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Abstract

A strong edge colouring of a graph G is a proper edge colouring such that every path of
length 3 uses three colours. In this paper, we give some upper bounds for the minimum
number of colours in a strong edge colouring of subcubic graphs as a function of the max-
imum average degree. We also prove the NP-completeness of the strong edge k-colouring
problem for some restricted classes of subcubic planar graphs when k& = 4,5, 6.
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1 Introduction

In this paper the graphs we consider are finite, without multiple edges and without
loops. A proper edge colouring of a graph G = (V| F) is an assignment of colours to
the edges of the graph such that two adjacent edges do not use the same colour. A
strong edge colouring (called also distance 2 edge colouring) of a graph G is a proper
edge colouring of GG, such that every edge of a path of length 3 uvzy uses a different
colour. We will say that a graph is strongly edge k-colourable if it admits a strong
edge colouring using at most k colours. We denote by x.(G) the strong chromatic
index of G which is the smallest integer k£ such that G can be strong edge coloured
with k colours. The girth of a graph is the size of a shortest cycle in this graph. We
will say that two edges uv and xy (u # y) are at distance 2 if there exists a path of
length 3 uvzxy.

The notion of strong edge colouring seems to be introduced by Fouquet and Jo-
livet in [7,8]. This type of colouring can be used to represent the conflict-free channel
assignment in radio networks. The goal is to assign frequencies (colours) to channels
(edges) between every pair of transceivers (vertices) communicating between each
other. Frequencies have to be assigned to edges according to interference constraints
and this can be translated in terms of strong edge colouring of the graph modelling
the network. For a brief survey, we refer the reader to [4,6].

Let A denote the maximum degree of a graph. In 1985, during a seminar in
Prague, Erd6s and Nesetiil gave a construction of graphs having strong chromatic
index equal to 2A? when A is even and }(5A% — 2A + 1) when A is odd. They
conjectured that the strong chromatic index is bounded by these values and it was
verified for A < 3. It was conjectured by Faudree et al. [1] that every bipartite
graph has a strong edge colouring with A? colours. In [2| the same authors stated a
new conjecture, claiming that the strong chromatic index of planar subcubic graphs
is at most 9 and proved that x.(G) < 4A + 4, for planar graphs with maximum
degree A > 3. Let mad(G) be the maximum average degree of the graph G i.e.

mad(G) = max{mE(H)‘, H C G}, where V(H) and E(H) the sets of vertices and

[V (H)]
edges of H, respectively.

In this paper we study the bounds of the strong chromatic index of subcubic
graphs considering their maximum average degree.

Mahdian proved in [5] that deciding whether a bipartite graph with girth g,
for any fixed g, is strongly edge k-colourable, for all £ > 4, is NP-complete, the
case when k < 3 being trivial. In this paper we prove the NP-completeness of the
problems of deciding whether a planar subcubic bipartite graph can be strong edge
coloured with four, five and six colours, for some values of the girth.

2 Bounds of x.(G) in terms of mad(G)

We prove the following results:

Theorem 2.1 Let G be a subcubic graph:
1. Ifmad(G) < £, then x.(G) < 6.
2. If mad(G) < Z, then Y.(G) < 7.
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3. If mad(G) < 22, then x,(G) < 8.
4. If mad(G) < 38, then \\(G) < 9.
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In order to show the tightness of our result, we consider the function f(n) =
inf{mad(G) | x4(G) > n, A(G) < 3}. Obviously, f(5) = 2, and we prove that for
n=06(7,89resp.): 3 < f(6) <3, 5 <fN<H, 5F<fO<F, <
F9) < T

The proof of Theorem 2.1 is done by using the method of reducible configurations
and the discharging technique. Here is the sketch of the proof. In each of the cases
1, 2, 3 and 4, for the minimum counterexample H, we prove the existence of some
reducible configurations ¢.e. a set S of subgraphs which cannot appear in H. Once
the non-existence of S is proven, we define the weight function w : V(H) — Q with
w(z) = d(z) —m (where m = 2 in Case 1, 2T in Case 2, £ in Case 3 and 3% in Case
4). Tt follows from the hypothesis on the maximum average degree that the total
sum of weights is strictly negative. In the next step, we define discharging rules to
redistribute weights and once the discharging is finished, a new weight function w*
will be produced. During the discharging process the total sum of weights is kept
fixed. Nevertheless, by the non-existence of S, we can show that w*(z) > 0 for all

x € V(H). This leads to the following contradiction:

0< > w@= ) wx<o0

€ V(H) € V(H)

and hence, this counterexample cannot exist.

3 NP-completeness

The STRONG EDGE k-COLOURING problem is defined as follows:
INSTANCE: A graph G and a positive integer k.
QUESTION: Does G have a strong edge colouring with k colours?

The 3-COLOURING problem is defined as follows:
INSTANCE: A graph G.
QUESTION: Does G have a proper vertex colouring with three colours?
3-COLOURING was proven to be NP-complete even when restricted to planar
graphs of maximum degree 4 [3].

Theorem 3.1 STRONG EDGE /-COLOURING is NP-complete for planar bipar-
tite graphs of mazimum degree 3, with an arbitrarily large girth.

Proof The problem is clearly in NP since it can be checked in polynomial time
whether a given assignment of colours to edges is a strong edge colouring. We will
prove the theorem by reducing 3-COLOURING of planar graphs of degree 4.

First let us observe that in a strong edge 4-colouring of the graph of Figure 1, the
edges xy, 2zt must receive the same colours. By glueing several copies of this graph
as shown in Figures 2(a), 2(b), we can increase the distance between the edges that
must be coloured the same. Moreover, by choosing an odd or an even number of



Ty o1 1!

Figure 1. Forcing a colour

.L.. ________ ..L. .L.. ________ ..L. ________ .L.
(a) Odd number of claws (b) Even number of claws

Figure 2. Transportation of a color

copies of the graph of Figure 1, we may force the two end vertices of the constructed
graph to be in a same or in different parts of a natural bipartition of the graph. In
Figures 2(a) and 2(b), the bipartitions are given by small and big vertices.
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Figure 3. Sub-gadget M

Now, we are ready to build the generic sub-gadget M (Figure 3) which will be
used in our reduction. It can be checked by case analysis that up to permutation
of colours, the strong edge 4-colouring of M, given in Figure 3, is unique. Also M
is bipartite (the bipartition is given in the picture by big and small vertices) and of
arbitrarily large girth.

Given a planar graph G with maximum degree 4, we construct a graph G’ as
follows. Every vertex v of GG is replaced by a copy @, of the graph () depicted in
Figure 4(a) which contains three copies of the sub-gadget M. Note that since M
is bipartite and of arbitrarily large girth, @) is also bipartite and of arbitrarily large
girth.

For every edge uv in GG, we choose an index ¢ for @), and j for @), and join z;
of Q, with z; of Q, and one of the vertices y;, y7 with one of the vertices yj, y;.
These connections are done using an arbitrarily large number of claws as depicted
in Figure 4(b). It is easy to observe that we can make the choice of connections
such that the obtained graph is planar. Furthermore, by construction the obtained
graph G’ is bipartite and of arbitrarily large girth.
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(b) Connecting two vertex gadgets in G’

Figure 4. Vertex and edge gadgets

We say that the colour of () is the colour of the edges incident to the vertices x;
in @ (colour 2 in Figure 4(a)). Also, the forbidden colour of @ is the colour of the
edges incident to y; and y? (colour 3 in Figure 4(a)).

Figure 4(b) shows that for every edge wv € G, @, and @, are assigned distinct
colours and the same forbidden colour. Since G is connected, all copies of () have
same forbidden colour, say 3, and thus no copy of () is coloured 3.

If G is 3-colourable, then for every vertex v € (G, we can assign the colour of v
to ), and extend this to a strong edge 4-colouring of G’. Conversely, given a strong
edge 4-colouring of G, we obtain a 3-colouring of G by assigning the colour of @,
to the vertex v. So G’ is strong edge 4-colourable if and only if G is 3-colourable,
which completes the proof.

(I

3-COLOURING of planar graphs of degree 4 can also be reduced to STRONG
EDGE k-COLOURING of subcubic planar graphs for the cases when k£ = 5 and
k = 6, using some different techniques. Therefore we have the following results:

Theorem 3.2 STRONG EDGE 5-COLOURING is NP-complete for planar bipar-
tite graphs of degree 3, with girth g = 8 and for planar graphs of mazimum degree 3
and with girth g = 9.

Theorem 3.3 STRONG EDGE 6-COLOURING is NP-complete for planar bipar-
tite graphs of maximum degree 3, with girth g = 4.
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