Mg,n on the homology of Σg,0 (the map θg,n defined below). It is expected that
this representation is minimal in some sense (see [13]).
The nontrivial quotient of Mg,n of minimal order is unknown, but obviously its order must be
at least mi(Mg,n). This quotient is known to be Sp2g(F2) if (g, n) = (3, 0) or (4, 0) (see [33]). A
consequence of the above theorem is that Mg′,n′ cannot be a quotient of Mg,n if 3 ≤ g′ < g.

Our proof of this result is constructive, in ways that we now describe. From the surface Σg,n we

obtain a closed oriented surface Σ̂g of genus g by gluing a disk along each boundary component.

The embedding Σg,n →֒ Σ̂g induces a first epimorphismMg,n ։ Mg,0. The action of Homeo(Σ̂g)

on H1(Σ̂g) = Z
2g induces a second epimorphism Mg,0 ։ Sp2g(Z) onto the integral symplectic

group, and, passing mod 2, we obtain a third epimorphism Sp2g(Z) ։ Sp2g(F2), where F2 =
Z/2Z. From now on we denote by θg,n : Mg,n → Sp2g(F2) the composition of these three
epimorphisms.

The orthogonal groups O+
2g(F2) and O−

2g(F2) are subgroups of Sp2g(F2). The cardinalities of

Sp2g(F2), O
+
2g(F2) and O

−
2g(F2) can be found for instance in [30], and from this data it is easily

shown that, for g ≥ 2, the indices of O+
2g(F2) and O

−
2g(F2) in Sp2g(F2) are N

+
g = 2g−1(2g+1) and

N−
g = 2g−1(2g − 1), respectively. The following, more or less known to experts but seemingly

unpublished, is the starting-point for our main result (Theorem 0.3).

Theorem 0.2. Let g ≥ 3.

1. O−
2g(F2) is the unique subgroup of Sp2g(F2) of index N

−
g , up to conjugation.

2. O+
2g(F2) is the unique subgroup of Sp2g(F2) of index N

+
g , up to conjugation.

3. All the other proper subgroups of Sp2g(F2) are of index at least 2N−
g .

We set O+
g,n = θ−1

g,n(O
+
2g(F2)) and O−

g,n = θ−1
g,n(O

−
2g(F2)). Thus, by the above, O−

g,n is an index
N−

g subgroup of Mg,n, and O+
g,n is an index N+

g subgroup of Mg,n. Here is our main result.

Theorem 0.3. Let g ≥ 3 and n ≥ 0.

1. O−
g,n is the unique subgroup of Mg,n of index N−

g , up to conjugation.

2. O+
g,n is the unique subgroup of Mg,n of index N+

g , up to conjugation.

3. If g = 3 then all the other proper subgroups of M3,n are of index strictly greater than
N+

g = 36.

4. If g ≥ 4 then all the other proper subgroups of Mg,n are of index at least 5N−
g−1 > N+

g .
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Sincem is an upper bound for the minimum index of a group G if and only if there is a nontrivial
homomorphism from G to the symmetric group Sm on m letters, one would like to understand
the permutation representations associated to Theorem 0.3.
We denote by φ+g,n : Mg,n → SN+

g
(resp. φ−g,n : Mg,n → SN−

g
) the permutation representation

induced by the action of Mg,n on the right cosets of O+
g,n (resp. O−

g,n). Corresponding to the
numerical relations

N+
g = 3N+

g−1 +N−
g−1 , N−

g = 3N−
g−1 +N+

g−1 ,

we prove the following.

Theorem 0.4. 1. Let g ≥ 3 and n ≥ 1. Then φ−g,n : Mg,n → SN−

g
is, up to equivalence,

the unique extension of the representation (φ−g−1,n)
3 ⊕ φ+g−1,n from Mg−1,n to Mg,n, and

φ+g,n : Mg,n → SN+
g

is, up to equivalence, the unique extension of the representation

φ−g−1,n ⊕ (φ+g−1,n)
3 from Mg−1,n to Mg,n.

2. Let g ≥ 3 and n ≥ 0. Let b be a nonseparating simple closed curve on Σg,n, and let Tb be
the Dehn twist around b. Then the cycle structure of the image of Tb under φ−g,n is

(1)2
2g−2

(2)2
g−2(2g−1−1) ,

and the cycle structure of the image of Tb under φ+g,n is

(1)2
2g−2

(2)2
g−2(2g−1+1) .

Remark. Implicit in the statement of Theorem 0.4 is the fact that, if n ≥ 1, then Mg−1,n

naturally embeds into Mg,n. This embedding will be described in Section 2. However, there is
no natural embedding of Mg−1,0 into Mg,0, hence Part (1) of the theorem would make no sense
for n = 0.

We observe that the abelianization of Mg,n is isomorphic to Z/12Z if (g, n) = (1, 0), Zn if g = 1
and n ≥ 1, and Z/10Z if g = 2 (see [20]). Hence, the minimum index of Mg,n is 2 if g = 1 or 2.
Note that Mg,n is perfect if g ≥ 3 (see [27, 20]). If g = 2 we have N−

g = 6 and N+
g = 10, and

there are six proper subgroups of index at most 10 in Mg,n: one of index 2, one of index 5, two
of index 6 and two of index 10. The description of these subgroups as well as the proof of this
fact are given in Section 3.

The remainder of the paper is divided into two parts. Part I starts with some preliminaries
on permutations (Section 1) and presentations of mapping class groups (Section 2). Then we
determine the subgroups of M2,n of index at most 10 = N+

2 (Section 3) and the subgroups of
M3,n of index at most 36 = N+

3 (Section 4). We prove our theorems by induction on the genus.
The starting case, g = 3, is made in Section 4, and the inductive step is the object of Part II.
We first treat the case of a surface with a unique boundary component (Sections 5 to 7) and we
extend the result to surfaces with several boundary components in Section 8. Theorem 0.1 is
proved in Section 6. This can be read independently from the rest.
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Part I

Preliminaries

1 Useful information on permutations

We define the minimum index mi(G) of a nontrivial group G to be the element of the ordered set
2 < 3 < 4 < · · · <∞ corresponding to the minimum among the indices of all proper subgroups
of G with finite index, and ∞ when G has no proper finite index subgroup (such a G has been
called counter-finite).
Permutations are important to our investigation because of the well-known relationship between
index m subgroups and maps to Sm. A homomorphism ϕ : G → Sm is called transitive if its
image acts transitively on {1, . . . ,m}. If ϕ : G → Sm is transitive, then Stabϕ(1) = {γ ∈ G |
ϕ(γ)(1) = 1} is a subgroup of G of index m. Conversely, if H is a subgroup of G of index m,
then there exists a transitive homomorphism ϕ : G → Sm such that H = Stabϕ(1) (take the
action of G on the right cosets of H). It follows that mi(G) is also the smallest m ≥ 2 such that
there exists a nontrivial homomorphism ϕ : G→ Sm. Of course, if such a homomorphism does
not exist for any m, then mi(G) = ∞.
The minimum index has the property that, if G։ H is an epimorphism, then mi(G) ≤ mi(H).
(Indeed, the pre-image of an index m subgroup under an epimorphism is an index m subgroup.)
From the definition of θg,n : Mg,n → Sp2g(F2) as the composition of epimorphisms

Mg,n ։ Mg,0 ։ Sp2g(Z) ։ Sp2g(F2),

we therefore have

mi(Mg,n) ≤ mi(Mg,0) ≤ mi(Sp2g(Z)) ≤ mi(Sp2g(F2)) .

Since many generators of mapping class groups commute with each other, we need some pre-
liminary results that discuss aspects of commuting permutations. In the following, Ck denotes
the cyclic group of order k, and an orbit of cardinality k under the action of a permutation or
a permutation group is called a k-orbit.

Lemma 1.1. Let u ∈ Sm have cycle type (1)ℓ1(2)ℓ2 · · · (m)ℓm , and let

I(u) = {k ∈ {1, 2, . . . ,m} | ℓk > 0} ,

so that
∑

k∈I(u) kℓk = m.

1. The centralizer CSm
(u) is isomorphic to

∏

k∈I(u)

((Ck)
ℓk ⋊Sℓk) =

∏

k∈I(u)

(Ck ≀Sℓk) .
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2. If P ≤ CSm
(u) is nonabelian, then, for some k ∈ I(u), ℓk ≥ mi(P ).

3. If further P is perfect, then P is isomorphic to a subgroup of
∏

k∈I(u)

((Ck)
ℓk ⋊ Aℓk) =

∏

k∈I(u)

(Ck ≀ Aℓk) .

If I(P ) = {k ∈ I(u) | P acts nontrivially on the union of the k-orbits of u}, then the
following numerical constraints hold:

(a) 5 ≤ mi(P ) ≤ ℓk whenever k ∈ I(P );

(b) m ≥ mi(P )(
∑

k∈I(P ) k); and

(c) if m < 5mi(P ), then either I(P ) = {4} or I(P )− {1} = {2} or {3}.

Proof. (1) is left to the reader. Let Pk denote the projection of P to the component Ck ≀Sℓk

of CSm
(u). Since P is contained in

∏
k∈I(u) Pk and P is nonabelian, there exists k ∈ I(u) such

that Pk is nonabelian, and thus ℓk ≥ mi(Pk) ≥ mi(P ). Finally, (3) results from the fact that
any nontrivial perfect subgroup of (Ck)

ℓk ⋊Sℓk (whose support is the union of the k-orbits of
u) must have nontrivial perfect image in Sℓk . Then ℓk ≥ 5 and the image lies in the maximum
perfect subgroup Aℓk of Sℓk . Then (a), (b) and (c) follow readily.

For u ∈ Sm we write {1, . . . ,m} = F (u) ⊔ S(u) for the partition into the fixed set F (u)
and support S(u) of the permutation u. Evidently, u restricts to the identity map on F (u),
respectively to a bijection on S(u).

Lemma 1.2. Let u, v ∈ Sm be such that uvu = vuv. Then |S(u)| ≤ 2 |S(u) ∩ S(v)|.
Proof. If u(i) ∈ F (v), then (vu)(i) = u(i). If also i ∈ F (v), then

u(u(i)) = (uvu)(i) = (vuv)(i) = (vu)(i) = u(i) .

Thus,
i ∈ u−1(F (v)) ∩ F (v) =⇒ i ∈ u−1(F (u)) ;

in other words, F (v) ∩ u(F (v)) ⊆ F (u). Therefore,

S(u) ∩ F (v) ∩ u(F (v)) = ∅ ;
and so S(u)∩u(F (v)) ⊆ S(u)∩S(v). However, u maps S(u)∩F (v) bijectively to S(u)∩u(F (v)).
The result is now immediate from the fact that

|S(u)| = |S(u) ∩ S(v)|+ |S(u) ∩ F (v)| .
Lemma 1.3. Let u, v ∈ Sm be such that uvu = vuv. If k ∈ {2, 3} and all nontrivial orbits of u
and 〈u, v〉 have length k, then u = v.

Proof. We present the argument for k = 3; for k = 2 it is similar, but simpler. Since u and v
are conjugate, they have the same cycle decomposition type. If there are no nontrivial orbits,
then u = v = 1. So, let O be an orbit of u of length 3. Then O must also be a nontrivial orbit
of 〈u, v〉. Hence, since v is a product of 3-cycles, v acts on O as either 1, u or u2. In each case,
the actions of u and v on O commute. Likewise, on each nontrivial orbit of v the actions of u
and v commute. Finally, on F (u) ∩ F (v), since u and v both act as the identity, the actions of
u and v again commute. Hence, uv = vu. From uvu = vuv, the result follows.
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Lemma 1.4. Let u, v0, v1 ∈Sm be such that

(a) uviu = viuvi for i = 0, 1; and

(b) v0 and v1 commute.

If u has order 3 and all nontrivial orbits of 〈u, v0〉 and 〈u, v1〉 have length 4, then v0 = v1.

Proof. If u is trivial then the result is immediate from (a). Therefore, we can assume that u
contains the 3-cycle (1 2 3) and {2, 3, 4} is a nontrivial orbit of v0. Now, in S4

(1 2 3)(4 3 2)(1 2 3) = (4 3 2)(1 2 3)(4 3 2) = (1 4)(2 3) ;

however
(1 2 3)(4 2 3)(1 2 3) 6= (4 2 3)(1 2 3)(4 2 3) .

Thus, v0 contains the cycle (4 3 2) in its cycle decomposition. Because v1 commutes with v0,

(1.1) v1(4 3 2)v−1
1 = (v1(4) v1(3) v1(2))

is a 3-cycle in the decomposition of v0. Now, 〈u, v1〉 has a 4-orbit of the form {1, 2, 3, x}, whence,
from the above argument in S4, v1 acts on this orbit as (3)(x 2 1), (2)(x 1 3) or (1)(x 3 2).
However, in the first case, because v1(3) = 3, Equality (1.1) implies that v1(2) = 2, contradicting
v1(2) = 1. Similarly, in the second case, v1(2) = 2 combines with (1.1) to imply that v1(3) = 3,
contradicting v1(1) = 3.

This leaves the last case, in which v1(3) = 2, which from (1.1) gives x = v1(2) = 4. That is,
(4 3 2) is a 3-cycle in the decomposition of v1. It follows that the 3-cycles of v0 and v1 coincide,
whence v0 = v1.

Lemma 1.5. Let u, v0, v1, v2 ∈ Sm be such that

(a) uviu = viuvi for i = 0, 1, 2;

(b) v0, v1 and v2 commute pairwise; and

(c) whenever {i, j, k} = {0, 1, 2}, there is an isomorphism γj,k from 〈u, vi, vj〉 to 〈u, vi, vk〉
fixing u and vi, and sending vj to vk.

If u is a product of 4-cycles (possibly with fixed points) and all nontrivial orbits of each 〈u, vi〉
have length 4, then v0 = v1 = v2.

Proof. Since, by (a), u and vi are conjugate, they have the same cycle decomposition type,
which must be a product of 4-cycles. If there are no nontrivial orbits, then each vi = 1.

Let O be an orbit of u of length 4. Then O must also be a nontrivial orbit of each 〈u, vi〉. From
(a) it follows that O is also a nontrivial orbit of each vi. Likewise, a nontrivial orbit of any
one vi must also be a nontrivial orbit of u and thereby of each vi. Thus, it suffices to restrict
attention to the action on each nontrivial orbit O; in effect, 〈u, v0, v1, v2〉 ≤ S4. Using (b), from
the fact that in S4 commuting 4-cycles are either the same or mutually inverse, we must have
at least two distinct indices i, j ∈ {0, 1, 2} such that vi = vj. Since by (c) γj,k both fixes vi and
sends vj to vk, we conclude that vi = vj = vk.
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2 Presentation for the mapping class group

Throughout the paper we denote by Tb the Dehn twist about a simple closed curve b. We
fix a representation of Σg,1 as well as the simple closed curves a0, a1, . . . , a2g+1 illustrated in
Figure 2.1, and we set Ti = Tai for all 0 ≤ i ≤ 2g + 1. The following result is shown in [23].

a1 a2 a3 a4

a0

a5 a6 a2g−2 a2g−1
a2g

a2g+1

Figure 2.1. Generators for Mg,1.

Theorem 2.1. (Matsumoto [23]). Let g ≥ 2.

a) Mg,1 has a presentation with generators T0, T1, . . . , T2g and relations

TiTjTi = TjTiTj if ai and aj intersect in a single point,

TiTj = TjTi if ai ∩ aj = ∅ ,
(T2T3T4T0)

10 = (T1T2T3T4T0)
6 ,

(T2T3T4T5T6T0)
12 = (T1T2T3T4T5T6T0)

9 if g ≥ 3 .

b) Mg,0 is the quotient of Mg,1 by the additional relation

T 2g−2
1 = (T0T3T4 · · ·T2g−1)

4g−4.

We call k simple closed curves b1, . . . , bk in Σg,n a k-chain if their intersection numbers satisfy
i(bi, bj) = 1 if |i − j| = 1 and i(bi, bj) = 0 otherwise. Such a k-chain is called nonseparating if
the complement of b1 ∪ · · · ∪ bk in Σg,n is connected. Note that, if (b1, . . . , bk) is a nonseparating
k-chain, then each bi is nonseparating, too. The next lemma follows from the rigidity of closed
Riemann surfaces (see, for example, [14] Sections 1.3 and 2.3).

Lemma 2.2. Let (b1, . . . , bk) and (b′1, . . . , b
′
k) be two nonseparating k-chains in Σg,n. Then

there exists α ∈ Mg,n such that α(bi) = b′i for all 1 ≤ i ≤ k. In consequence, this α satisfies
αTbiα

−1 = Tb′i for all 1 ≤ i ≤ k.

For studying the mapping class group Mg,n with n ≥ 2 we use the following convention:
a0, a2, . . . , a2g, a2g+1 and b1, . . . , bn are the simple closed curves illustrated in Figure 2.2, Ti = Tai
for all 0 ≤ i ≤ 2g + 1, i 6= 1, and T ′

j = Tbj for all 1 ≤ j ≤ n. In order to unify statements for
n = 1 and n > 1, we make the further convention that, when n = 1, b1 in Figure 2.2 coincides
with a1 in Figure 2.1. Then for n = 1 the element T ′

1 is simply T1.

The following is well-known. (It can be found for instance in [21, Prop. 2.10 and Thm 3.1].
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b1
b2

b3

bn−1

bn

a2

a3
a4

a0

a5 a6 a2g−2 a2g−1
a2g

a2g+1

Figure 2.2. Generators for Mg,n.

Proposition 2.3. Let g ≥ 2 and n ≥ 1. Then Mg,n is generated by T0, T2, . . . , T2g, T
′
1, . . . , T

′
n.

Observation. Let g ≥ 3 and n ≥ 1. There is an injective homomorphism Mg−1,n → Mg,n

which sends T ′
j to T ′

j and Ti to Ti for all j ∈ {1, . . . , n} and i ∈ {0, 2, . . . , 2g − 2}. It is easily
seen that this homomorphism is induced by some embedding of Σg−1,n into Σg,n. From now on
we will assume Mg−1,n to be embedded into Mg,n via this homomorphism. Note that such a
homomorphism does not exist for n = 0.

3 The genus 2 case

In this section we describe all the subgroups ofM2,n of index at mostN+
2 = 10 up to conjugation.

We will see in particular that the genus g = 2 case is different from the genus g ≥ 3 case.

The first difference comes from the fact that the abelianization of M2,n is nontrivial, while the
group Mg,n is perfect if g ≥ 3 (see [27], [20]). More precisely, the abelianization of M2,n is
Z/10Z [24]. So, if ab : M2,n → Z/10Z denotes the projection of M2,n onto its abelianization,
then ab−1(Z/5Z) is a subgroup of index 2, ab−1(Z/2Z) is a subgroup of index 5, and Ker(ab)
is a subgroup of index 10. Note that all these subgroups contain the commutator subgroup
M′

2,n. In particular, since Sp4(F2)
′ has index 2 in Sp4(F2), neither ab

−1(Z/2Z) nor Ker(ab) is
a pre-image under θ2,n of a subgroup of Sp4(F2).

The second difference comes from the fact that Sp4(F2) = S6 [11] contains more than two
subgroups of index at most 10, up to conjugation. In addition to O−

4 (F2) = S5 [11] and O+
4 (F2),

of indices 6 and 10 respectively, it contains the alternating group A6 of index 2, and another
subgroup of index 6 which can be described as follows. The group Sp4(F2) = S6 has a non-inner
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automorphism α defined by

α :





(1 2) 7→ (1 2)(3 5)(4 6)
(2 3) 7→ (1 3)(2 4)(5 6)
(3 4) 7→ (1 2)(3 6)(4 5)
(4 5) 7→ (1 3)(2 5)(4 6)
(5 6) 7→ (1 2)(3 4)(5 6)

(Since Out(S6) has order 2, α is essentially unique.) It turns out that α(O−
4 (F2)) is a subgroup

of Sp4(F2) of index 6 which is not conjugate to O−
4 (F2). On the other hand, α(O+

4 (F2)) is
conjugate to O+

4 (F2) (so there are four subgroups and not five), and ab−1(Z/5Z) = θ−1
2 (A6).

Note also that Out(Sn) is trivial if n 6= 6.

So, we have the following subgroups of index at most 10 in M2,n up to conjugation:

• θ−1
2,n(A6) = ab−1(Z/5Z) of index 2,

• ab−1(Z/2Z) of index 5,

• θ−1
2,n(O

−
4 (F2)) of index 6,

• θ−1
2,n(α(O

−
4 (F2))) of index 6,

• Ker(ab) of index 10, and

• θ−1
2,n(O

+
4 (F2)) of index 10.

We show that these are all the proper subgroups of index at most 10 in M2,n up to conjugation.

Let n ≥ 1, m ≥ 1 and w ∈ Sm. If w10 = 1, then there is a permutation representation
cyclw : M2,n → Sm which sends Ti and T ′

j to w for all i ∈ {0, 2, 3, 4} and all j ∈ {1, . . . , n}.
Such a representation is called a cyclic representation of M2,n. It is transitive if and only if w
is a cycle of length m and m ∈ {1, 2, 5, 10}.

Lemma 3.1. For n ≥ 1, there are exactly three conjugacy classes of non-cyclic transitive permu-
tation representations of M2,n of degree at most 10, namely, two conjugacy classes of degree 6,
and a unique conjugacy class of degree 10. More specifically, up to conjugacy in S6, the two
transitive permutation representations M2,n → S6 are given by

φ−2,n :





T ′
j 7→ (1 2) for 1 ≤ j ≤ n

T2 7→ (2 3)
T3 7→ (3 4)
T4 7→ (4 5)
T0 7→ (5 6)

φαn :





T ′
j 7→ (1 2)(3 5)(4 6) for 1 ≤ j ≤ n

T2 7→ (1 3)(2 4)(5 6)
T3 7→ (1 2)(3 6)(4 5)
T4 7→ (1 3)(2 5)(4 6)
T0 7→ (1 2)(3 4)(5 6)
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and, up to conjugacy in S10, the unique permutation representation M2,n → S10 is given by

φ+2,n :





T ′
j 7→ (3 5)(6 8)(9 10) for 1 ≤ j ≤ n

T2 7→ (2 3)(4 6)(7 9)
T3 7→ (1 2)(6 10)(8 9)
T4 7→ (2 4)(3 6)(5 8)
T0 7→ (4 7)(6 9)(8 10)

Proof. In the case n = 1, this result can be easily proved with a direct calculation. Using the
presentation of M2,1 from Theorem 2.1, one can use coset enumeration techniques to perform a
systematic search for representatives of the conjugacy classes of subgroups of M2,1 of index at
most K for a (small) integer K; see [29]. When K = 10, this systematic search shows that there
are exactly six conjugacy classes of proper subgroups of M2,1 of index at most 10; the columns
of the coset table for the each of the constructed subgroups yield the images of the generators
T0, . . . , T4 under the corresponding permutation representation. The computation is very easy
and can be performed with any mathematical software such as Magma or GAP.
Now suppose that n ≥ 2. Let ϕ : M2,n → Sm be a non-cyclic and transitive representation with
m ≤ 10. For 1 ≤ j ≤ n, we denote by M(j) the subgroup of M2,n generated by T ′

j, T2, T3, T4, T0.

This group is isomorphic to M2,1 via an isomorphism γj : M2,1 → M(j) which sends T1 to T ′
j

and Ti to Ti for all i ∈ {2, 3, 4, 0}. We denote by ϕj : M2,1 → Sm the composition of γj with ϕ.
Observe that

(∗) ϕj(Ti) = ϕ(Ti) for all j ∈ {1, . . . , n} and i ∈ {0, 2, 3, 4}.

By the case n = 1, for each j ∈ {1, . . . , n} there is a decomposition {1, . . . ,m} = S
(1)
j ⊔S(2)

j ⊔S(3)
j

as follows. Each S
(k)
j is invariant under the action of ϕj(M2,1); either S

(1)
j = ∅, or ϕj restricted

to S
(1)
j is equivalent to an element of {φ−2,1, φα1 , φ+2,1}; if S

(2)
j is nonempty, then there exists

wj ∈ Sm −{1} such that S(wj) = S
(2)
j and the restriction of ϕj to S

(2)
j is cyclwj

; and ϕj(M2,1)

acts trivially on S
(3)
j .

Let φ ∈ {φ−2,1, φα1 , φ+2,1} and set N = Nφ = 6 if φ = φ−2,1 or φα1 , and N = Nφ = 10 if φ = φ+2,1.
The following claims are readily verified from the description of φ, using either GAP or Magma

where necessary:

1. φ(T2) and φ(T3) have no common cycle in their decompositions;

2. S({φ(Ti) | i = 1, 3, 4, 0}) = {1, . . . , N}, where, for X ⊆ SN , S(X) denotes ∪w∈XS(w);

3. the (simultaneous) centralizer of {φ(Ti) | i = 1, 3, 4, 0} in SN is {1, φ(T1)};

4. the support of each cycle in the decomposition of φ(T1) intersects S({φ(Ti) | i = 0, 2, 3, 4})
nontrivially.

We first show that each S
(2)
j = ∅. Whenever S

(2)
j 6= ∅, then by (1) we get that wj is the product

of the common nontrivial cycles of ϕj(T2) and ϕj(T3). However, by (∗), these common cycles

are independent of choice of j. It follows that for all j ∈ {1, . . . , n}, S(2)
j 6= ∅, wj = w1 and

S
(2)
j = S(wj) = S(w1) = S

(2)
1 . However, ϕ is transitive and non-cyclic. Hence, S

(2)
j = ∅ for all

j ∈ {1, . . . , n}.
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It now follows that each S
(1)
j 6= ∅, and therefore, the restriction of each ϕj to S

(1)
j is equivalent

to an element of {φ−2,1, φα1 , φ+2,1}. Since we know by (∗) that for each i 6= 1 the ϕj(Ti) agree, it

remains to show that all the ϕj(T1) also coincide, and that each S
(3)
j is empty.

Without loss of generality we can assume that S
(1)
1 = {1, . . . , N} and the restriction of ϕ1 to

{1, . . . , N} is an element φ in {φ−2,1, φα1 , φ+2,1}, where N = Nφ. Let j ∈ {1, . . . , n}. Since T ′
j

commutes with T ′
1, T3, T4, T0, the permutation ϕj(T1) belongs to the centralizer of {ϕ1(Ti) | i =

1, 3, 4, 0}. Combining (2) and (3) we get that this centralizer is {1, φ(T1)} × Sm−N . On the
other hand, by (4), the support of each cycle of ϕj(T1) intersects S({ϕj(Ti) | i = 0, 2, 3, 4})
nontrivially, and, by (∗),

S({ϕj(Ti) | i = 0, 2, 3, 4}) = S({ϕ1(Ti) | i = 0, 2, 3, 4}) ⊆ {1, . . . , N}.

This implies that ϕj(T1) = φ(T1) and, therefore, each ϕj(T1) is the same. Then, finally, by
transitivity, it must be that m = N , and the proof is complete.

Proposition 3.2. Let n ≥ 0. Then M2,n has precisely six proper subgroups of index at most
10 up to conjugation, namely, ab−1(Z/5Z) = θ−1

2,n(A6) of index 2, ab−1(Z/2Z) of index 5,

θ−1
2,n(O

−
4 (F2)) of index 6, θ−1

2,n(α(O
−
4 (F2))) of index 6, Ker(ab) of index 10, and θ−1

2,n(O
+
4 (F2))

of index 10.

Proof. For n ≥ 1, the claim is a direct consequence of Lemma 3.1 together with the description
of the subgroups of M2,n given in the beginning of the section. By Theorem 2.1, M2,0 is a
quotient of M2,1 by one additional relation, so for the case n = 0 it is sufficient to check that
the representations of M2,1 given in Lemma 3.1 satisfy the additional relation of M2,0; this is
the case, as can easily be verified.

4 The genus 3 case

In this section we calculate the subgroups of index at most 36 in M3,n up to conjugation.
(Note that N−

3 = 28 and N+
3 = 36.) We argue in the same manner as for the case of genus 2

surfaces (see Section 3), with direct calculations often made with computers. However, we should
point out here that, in this case, the computations are far from being elementary, and we often
approach the limit of what can currently be done with computers (especially in the proof of
Lemma 4.1). Recall also that the case of surfaces of genus g = 3 will be the first step in the
induction to prove Theorem 0.3.

Lemma 4.1. For n ≥ 1, there are exactly two conjugacy classes of nontrivial transitive permu-
tation representations of M3,n of degree at most 36, namely a unique conjugacy class of degree 28
and a unique conjugacy class of degree 36. More specifically, up to conjugacy in S28, the unique
permutation representation M3,n → S28 is given by

φ−3,n :





T ′
j 7→ (14 18)(16 21)(17 22)(19 23)(24 26)(27 28) for 1 ≤ j ≤ n

T0 7→ (1 3)(2 5)(4 8)(20 25)(24 28)(26 27)
T2 7→ (10 14)(12 16)(13 17)(15 19)(20 24)(25 28)
T3 7→ (6 10)(7 12)(9 13)(11 15)(24 27)(26 28)
T4 7→ (3 6)(4 7)(5 9)(15 20)(19 24)(23 26)
T5 7→ (2 4)(5 8)(6 11)(10 15)(14 19)(18 23)
T6 7→ (1 2)(3 5)(6 9)(10 13)(14 17)(18 22)
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and, up to conjugacy in S36, the unique permutation representation M3,n → S36 is given by

φ+3,n :





T ′
j 7→ (6 9)(10 13)(14 18)(15 19)(20 22)(21 25)(26 28)(27 30)(31 32)(34 35)

for 1 ≤ j ≤ n
T0 7→ (1 2)(11 17)(14 22)(16 24)(18 20)(21 28)(23 29)(25 26)(27 32)(30 31)
T2 7→ (4 6)(7 10)(11 14)(12 15)(16 21)(17 22)(23 27)(24 28)(29 32)(33 35)
T3 7→ (3 4)(5 7)(8 12)(14 20)(18 22)(21 26)(25 28)(27 31)(30 32)(33 36)
T4 7→ (2 3)(7 11)(10 14)(12 16)(13 18)(15 21)(19 25)(29 33)(31 34)(32 35)
T5 7→ (3 5)(4 7)(6 10)(9 13)(16 23)(21 27)(24 29)(25 30)(26 31)(28 32)
T6 7→ (5 8)(7 12)(10 15)(11 16)(13 19)(14 21)(17 24)(18 25)(20 26)(22 28)

In particular, mi(M3,n) = 28.

Proof. In the case n = 1, the result is shown by a direct computation. Using the presentation
of M3,1 from Theorem 2.1, one can use coset enumeration techniques to perform a systematic
search for representatives of the conjugacy classes of subgroups of M3,1 of index at most K for
a (small) integer K; see [29]. When K = 36, this systematic search shows that there are exactly
two conjugacy classes of proper subgroups of M3,1 of index at most 36: exactly one conjugacy
class of subgroups of index 28 and exactly one conjugacy class of subgroups of index 36. The
columns of the coset table for the each of the constructed subgroups yield the images of the
generators T0, . . . , T6 under the corresponding permutation representations φ−3,1 of degree 28

and φ+3,1 of degree 36.
We used the implementation of the low index subgroup search provided in Magma [5], filling
the coset table in column major order. We ran a development version of Magma V2.15. The
computation took approximately 47.5 hours on a GNU/Linux system with an Intel E8400 64-bit
CPU (core: 3GHz, FSB: 1333MHz) and a main memory bandwidth of 6.5GB/s (X38 chipset,
dual channel DDR2 RAM, memory bus: 1066MHz). We remark that the use of column major
order is crucial for the running time; tests for indices between 10 and 15 suggest a speed-up by
a factor between 103 and 104 compared to row major order.
Now suppose that n ≥ 2. Let ϕ : M3,n → Sm be a transitive representation with m ≤ 36. For
1 ≤ j ≤ n, we denote by M(j) the subgroup of M3,n generated by T ′

j , T2, . . . , T6, T0. This group

is isomorphic to M3,1 via an isomorphism γj : M3,1 → M(j) which sends T1 to T ′
j and Ti to Ti

for all i ∈ {2, . . . , 6, 0}. We denote by ϕj : M3,1 → Sm the composition of γj with ϕ. Observe
that

(∗) ϕj(Ti) = ϕ(Ti) for all j ∈ {1, . . . , n} and i ∈ {0, 2, . . . , 6}.

By the case n = 1, for each j ∈ {1, . . . , n} there is a decomposition {1, . . . ,m} = S
(1)
j ⊔

S
(2)
j as follows. Each S

(k)
j is invariant under the action of ϕj(M3,1); the restriction of ϕj to

S
(1)
j is equivalent to an element of {φ−3,1, φ+3,1}; and ϕj(M3,1) acts trivially on S

(2)
j . (Note

here a difference from the g = 2 case: because M3,1 is a perfect group [27] it has no cyclic
representations.)
Let φ ∈ {φ−3,1, φ+3,1} and set N = Nφ = 28 if φ = φ−3,1, and N = Nφ = 36 if φ = φ+3,1. Again,
the following claims may be confirmed from the description of φ, using either GAP or Magma

where necessary:

1. S({φ(Ti) | i = 1, 3, 4, 5, 6, 0}) = {1, . . . , N}, where, for X ⊆ SN , S(X) denotes ∪w∈XS(w);
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2. the unique element of the centralizer of {φ(Ti) | i = 1, 3, 4, 5, 6, 0} in SN having the same
cycle decomposition type as φ(T1) is φ(T1);

3. the support of each nontrivial cycle in the decomposition of φ(T1) intersects S({φ(Ti) | i =
0, 2, 3, 4, 5, 6}) nontrivially.

Without loss of generality we can assume that S
(1)
1 = {1, . . . , N} and the restriction of ϕ1 to

{1, . . . , N} is an element φ in {φ−3,1, φ+3,1}, where N = Nφ. Let j ∈ {1, . . . , n}. Since T ′
j commutes

with T ′
1, T3, T4, T5, T6, T0, the permutation ϕj(T1) belongs to the centralizer of {ϕ1(Ti) | i =

1, 3, 4, 5, 6, 0}. By (1), this centralizer is Z × Sm−N , where Z is the centralizer of {φ(Ti) |
i = 1, 3, 4, 5, 6, 0} in SN . By (3), the support of each nontrivial cycle of ϕj(T1) intersects
S({ϕj(Ti) | i = 0, 2, 3, 4, 5, 6}) nontrivially, and, by (∗),

S({ϕj(Ti) | i = 0, 2, 3, 4, 5, 6})
=S({ϕ1(Ti) | i = 0, 2, 3, 4, 5, 6})
⊆{1, . . . , N} .

Thus, ϕj(T1) ∈ Z. Now, since T ′
j and T ′

1 are conjugate in M3,1, ϕj(T1) and ϕ1(T1) share the
same cycle decomposition type; hence, by (2), ϕj(T1) = ϕ1(T1). To complete the proof, observe
that transitivity forces m = N .

Proposition 4.2. Let n ≥ 0. Then M3,n has precisely two proper subgroups of index at most
36 up to conjugation, namely, O−

3,n of index 28, and O+
3,n of index 36.

Proof. For n ≥ 1, the claim is a direct consequence of Lemma 4.1 and the definitions of O−
3,n

respectively O+
3,n. By Theorem 2.1, M3,0 is a quotient of M3,1 by one additional relation, so

for the case n = 0 it is sufficient to check that the representations of M3,1 given in Lemma 4.1
satisfy the additional relation of M3,0; this is the case, as can easily be verified.

Part II

Induction arguments

We turn now to the proof of our main result, Theorem 0.3. As pointed out before, we argue by
induction on the genus. Recall that the case g = 3 is proved in Section 4 (see Proposition 4.2).
Thus:

• from now on, we suppose that g ≥ 4 plus the inductive hypothesis that Theorem 0.3 holds
for a surface of genus g − 1.

Recall that we have defined N−
g = 2g−1(2g − 1) and N+

g = 2g−1(2g + 1). Throughout the
arguments below, we shall rely on the following numerical relationships for g ≥ 4.

N+
g = 3N+

g−1 +N−
g−1 , N−

g = 3N−
g−1 +N+

g−1 ,

4N−
g−1 < N−

g < N+
g < 5N−

g−1 < 2N−
g .

(Actually, only the third inequality requires g ≥ 4; the others hold for g ≥ 2.)
Theorem 0.2 will be entirely proved in Section 6. Theorem 0.4 will be proved in Sections 7
and 8.
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5 Factorization through symplectic groups

Our goal in this section is to prove the following theorem.

Theorem 5.1. For g ≥ 4, let ϕ : Mg,1 → Sm be a nontrivial homomorphism, with m < 5N−
g−1.

Then there is a homomorphism ϕ̄ : Sp2g(F2) → Sm such that the following diagram commutes.

Mg,1

θg,1
��

ϕ

$$I

I

I

I

I

I

I

I

I

Sp2g(F2) ϕ̄
// Sm

The proof strategy is as follows. To show that the kernel of ϕ contains the kernel of θg,1,
we first prove that the image wi = ϕ(Ti) has order 2 in Sm. For this, we consider the cycle
decomposition type (1)ℓ1(2)ℓ2 · · · (m)ℓm of the permutation wi. We first exclude the possibility
of cycles of length at least 5, then of cycles of length 4, and finally – the most delicate case –
we exclude cycles of length 3. Hence, wi is reduced to being an involution after all. It then
remains to show that the kernel of θg,1 is the normal closure of the square of any of our standard
generators of Mg,1.

5.1 Reduction to involutions

Proposition 5.2. Let g ≥ 4, and let b be a nonseparating simple closed curve in Σg,1. Then
the centralizer Zb of Tb in Mg,1 contains an index 2 subgroup Z+

b with the properties:

(a) Z+
b is perfect;

(b) N−
g−1 ≤ mi(Z+

b ); and

(c) Tb ∈ Z+
b .

Proof. It is known that Zb is the set of mapping classes that fix the curve b up to isotopy (see
e.g. [26]). We take Z+

b to be the subgroup of Zb consisting of those classes that also preserve
the orientation of b. Evidently, Z+

b has index 2 in Zb and contains Tb. From [26], Z+
b is the

image of Mg−1,3 in Mg,1 under the homomorphism induced by a quotient map Σg−1,3 → Σg,1

identifying two boundary circles with the closed curve b. Since by [17] Mg−1,3 is perfect, we
have (a). From the epimorphism Mg−1,3 → Z+

b we know that mi(Mg−1,3) ≤ mi(Z+
b ), and by

induction we have mi(Mg−1,3) = N−
g−1, thus N

−
g−1 ≤ mi(Z+

b ).

As ever, we consider the simple closed curves a0, a1, . . . , a2g+1 illustrated in Figure 2.1, we
denote by Ti the Dehn twist about ai, and write wi for the image under ϕ of the Dehn twist Ti
(i = 0, 1, . . . , 2g+1). In the sequel we repeatedly use the fact that, since Ti and Tj are conjugate
in the mapping class group, wi = ϕ(Ti) and wj = ϕ(Tj) are conjugate in the symmetric group,
and so share the same cycle decomposition type, say (1)ℓ1(2)ℓ2 · · · (m)ℓm , where

∑m
k=1 kℓk = m.

The fact that Ti ∈ Z+
ai implies that, whenever ℓk > 0 with k > 1, ϕ(Z+

ai) acts nontrivially on the
union of the k-orbits of wi. Therefore, the above proposition combines with Lemma 1.1 (3) (a), (c)
to yield the following.
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Corollary 5.3. For g ≥ 4, let ϕ : Mg,1 → Sm be a nontrivial homomorphism, with m < 5N−
g−1.

Then there exists k ∈ {2, 3, 4} such that every wi has the same cycle decomposition type (1)ℓ1(k)ℓk

with ℓk ≥ N−
g−1.

Lemma 5.4. For g ≥ 3, let ϕ : Mg,1 → Sm be a group homomorphism. If S(w2g−2)∩S(w2g) =
∅, then ϕ is trivial.

Proof. First note that, since conjugate permutations have bijective supports, by Lemma 2.2
the cardinality r = |S(wi)| is independent of choice of i, and for all 3-chains (ai, aj , ak) yields
the same cardinalities s = |S(wi)∩ S(wj)| and t = |S(wi)∩ S(wk)|. By assumption, the 3-chain
(a2g−2, a2g−1, a2g) gives t = 0, which implies that

(S(w2g−2) ∩ S(w2g−1)) ⊔ (S(w2g−1) ∩ S(w2g)) ⊆ S(w2g−1) ,

and so r ≥ 2s. On the other hand, Lemma 1.2 asserts that r ≤ 2s. Thus, for any 3-chain
(ai, aj , ak) we have

S(wj) = (S(wi) ∩ S(wj)) ⊔ (S(wj) ∩ S(wk)) .

Turning now to the 3-chains (a0, a4, a3) and (a0, a4, a5) and (a3, a4, a5), we observe that, since
t = 0, the subsets S(w0) ∩ S(w4), S(w3) ∩ S(w4) and S(w4) ∩ S(w5) of S(w4) are pairwise
disjoint, but each of cardinality half that of S(w4). For avoidance of contradiction, it must be
that r = s = 0; whence, since by Theorem 2.1 the image of ϕ is generated by the wi, ϕ is
trivial.

Proposition 5.5. For g ≥ 4, let ϕ : Mg,1 → Sm with m < 5N−
g−1. Then for i = 0, 1, . . . , 2g+1

there are no 4-cycles in the cycle decomposition of wi.

Proof. Again write ℓk for the number of k-cycles in the decomposition of w2g, and suppose
that ℓ4 > 0. Then Corollary 5.3 forces the cycle decomposition type of every wj to be (1)ℓ1(4)ℓ4

where ℓ4 ≥ N−
g−1. The image ϕ(Mg,1) contains the subgroup H = 〈w2g, w2g+1〉, which, since

w2g is a product of 4-cycles, is a homomorphic image (via xi 7→ w2g+i) of the group

Ĥ = 〈x0, x1 | x40 = x41 = 1, x0x1x0 = x1x0x1〉

of order 96 (denoted 〈−2, 3 | 4〉 in [10, p.74]).
From now on Mg−1,1 is considered as the subgroup of Mg,1 generated by T0, T1, . . . , T2g−2. We

write Ω̂k for the union of the orbits Ωk,i (i = 1, . . . , hk) of cardinality k of H. Thus, |Ω̂k| = khk
and k divides 96. From the fact that the generators w2g and w2g+1 of H contain no nontrivial
cycles of length less than 4 it follows that h2 = h3 = 0. Since ϕ(Mg−1,1) lies in the centralizer of

H, it acts, for any k, both on Ω̂k and on the set {Ωk,i | i = 1, . . . , hk}. The former corresponds to
a homomorphism ψk : Mg−1,1 → Skhk

and the latter to a homomorphism νk : Mg−1,1 → Shk
.

Claim. If νk is trivial, then so is ψk.

To prove this, since ν1 = ψ1 we may assume that k ≥ 4. Assuming that νk is trivial, we observe
that each k-orbit Ωk,i of H must be invariant under the action of ϕ(Mg−1,1). Now partition
Ωk,i by means of the orbits of w2g, as

Ωk,i = P1 ⊔ · · · ⊔ Pp ⊔ F ,
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where each orbit Pj of w2g has length 4, and F consists of the fixed points of w2g. Then
ϕ(Mg−1,1) acts on P1⊔ · · · ⊔Pp, on {P1, · · · ,Pp}, and on F . The action on the set {P1, . . . ,Pp}
must be trivial because

p ≤ k

4
≤ 96

4
< 2g−2(2g−1 − 1) = N−

g−1 = mi(Mg−1,1)

(by induction). This leaves ϕ(Mg−1,1) acting on each 4-orbit Pj , where the action must again
be trivial, since certainly 4 < mi(Mg−1,1). Hence, the action of ϕ(Mg−1,1) on Ωk,i stabilises
Ωk,i ∩ S(w2g) pointwise, and likewise Ωk,i ∩ S(w2g+1). However, since H is generated by w2g

and w2g+1, the union of Ωk,i ∩ S(w2g) and Ωk,i ∩ S(w2g+1) is equal to Ωk,i. Thus, the action of

ϕ(Mg−1,1) is trivial on each Ωk,i, and therefore also on their union Ω̂k as required.

In consequence, if ϕ(Mg−1,1) acts nontrivially on some Ω̂k, then hk ≥ mi(Mg−1,1). Since

khk = |Ω̂k| ≤ m < 5N−
g−1 = 5mi(Mg−1,1) ,

the only possibilities are k = 1 or k = 4. From Lemma 5.4, Mg−1,1 must act nontrivially on

some Ω̂k with k > 1, and therefore k = 4 indeed occurs.
The inequality h4 ≥ N−

g−1 implies that h1 ≤ m− 4h4 < N−
g−1, thus Mg−1,1 acts trivially on Ω̂1.

It follows that
S(ϕ(Mg−1,1)) ⊆ Ω̂4 ⊆ S(H) ,

where, for a subgroup G of Sm, S(G) denotes its support. Since S(ϕ(Mg−1,1)) contains
S(〈w1, w2〉), which by Lemma 2.2 has the same cardinality as S(H), the above inclusions are
indeed equalities.
So, w2g is a product of 4-cycles and all nontrivial orbits of H = 〈w2g, w2g+1〉 have length 4.
Applying again Lemma 2.2, we get that w4 is a product of 4-cycles and, for i ∈ {0, 3, 5}, all
nontrivial orbits of 〈w4, wi〉 have length 4. By Lemma 1.5 we deduce that w0 = w3 = w5. But,
since w3 = w5, we also have

w3 = (w5w6)w3(w5w6)
−1 = (w5w6)w5(w5w6)

−1 = w6 .

Thus w5 = w6, and therefore w0 = w1 = · · · = w2g. It follows that the image of ϕ is cyclic, and
hence, because Mg,1 is perfect, ϕ is trivial – a contradiction.

Proposition 5.6. For g ≥ 4, let ϕ : Mg,1 → Sm with m < 5N−
g−1. Then for 0 ≤ i ≤ 2g + 1

there are no 3-cycles in the cycle decomposition of wi.

Proof. Suppose to the contrary that ℓ3 > 0. In particular, ϕ cannot be trivial. Then Corol-
lary 5.3 forces the cycle decomposition type of each wi to be (1)ℓ1(3)ℓ3 where ℓ3 ≥ N−

g−1. The
image ϕ(Mg,1) contains the subgroup H = 〈w2g, w2g+1〉, which, since w2g is a product of 3-
cycles, is a homomorphic image (via xi 7→ w2g+i) of the group

Ĥ = 〈x0, x1 | x30 = x31 = 1, x0x1x0 = x1x0x1〉

of order 24. Again, we consider Mg−1,1 as the subgroup of Mg,1 generated by T0, T1, . . . , T2g−2.

Moreover, we write Ω̂k for the union of the orbits Ωk,i (i = 1, . . . , hk) of cardinality k of H.

Thus, |Ω̂k| = khk and k divides 24. From the fact that the generators w2g and w2g+1 of H
contain no nontrivial cycles of length less than 3 it follows that h2 = 0.
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Since ϕ(Mg−1,1) lies in the centralizer of H, it acts, for any k, both on Ω̂k and on the set
{Ωk,i | i = 1, . . . , hk}. The former corresponds to a homomorphism ψk : Mg−1,1 → Skhk

and
the latter to a homomorphism νk : Mg−1,1 → Shk

.

Claim 1. If νk is trivial, then so is ψk.

Indeed, suppose that νk is trivial. Then each k-orbit Ωk,i of H must be invariant under the
action of ϕ(Mg−1,1). But

|Ωk,i| = k ≤ 24 < 2g−2(2g−1 − 1) = mi(Mg−1,1) ,

thus ϕ(Mg−1,1) acts trivially on each Ωk,i, that is, Mg−1,1 acts trivially on Ω̂k.

Claim 2. ψk is trivial if k ≥ 5. Moreover, either ψ3 or ψ4 is nontrivial, but not both.

Indeed, if ψk is nontrivial, then νk is nontrivial by Claim 1, thus

m

k
≥ hk ≥ mi(Mg−1,1) = N−

g−1 ,

therefore k ≤ 4 as m < 5N−
g−1. If both ψ3 and ψ4 are nontrivial, then

m ≥ 3h3 + 4h4 ≥ 7N−
g−1 ,

which also contradicts m < 5N−
g−1. Finally, by Lemma 5.4 one of the ψk with k ≥ 3 must be

nontrivial, so either ψ3 or ψ4 is nontrivial.

Claim 3. ψ3 is nontrivial.

Suppose otherwise that ψ3 is trivial. Then, by Claim 2, ψ4 is nontrivial, thus h4 ≥ N−
g−1. As

h1 + 4h4 ≤ m < 5N−
g−1, it follows that h1 < N−

g−1, thus Mg−1,1 acts trivially on Ω̂1. So,

S(ϕ(Mg−1,1)) ⊆ Ω̂4 ⊆ S(H) .

Since S(ϕ(Mg−1,1)) contains S(〈w1, w2〉), which has the same cardinality as S(H), the above
inclusions are indeed equalities.

So, all nontrivial orbits of H have length 4. Applying Lemma 2.2, we get that w2 is a product of
disjoint 3-cycles and, for i ∈ {1, 3}, all nontrivial orbits of 〈w2, wi〉 have length 4. By Lemma 1.4
it follows that w1 = w3. Hence, we also have

w1 = (w3w4)w1(w3w4)
−1 = (w3w4)w3(w3w4)

−1 = w4 ,

thus w3 = w4, therefore w0 = w1 = · · · = w2g. This implies that the image of ϕ is cyclic, and
hence, because Mg,1 is perfect, ϕ is trivial – a contradiction.

Claim 4. ψ1 is nontrivial.

Suppose instead that ψ1 is trivial. Then we have the inclusions

S(ϕ(Mg−1,1)) ⊆ Ω̂3 ⊆ S(H)

which imply as in the previous claim that S(H) = Ω̂3. So, all nontrivial orbits of w2g and
〈w2g, w2g+1〉 have length 3; thus, by Lemma 1.3, w2g = w2g+1. It follows that the image of ϕ is
cyclic, and hence, because Mg,1 is perfect, ϕ is trivial – a contradiction.
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The following claim is a direct consequence of the braid relation between w2g and w2g+1 (see
the proof of Lemma 1.3).

Claim 5. Ω3,1, . . . ,Ω3,h3 are precisely the common 3-orbits of w2g and w2g+1.

We turn now to conclude the proof of Proposition 5.6 with counting arguments. If (b1, . . . , bp)
is a p-chain of nonseparating closed curves, we denote by cp(b1, . . . , bp) the number of common
3-orbits of ϕ(Tb1), . . . , ϕ(Tbp). We do not assume that the whole chain is nonseparating, but we
suppose that each pair (bi, bi+1) is nonseparating, so that (Tbi , Tbi+1

) is conjugate to (T2g, T2g+1)
(see Lemma 2.2). By Claims 1, 3 and 5 we have

c2(b1, b2) = c2(a2g, a2g+1) = h3 ≥ N−
g−1 ,

and by Claim 4 we have h1 ≥ N−
g−1. Recall also that ℓ3 is the number of 3-orbits of w2g.

Note that the supports of the 3-orbits of w2g that are not included in Ω̂3 are included in X =

{1, . . . ,m} − (Ω̂3 ⊔ Ω̂1); thus there are at most |X| /3 of them. Again by Lemma 2.2 it follows
that for all i ∈ {2, . . . , p} among the 3-orbits of ϕ(Ti) there are at most |X| /3 that are not
3-orbits of ϕ(Ti−1). We therefore obtain in turn

c3(b1, b2, b3) ≥ h3 −
|X|
3
, c4(b1, b2, b3, b4) ≥ h3 −

2|X|
3

,

c5(b1, b2, b3, b4, b5) ≥ h3 −
3|X|
3

= h3 − |X| .

Using again the assumption that m < 5N−
g−1, we have

|X| = m− h1 − 3h3 < 4N−
g−1 − 3h3 ≤ h3 .

Hence
c5(b1, b2, b3, b4, b5) ≥ h3 − |X| > 0 .

So, there is a common 3-cycle in the decomposition of every generator w0, . . . , w4 of ϕ(M2,1).
By restricting attention to the support of this 3-cycle, we deduce that ϕ induces a nontrivial
homomorphism fromM2,1 toS3 whose image is generated by elements of order 3; in other words,
from M2,1 onto the cyclic group of order 3. This, however, contradicts Proposition 3.2.

5.2 Normal generation of Ker θg,1 by the square of a Dehn twist

Thanks to Corollary 5.3 and Propositions 5.5 and 5.6, we know (under the inductive hypothesis
that Theorem 0.3 holds for a surface of genus g − 1) that, if g ≥ 4 and ϕ : Mg,1 → Sm

is a permutation representation with m < 5N−
g−1, then wi = ϕ(Ti) is an involution for all

i ∈ {0, 1, . . . , 2g+1}. So, in order to prove Theorem 5.1, still under the inductive hypothesis, it
suffices to show the following.

Theorem 5.7. Let g ≥ 2. Then the kernel of θg,1 is the smallest normal subgroup of Mg,1

containing T 2
1 .

This theorem is known to experts but, as far as we know, is nowhere in the literature. So, we
include a proof but skip some details.
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Proof. We say that a normal subgroup H of a group G is normally generated by a subset
S ⊆ H if H is the smallest normal subgroup of G that contains S. For i, j ∈ {1, . . . , g} we
denote by ei,j the g×g matrix whose entries are all zero except the (i, j)-th entry which is equal

to 1. Then the kernel of µg : Sp2g(Z) → Sp2g(F2) is normally generated by

(
Ig 2 e1,1
0 Ig

)
, where

Ig denotes the identity matrix. This fact can be deduced from [3] (see also [31]) and its proof is
left to the reader.
We denote by θ̂g : Mg,1 → Sp2g(Z) the natural epimorphism, so that θg,1 = µg ◦ θ̂g. Consider
the simple closed curves c2, . . . , cg, c

′
2, . . . , c

′
g, d2, . . . , dg illustrated in Figure 5.1. By [27] and [4]

(see also [28]), Ker θ̂g is normally generated by {TciT−1
c′i
, Tdi | 2 ≤ i ≤ g}. On the other hand,

a direct calculation shows that θ̂g(T
2
1 ) =

(
Ig 2e1,1
0 Ig

)
. By the above, it follows that Ker θg,1 is

normally generated by {TciT−1
c′i
, Tdi | 2 ≤ i ≤ g} ∪ {T 2

1 }.

d2 d3 dg

c2 c3 cg

c′2 c′3 c′
g

Figure 5.1. Some curves in Σg,1.

Let H be the normal subgroup of Mg,1 normally generated by T 2
1 , and let π : Mg,1 → Mg,1/H

be the quotient map. The following relations hold in Mg,1/H:

π(Ti)
2 = 1 if 1 ≤ i ≤ 2g ,

π(Ti)π(Tj) = π(Tj)π(Ti) if |i− j| ≥ 2 ,

π(Ti)π(Ti+1)π(Ti) = π(Ti+1)π(Ti)π(Ti+1) if 1 ≤ i ≤ 2g − 1 .

Thus, there exists a homomorphism q : S2g+1 → Mg,1/H that sends si = (i, i + 1) to π(Ti) for
all 1 ≤ i ≤ 2g. On the other hand, the following relations hold in Mg,1 (see [21], for instance):

Tdi = (T1T2 · · · T2i−2)
4i−2 ,

TciTc′i = (T1T2 · · ·T2i−1)
2i ,

whenever i ∈ {2, . . . , g}. Moreover, since s1s2 · · · sj is a cycle of length j + 1,

(s1s2 · · · sj)j+1 = 1 , for 1 ≤ j ≤ 2g .

It follows that

π(Tdi) = q((s1s2 · · · s2i−2)
4i−2) = q(1) = 1 ,

π(TciT
−1
c′i

) = π(TciTc′i) = q((s1s2 · · · s2i−1)
2i) = q(1) = 1 ,

for all i ∈ {2, . . . , g}. Thus, H = Ker θg,1.
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Proof of Theorem 5.1. For g ≥ 4, let ϕ : Mg,1 → Sm be a nontrivial homomorphism,
with m < 5N−

g−1. As pointed out before, thanks to Corollary 5.3 and Propositions 5.5 and 5.6,
wi = ϕ(Ti) is an involution for all i ∈ {0, 1, . . . , 2g+1}. By Theorem 5.7 we conclude that there
exists a homomorphism ϕ̄ : Sp2g(F2) → Sm such that ϕ = ϕ̄ ◦ θg,1.

6 Large subgroups of Sp2g(F2)

The aim of this section is to prove Theorem 0.2, which, together with Theorem 5.1, proves
Theorem 0.3 for the case of a surface with n = 1 boundary component. The extension to
surfaces with several boundary components will be the object of Section 8.

The maximal subgroups of the finite classical groups have been described using the classification
of finite simple groups. (Below, 2n denotes an elementary abelian group of rank n, A�B an
extension of a group A by a group B, and r a cyclic group of order r.) Their orders are also
known (see for example [30]).

Theorem 6.1. ([22, Theorem 4.1 and §3]; [2, §1]) If H is a maximal subgroup of Sp2g(F2) for
g ≥ 1, then one of the following holds.

(1) H = O−
2g(F2), of order 2g

2−g+1(2g + 1)
∏g−1

i=1 (2
2i − 1).

(2) H = O+
2g(F2), of order 2g

2−g+1(2g − 1)
∏g−1

i=1 (2
2i − 1).

(3) |H| ≤ 26g.

(4) H ≤ S2g+2, of order at most (2g + 2)!.

(5) H = Sp2k(F2r)�r, where r > 1 is a prime divisor of g and kr = g. Here, H has order

r · 2 g2

r

∏k
i=1(2

2ri − 1).

(6) H = Sp2k(F2) ≀ Sr, where r > 1 is a divisor of g and kr = g. Here, H has order

r! · 2 g2

r

∏k
i=1(2

2i − 1)r.

(7) H is the stabilizer of a totally isotropic subspace of F2g
2 under the natural action of Sp2g(F2).

That is, H is

(2
k(k+1)

2 �22k(g−k))⋊ (Sp2g−2k(F2)×GLk(F2))

for some integer k ∈ {1, . . . , g}, and has order

2g
2 ·
(

g−k∏

i=1

(22i − 1)

)
·
(

k−1∏

i=1

(2i+1 − 1)

)
.

(8) H is the stabilizer of a nonsingular subspace of F2g
2 under the natural action of Sp2g(F2).

That is, H is Sp2k(F2)× Sp2g−2k(F2) for some k ∈ {1, . . . , g − 1}, and has order

2g
2+2k2−2gk ·

(
g−k∏

i=1

(22i − 1)

)
·
(

k∏

i=1

(22i − 1)

)
.
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Moreover, the maximal subgroups falling within case (1) lie in a single conjugacy class, as do
the subgroups falling within case (2).

Proof. The first part is shown in [22, Theorem 4.1 and §3]. Their orders may be found in [30,
pp. 19, 70, 141]. For the last two cases, the description of H follows from [32, p. 63], for example.
Cases 2 and 1 correspond to the Aschbacher class C8 [2, §1], that is, contain the subgroups
of Sp2g(F2) stabilizing some quadratic form polarizing to the symplectic bilinear form defining
Sp2g(F2); Case 2 corresponds to forms of Witt index g, Case 1 to forms of Witt index g − 1.
By [2, Theorems B∆ and BO], the action of Sp2g(F2) is transitive on stabilizers of forms of
the same similarity type, showing that the groups falling within Case 2, respectively the groups
falling within Case 1, form a single conjugacy class.

Corollary 6.2. Let g ≥ 3 and let H be a subgroup of Sp2g(F2) of index (strictly) less than 2N−
g .

Then either H ∼= O−
2g(F2) or H ∼= O+

2g(F2).

Remark. SO−
2g(F2) is an index 2 subgroup of O−

2g(F2) and, therefore, an index 2N−
g subgroup

of Sp2g(F2).

Proof. Recall again that N−
g = [Sp2g(F2) : O

−
2g(F2)] and note that the result holds for proper

subgroups of O−
2g(F2) and O+

2g(F2) because |O+
2g(F2)| < |O−

2g(F2)|. Thus, we need consider
only maximal subgroups H. For applications, the assertion is presented in terms of the index;
however, the data relate to the order, so one needs to check that of the maximal subgroups listed
in Theorem 6.1, in all except for the first two cases the order of H is less than

|O−
2g(F2)|
2

= 2g
2−g(2g + 1)

g−1∏

i=1

(22i − 1) .

For g = 3 the result holds by [8]. (Alternatively, we can compute the conjugacy classes of
maximal subgroups of Sp6(F2) using Magma [5]: their orders are 1512, 4320, 4608, 10752,
12096, 23040, 40320, 51840. The maximal subgroups of order 40320 and 51840 can be checked
to be isomorphic to O+

6 (F2) respectively O
−
6 (F2), so the claim holds.)

So, assume that g ≥ 4. In general, it is a routine matter to use the formulae of Theorem 6.1
to check that H has order less than |O−

2g(F2)|/2. To indicate the flavor of the verification, we
discuss the two most delicate cases, namely (6) and (8).

Case (6). First observe that r! < 2(r
2−2r+3)/2, and, for r in the range [2, g], the function

(r2−2r+3)/2+ g2

r achieves its maximum value of (g2+3)/2 at the endpoints. Thus, on putting

j = ir, we have that |H| = r! · 2 g2

r

∏k
i=1(2

2i − 1)r is bounded above by

2(g
2+3)/2

∏

r|j, j≤g

(22j − 1) < 2(g
2+2g+3)/2(2g + 1)

∏

r|j, j≤g−1

(22j − 1) .

Since 2(g
2+2g+3)/2 < 2g

2−g(22 − 1), and (22 − 1)
∏

r|j, j≤g−1(2
2j − 1) <

∏g−1
i=1 (2

2i − 1), we obtain

|H| < |O−
2g(F2)|/2, as required.
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Case (8). Since, for k in the range [1, g − 1], the function 2k(k − g) achieves its maximum of
−2(g − 1) at the endpoints, we have 2g

2+2k2−2gk < 2g
2−g. Meanwhile, using the symmetry of

the product below to assume that k ≤ g
2 , and observing that i < i+ g − k = j say, gives

(
g−k∏

i=1

(22i − 1)

)
·
(

k∏

i=1

(22i − 1)

)

=(22k − 1)

(
g−k∏

i=1

(22i − 1)

)
·
(

k−1∏

i=1

(22i − 1)

)

<(2g + 1)

(
g−k∏

i=1

(22i − 1)

)
·




g−1∏

j=g−k+1

(22j − 1)


 .

When combined with the exponential inequality above, this again yields |H| < |O−
2g(F2)|/2.

Proof of Theorem 0.2. As stated before, we have [Sp2g(F2) : O
−
2g(F2)] = N−

g = 2g−1(2g − 1)

and [Sp2g(F2) : O
+
2g(F2)] = N+

g = 2g−1(2g + 1) by [30, pp. 70 and 141]. Finally, Corollary 6.2

ensures that the conjugacy classes of O+
2g(F2) and O−

2g(F2) are the only conjugacy classes of
subgroups of Sp2g(F2) of index less than 2N−

g .

Now, thanks to Theorem 5.1 and Theorem 0.2, we can prove our main theorem for the case of
a surface with n = 1 boundary component. However, we have to keep the inductive hypothesis
(that Theorem 0.3 holds for a surface of genus g−1), as we have used the equality mi(Mg−1,3) =
N−

g−1 in the proof of Proposition 5.2.

Proposition 6.3. Let g ≥ 4.

(1) O−
g,1 is the unique subgroup of Mg,1 of index N−

g = 2g−1(2g − 1), up to conjugation.

(2) O+
g,1 is the unique subgroup of Mg,1 of index N+

g = 2g−1(2g + 1), up to conjugation.

(3) All the other proper subgroups of Mg,1 are of index at least 5N−
g−1 > N+

g .

Proof. Let H be a subgroup of Mg,1 of index m < 5N−
g−1. By Theorem 5.1 there is a subgroup

H̄ of Sp2g(F2) of index m such that H = θ−1
g,1(H̄). Since 5N−

g−1 < 2N−
g , by Theorem 0.2,

we must necessarily have either H̄ = O−
2g(F2) or H̄ = O+

2g(F2) up to conjugation, thus either

H = O−
g,1 or H = O+

g,1 up to conjugation.

7 Small symplectic representations of Mg,n

The aim of this section is to prove Proposition 7.2, which is the same as Theorem 0.4, except
that we do not state that the decompositions in (1) are unique. The uniqueness will follow from
Theorem 0.3 proved in Section 8.
The decompositions of φ±g,n in (1) reflect analogous properties of the corresponding representa-
tions of Sp2g(F2), which in turn arise in a geometric way; while this result may be more or less
known to experts, we could not locate a reference and hence establish it in Lemma 7.1.
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We choose a basis {e1, . . . , e2g} of V = F
2g
2 such that (ei, e2g+1−i) for i = 1, . . . , g are the

symplectic pairs for the action of Sp2g(F2); we write ī for 2g + 1 − i to shorten notation. For
a vector x ∈ V , we denote the components of x with respect to the basis {e1, . . . , e2g} by
x1, . . . , x2g. We consider Sp2g−2(F2) as a subgroup of Sp2g(F2) via the the standard embedding
defined by

ω 7→




1 0 · · · 0 0

0 0
... ω

...
0 0

0 0 · · · 0 1




with respect to the above basis.

For g ≥ 2 and ǫ ∈ {±}, let φ ǫ
g : Sp2g(F2) → SNǫ

g
denote the permutation representation induced

by the action of Sp2g(F2) on the right cosets of Oǫ
2g(F2) (cf. Corollary 6.2).

Lemma 7.1. Let g ≥ 3. Then,

φ
+
g |Sp2g−2(F2)

∼= (φ
+
g−1)

3 ⊕ φ
−
g−1 and φ

−
g |Sp2g−2(F2)

∼= (φ
−
g−1)

3 ⊕ φ
+
g−1 .

Proof. It is well-known (see, for example, [12] or [30, ch. 11]) that φ
+
g and φ

−
g arise from the

action of Sp2g(F2) on the two orbits of quadratic forms polarizing to the symplectic form 〈−, −〉
preserved by Sp2g(F2). The two orbits consist of the quadratic forms of Witt index g (type +)
respectively Witt index g − 1 (type −).
Let Q denote the set of quadratic forms polarizing to 〈−, −〉. The elements of Q are of the form

Qb(x) =

g∑

i=1

xixī + 〈x,b〉2 =

g∑

i=1

xixī + 〈x,b〉 for b ∈ V .

The symplectic group Sp2g(F2) acts on Q via (ω ·Q)(x) := Q(ωx) for ω ∈ Sp2g(F2) and Q ∈ Q.
In particular, (ω · Qb)(x) = Qbω(x) for some bω ∈ V . It is easy to see that this defines
another action of Sp2g(F2) on the set V given by ω · b := bω. (Note that this action does
not respect the structure of V as a vector space. In particular, it is different from the natural
action given by matrix multiplication.) It is easy to verify that the restriction of this action to
Sp2g−2(F2) < Sp2g(F2) can be canonically identified with the analogous action of Sp2g−2(F2) on

quadratic forms on F
2g−2
2 .

Now consider the two orbits Q+ and Q− of quadratic forms of type + respectively type − under
the action of Sp2g(F2). We will show that Qǫ (ǫ ∈ {±}) splits up into four orbits under the
action of Sp2g−2(F2), one for each of the 22 possible values of (b1, b2g), and that three of these
orbits have the type ǫ while the remaining orbit has the type −ǫ.
Consider first the orbit Q+ of quadratic forms of type +, that is, of Witt index g, and define

b0 =




0
0
0
...
0
0
0




, b1 =




1
0
0
...
0
0
0




, b2 =




0
0
0
...
0
0
1




, b3 =




1
1
0
...
0
1
1




.
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The quadratic forms Qbi
(x) for i = 0, 1, 2, 3 have Witt index g, that is, are elements of Q+.

Moreover, Q+ =
⊔4

i=1Q
Sp2g−2(F2)

bi
. It is easy to see that the restriction of Qbi

to F
2g−2
2 is of

type + (Witt index g − 1) for i = 0, 1, 2 and of type − (Witt index g − 2) for i = 3. Hence

φ
+
g |Sp2g−2(F2)

∼= (φ
+
g−1)

3 ⊕ φ
−
g−1 as claimed.

The argument for the orbit Q− of quadratic forms of type − is analogous.

Proposition 7.2. (1) Let g ≥ 3 and n ≥ 1. Then φ−g,n : Mg,n → SN−

g
is equivalent to

an extension of the representation (φ−g−1,n)
3 ⊕ φ+g−1,n from Mg−1,n to Mg,n, and φ+g,n :

Mg,n → SN+
g

is equivalent to an extension of the representation φ−g−1,n ⊕ (φ+g−1,n)
3 from

Mg−1,n to Mg,n.

(2) Let g ≥ 3 and n ≥ 0. Let b be a nonseparating simple closed curve on Σg,n, and let Tb be
the Dehn twist around b. Then the cycle structure of the image of Tb under φ−g,n is

(1)2
2g−2

(2)2
g−2(2g−1−1) ,

and the cycle structure of the image of Tb under φ+g,n is

(1)2
2g−2

(2)2
g−2(2g−1+1) .

Proof. We first consider Part (1). For a simple closed curve c on Σg,1, we denote by [c] the
class of c in H1(Σg,1,Z). We consider the curves u1, . . . , ug, v1, . . . , vg indicated in Figure 7.1,
and choose [ug], [ug−1], . . . , [u1], [v1], [v2], . . . , [vg] as basis elements for H1(Σg,1,Z). With respect
to this ordering, the bilinear form 〈−, −〉 yielding the algebraic intersection number is given by
the matrix

M =




0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
0 1 · · · 0 0
1 0 · · · 0 0



.

u1 u2 ug

v1 v2 vg

Figure 7.1. Basis for H1(Σg,1,Z).

The image of the Dehn twist Tb about a simple closed curve b under the epimorphism θg,1 :
Mg,1 → Sp2g(F2) is the map

[a] 7→ [a] + 〈a, b〉[b] .
Since Mg−1,1 < Mg,1 is generated by T0, T1, . . . , T2g−2 and since a0, a1, . . . , a2g−2 intersect
neither ug nor vg, it is clear from the above that θg,1(Mg−1,1) = Sp2g−2(F2) < Sp2g(F2), and
the restriction of θg,1 to Mg−1,1 coincides with θg−1,1 : Mg−1,1 → Sp2g−2(F2) < Sp2g(F2).
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Let n ≥ 1. Gluing disks along all boundary components of Σg,n but one, we obtain an embedding
Σg,n →֒ Σg,1 that induces a surjective homomorphism µg,n : Mg,n ։ Mg,1 (see [26]). More
precisely, the epimorphism µg,n is defined sending T ′

j to T1 for all j ∈ {1, . . . , n}, and Ti to Ti
for all i ∈ {0, 2, . . . , 2g}. Observe that θg,n = θg,1 ◦ µg,n and the following diagram commutes

Mg−1,n //

µg−1,n

��

Mg,n

µg,n

��

Mg−1,1 // Mg,1

where Mg−1,n → Mg,n and Mg−1,1 → Mg,1 are the natural embeddings described in Section 2.
By the above, it follows that θg,n(Mg−1,n) = Sp2g−2(F2) < Sp2g(F2), and the restriction of θg,n
to Mg−1,n coincides with θg−1,n : Mg−1,n → Sp2g−2(F2) < Sp2g(F2).

We have
φ
+
g |Sp2g−2(F2)

∼= (φ
+
g−1)

3 ⊕ φ
−
g−1 and φ

−
g |Sp2g−2(F2)

∼= (φ
−
g−1)

3 ⊕ φ
+
g−1

from Lemma 7.1. By composing with θg,n we conclude that

φ+g,n|Mg−1,n
∼= (φ+g−1,n)

3 ⊕ φ−g−1,n and φ−g,n|Mg−1,n
∼= (φ−g−1,n)

3 ⊕ φ+g−1,n .

Part (2) for n ≥ 1 follows by induction on g, using the cycle structures (2)6 (1)16 of φ−3,n(Tb) and

(2)10 (1)16 of φ+3,n(Tb) for g = 3 (see Lemma 4.1), and the equivalence φǫg,n|Mg−1,n
∼= (φǫg−1,n)

3 ⊕
φ−ǫ
g−1,n proved above for g ≥ 4.

Gluing a disk along the boundary component of Σg,1 we obtain an embedding Σg,1 →֒ Σg,0 that
induces a surjective homomorphism ν : Mg,1 → Mg,0 (see e.g. [26]). Observe that θg,1 = θg,0◦ν.
Thus, if b is a nonseparating simple closed curve in Σg,1, then θg,1(Tb) = θg,0(Tb); therefore
φǫg,1(Tb) = φǫg,0(Tb). This proves Part (2) for n = 0.

8 Surfaces with multiple boundary components

We start the section with a geometrical interpretation of the decomposition given in Proposi-
tion 7.2.

Take ǫ ∈ {±} and consider the representation φǫg,1 : Mg,1 → SNǫ
g
. Let wi denote the image of

Ti under φ
ǫ
g,1 for all i ∈ {0, 1, . . . , 2g + 1}. Set H = 〈w2g, w2g+1〉. Since wi has order 2, there is

an epimorphism from the group

Ĥ = 〈x0, x1 | x20 = x21 = 1, x0x1x0 = x1x0x1〉 = S3

to H which sends xi to w2g+i for i ∈ {0, 1}. In particular, the order of H divides 6.

For k ≥ 1, let Ω̂k denote the union of the k-orbits Ωk,i of H, 1 ≤ i ≤ hk. Since the image
φǫg,1(Mg−1,1) = 〈w0, . . . , w2g−2〉 belongs to the centralizer of H, it acts on the set of orbits

{Ωk,1, . . . ,Ωk,hk
} as well as on the whole set Ω̂k. The first action induces a homomorphism

νk : Mg−1,1 → Shk
and the second a homomorphism ψk : Mg−1,1 → Skhk

. The following
lemma describes these representations.
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Lemma 8.1. Let g ≥ 3. With the above notation, the following hold.

(1) h3 = N ǫ
g−1, h1 = N−ǫ

g−1, and hk = 0 for all k 6∈ {1, 3}.

(2) ν3 ∼= φǫg−1,1, ψ3
∼= (φǫg−1,1)

3, and ν1 = ψ1
∼= φ−ǫ

g−1,1.

(3) {1, . . . , N ǫ
g} = S(φǫg,1(M3,1)), where, for G < SNǫ

g
, S(G) denotes the support of G, and

M3,1 is the subgroup of Mg,1 generated by T0, T1, . . . , T6.

Proof. We prove by induction on g that 〈w1, w2〉 has N ǫ
g−1 3-orbits, has no other nontrivial

orbit, and has N−ǫ
g−1 fixed letters. The case g = 3 follows from Lemma 4.1, and the inductive

step can easily be derived from the formula φǫg,1|Mg−1,1
∼= (φǫg−1,1)

3 ⊕ φ−ǫ
g−1,1 of Proposition 7.2.

Thanks to Lemma 2.2 this proves Part (1).

Let Ω3,i be a 3-orbit of H. We may write Ω3,i = {ai, bi, ci} so that the restriction of w2g to Ω3,i

is the transposition (ai bi) and the restriction of w2g+1 is (bi ci). Set Ω̂1
3 = Ω̂3 − S(w2g+1) =

{ai; 1 ≤ i ≤ N ǫ
g−1}, Ω̂3

3 = Ω̂3−S(w2g) = {ci; 1 ≤ i ≤ N ǫ
g−1}, and Ω̂2

3 = Ω̂3 − (Ω̂1
3 ∪ Ω̂3

3) = {bi; 1 ≤
i ≤ N ǫ

g−1}. Then Ω̂ℓ
3 is invariant under the action of Mg−1,1 for ℓ = 1, 2, 3, and the action of

Mg−1,1 on Ω̂ℓ
3 is equivalent to ν3. So,

φǫg,1|Mg−1,1
∼= ψ3 ⊕ ψ1

∼= (ν3)
3 ⊕ ν1 .

For the case g = 3, one can easily check the equivalences ν3 ∼= φǫ2,1 and ν1
∼= φ−ǫ

2,1 using Lemma 3.1
and Lemma 4.1, so Part (2) holds in this case and we can assume g ≥ 4. Recall that h3 = N ǫ

g−1

and h1 = N−ǫ
g−1. By Lemma 4.1 (if g = 4), respectively Proposition 6.3 (if g > 4), ν3 and ν1 are

either trivial or of the form ν3 = φµg−1,1 ⊕ 1q, respectively ν1 = φµ
′

g−1,1 ⊕ 1q′ . Now, the formula
of Proposition 7.2 implies that φǫg,1|Mg−1,1 has no fixed letter, and thus both ν3 and ν1 must be
nontrivial and we must have q = q′ = 0, µ = ǫ, and µ′ = −ǫ. So Part (2) holds.

Part (3) follows by induction on g using Lemma 4.1 for the case g = 3 and the equivalence
φǫg,1|Mg−1,1

∼= (φǫg−1,1)
3 ⊕ φ−ǫ

g−1,1 for the inductive step.

Now, we finish the proof of Theorem 0.3 with the following.

Proposition 8.2. Let g ≥ 4 and n ≥ 0.

(1) O−
g,n is the unique subgroup of Mg,n of index N−

g = 2g−1(2g − 1), up to conjugation.

(2) O+
g,n is the unique subgroup of Mg,n of index N+

g = 2g−1(2g + 1), up to conjugation.

(3) All the other subgroups of Mg,n are of index at least 5N−
g−1 > N+

g .

Proof. Recall that we are under the inductive hypothesis stated at the beginning of Part II,
that is, Theorem 0.3 holds for a surface of genus g − 1.

The case n = 1 is proved in Proposition 6.3, and the case n = 0 follows from Proposition 6.3,
Theorem 0.2, and the existence of the epimorphisms Mg,1 ։ Mg,0, Mg,0 ։ Sp2g(F2) described
in Section 0. So, we may assume n ≥ 2.



Finite index subgroups of mapping class groups May 12, 2011 27

Let ϕ : Mg,n → Sm be a nontrivial transitive homomorphism with m < 5N−
g−1. As ever,

for i ∈ {0, 2, . . . , 2g + 1} and j ∈ {1, . . . , n}, we denote by ai and bj the simple closed curves
illustrated in Figure 2.2, we denote by Ti the Dehn twist about ai, by T ′

j the Dehn twist

about bj, and we set wi = ϕ(Ti) and w′
j = ϕ(T ′

j). For j ∈ {1, . . . , n}, we denote by Σ(j)

a tubular neighborhood of bj ∪ a0 ∪ (∪2g
i=2ai). Observe that Σ(j) is a subsurface of Σg,n of

genus g with a unique boundary component, and the inclusion Σ(j) →֒ Σg,n induces an injective
homomorphism γj : Mg,1 → Mg,n which sends T1 to T ′

j and Ti to Ti for all i ∈ {0, 2, . . . , 2g}.
Set ϕj = ϕ ◦ γj : Mg,1 → Sm. By Proposition 6.3, ϕj is of the form ϕj = ψj ⊕ 1qj where ψj is
conjugate to an element of {φ+g,1, φ−g,1} and 1qj : Mg,1 → Sqj is the trivial representation.

Let Σ′ be a tubular neighborhood of ∪5
i=0a2g−i. Then Σ′ is a subsurface of Σg,n of genus 3 with

a unique boundary component, and is included in Σ(j) for all j ∈ {1, . . . , n}. Moreover, the
inclusion Σ′ →֒ Σg,n induces an embedding γ′ : M3,1 → Mg,n. Set ϕ′ = ϕ ◦ γ′ : M3,1 → Sm.
We have S(ϕj(Mg,1)) = S(ϕ′(M3,1)) by Lemma 8.1 (3) for all j, and

⋃n
j=1 S(ϕj(Mg,1)) =

S(ϕ(Mg,n)), thus
S(ϕ(Mg,n)) = S(ϕj(Mg,1)) = S(ϕ′(M3,1)) .

Since ϕ is transitive, it follows that there exists ǫ ∈ {±} such that m = N ǫ
g and ϕj is conjugate

to φǫg,1 for all j ∈ {1, . . . , n}.
Set H = 〈w2g, w2g+1〉; note that H ⊆ ⋂

j γj(Mg,1). For k ≥ 1 we denote by Ω̂k the union
of the k-orbits Ωk,i of H, 1 ≤ i ≤ hk. On the other hand, we assume that Mg−1,n is the
subgroup of Mg,n generated by T ′

1, . . . , T
′
n, T0, T2, . . . , T2g−2. Since the image ϕ(Mg−1,n) lies in

the centralizer of H, it acts on the set of orbits {Ωk,1, . . . ,Ωk,hk
} as well as on the whole set

Ω̂k. The first action induces a homomorphism νk : Mg−1,n → Shk
, and the second induces a

homomorphism ψk : Mg−1,n → Skhk
. Applying Lemma 8.1 (1) to ϕj(Mg,1) for any j, we get

that h3 = N ǫ
g−1, h1 = N−ǫ

g−1, and hk = 0 if k 6∈ {1, 3}.
As in the proof of Lemma 8.1, we set Ω̂1

3 = Ω̂3 − S(w2g+1), Ω̂3
3 = Ω̂3 − S(w2g), and Ω̂2

3 =

Ω̂3 − (Ω̂1
3 ∪ Ω̂3

3). Then Ω̂ℓ
3 is invariant under the action of Mg−1,n for ℓ = 1, 2, 3, and the action

of Mg−1,n on Ω̂ℓ
3 is equivalent to ν3. Hence,

ϕ|Mg−1,n
∼= ψ3 ⊕ ψ1

∼= (ν3)
3 ⊕ ν1 .

Since h3, h1 ≤ N+
g−1, by induction we have ν3(T

′
j) = ν3(T

′
1) and ν1(T

′
j) = ν1(T

′
1), thus ϕ(T

′
j) =

ϕ(T ′
1) for all j ∈ {1, . . . , n}. Since ϕ1 is conjugate to φǫg,1, we conclude that ϕ is conjugate to

φǫg,n.

Proof of Theorem 0.4. This follows from Proposition 7.2 and Theorem 0.3, proved above.
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