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ABSTRACT

Within the Content Based Image Retrieval (CBIR) frame-

work, three main points can be highlighted: visual descriptors

extraction, image signatures and their associated similarity

measures, and machine learning based relevance functions.

While the first and the last points have vastly improved in re-

cent years, this paper addresses the second point. We propose

a novel approach to compute vector representations extending

state of the art methods in the field. Furthermore, our method

can be viewed as a linearization of efficient well known ker-

nel methods. The evaluation shows that our representation

significantly improve state of the art results on the difficult

VOC2007 database by a fair margin.

Index Terms— Image classification, Image representa-

tion, Bag of Words

1. INTRODUCTION

In recent times, Content Based Image Retrieval (CBIR) ben-

efited from significant advances in many of the fields it relies

on. The first step is the introduction of powerful descriptors

with high discriminative capacities like SIFT [1]. Either for

similarity search or for image classification the local descrip-

tors approach seems to be the most efficient for image match-

ing. The second step is the introduction of efficient machine

learning tools such as SVM with non-linear kernels [2]. Such

techniques have great generalization capabilities that vastly

improve results, and provide a unified framework for all im-

age retrieval tasks.

In order to further improve the quality of the retrieval,

recent work aims at filling the gap between descriptors and

learning techniques. In this area, two steps can be investi-

gated. The first consists in providing efficient image repre-

sentation based on extracted descriptors. The main method

for computing image representations is based on the “Bag of

Features” scheme [3]. The latest works in this area show that

results can be fairly improved by fine tuning image represen-

tations [4, 5]. The second step tackles the problem of similar-

ity measures between image representations. Most advanced

methods improve the similarity measure by combining sev-

eral representations obtained from different features. Such

combined similarities can be learned along with the classifier

and thus further improve the results [6].

In this paper, we propose a new scheme of signatures

aggregating a set of descriptors extracted from the images.

It sums tensor product of the descriptors which we show is

a good approximation of insightful similarity measures be-

tween descriptors. We find our scheme to outperform state of

the art signatures on well known images.

This paper is organized as follows: the next section de-

scribes recent related work on image representation and sim-

ilarities. Section 3 introduces our novel approach and gives

insight on its soundness. We then present successful experi-

ments on the very difficult VOC2007 dataset, before we con-

clude.

2. IMAGE REPRESENTATION AND SIMILARITIES

All recent approaches in image retrieval and classification use

a set of local descriptors to encode the information contained

in the image, such as SIFT [1].

Providing two images Ir and Is, represented by two sets

of local descriptors Br = {bri ∈ R
N}i and Bs = {bsj ∈

R
N}j (N being the dimension of descriptor space), the diffi-

cult point is to provide a relevant similarity measure between

the sets Br and Bs. Moreover, this similarity must conform

the Mercer conditions in order to be used within the powerful

Kernel Machines framework.

There are two main families of methods to obtain such

similarities. The first category keeps the bag of descriptors

in its entirety and tries to conduct similarities on bags of vec-

tors. The second approach aims at producing a single vector

representation for each image by aggregating its descriptors,

and then using well known vector similarities (i.e. linear, rbf,

polynomial, etc).

The remaining of this section details both families of

methods.



2.1. Kernels on bags

Given two bags of vectors Br = {bri ∈ R
N}i and Bs =

{bsj ∈ R
N}j representing the sets of descriptors (of dimen-

sion N ) in two images, and a minor kernel function k on

R
N × R

N , the simplest kernel one can build to measure the

similarity between these bags is the sum kernel [7]:

K(Br, Bs) =
∑

i,j

k(bri,bsj) (1)

However, this kernel tends to behave poorly when the car-

dinality of the bags increase. In fact, the sum of noisy values

(corresponding to non matching pairs (bri,bsj)) increases

quadratically whereas the sum of relevant ones (i.e. matching

pairs (bri,bsj)) increases linearly with the size of the bags.

To handle the increasing noise in the sum, one can use

a highly discriminative minor kernel, such as the Gaussian

kernel k(bri,bsj) = e
−

||bri−bsj ||
2

σ2 , with a very small stan-

dard deviation. Several kernels on bags have been proposed

to handle the noise introduced by non-matching pairs by re-

moving them from the sum [2, 7]. For instance, taking the

average of maximum matching pairs is shown to have good

performances in [7]:

K(Br, Bs) =
1

|Br|

∑

i

max
j

k(bri,bsj)

+
1

|Bs|

∑

j

max
i

k(bri,bsj) (2)

The main drawback of the kernel on bags methods is their

high computational cost, which increase quadratically with

the size of the bags. Recently, approaches have been intro-

duced trying to reduce the overhead in computation [8].

2.2. Vector representations

To get rid of the computational cost of kernels on bags, one

can pack the set of descriptors of each image into a single

vector representation. The most famous method of this kind

is the Bag of Features (BOF) approach [3]. Providing a vi-

sual codebook of k prototypes of descriptors (named “visual

words”), the produced vectors can be seen as the histogram

of visual words occurrences within the bag. Visual words are

usually obtained by k-Means clustering. Practically, each de-

scriptor in a bag is assigned to its closest visual word, and the

corresponding bin in the signature is increased.

Novel approaches are proposed to better optimize the sig-

natures [5]. They split the problem in two steps. Firstly, they

compute an assignment of each descriptor of the image to

each visual codeword. For each image, they thus obtain a

set of vectors corresponding to a projection of each descrip-

tor onto the codebook. This step is called the “coding” step.

Then, the set of assignment vectors is aggregated into a sin-

gle vector of dimension k during what is named the “pooling”

step. Taking the maximum value over the assignment values

has been shown to be a relevant pooling step in [5].

In order to be efficient, the BOF approach requires a large

codebook of several thousands visual words. However clus-

tering high dimensional feature spaces (typically 128 dimen-

sions for SIFT) into that many clusters is not an easy task. To

tackle this problem, Jégou et al. proposed signatures named

VLAD that use smaller codebooks [9]. Given a small code-

book of visual words {cn}n, they compute the vector υn for

each visual word cn, sum of difference vectors bri−cn of all

descriptors bri for which cn is the closest visual word:

υn =
∑

bri such that NN(bri)=cn

bri − cn (3)

The signature is obtained by concatenating the υn vectors.

Hence, its dimension is k × N , where k is the size of the

codebook, and N the dimension of the descriptors.

VLAD approach may be seen as a simplification of the

Fisher vectors proposed in [10]. In this method, a paramet-

ric generative model is estimated on the training set. The

description vector is the sum of gradients of the descriptors

likelihood with respect to the parameters of the model. It en-

codes the deviation in parameter space of the samples rela-

tively to the model. Generally, a Gaussian Mixture Model

(GMM) with diagonal variance matrices is used as model.

3. VLAT: VECTOR OF LOCALLY AGGREGATED

TENSORS

We propose to expend the VLAD approach by adding an ag-

gregation of the tensor product of descriptors.

As in VLAD, we first compute a visual codebook by clus-

tering the descriptor space using k-Means. Let cn be the cen-

ter (i.e. “visual word”) of cluster n. For each visual word cn,

we then compute a signature over the descriptors bri of im-

age Ir that fall into cluster n. This signature is composed of

several terms. The first term is the sum of differences between

bri and cn, like in VLAD:

T 1
n =

∑

bri such that NN(bri)=cn

bri − cn (4)

The second term is the sum of self tensor product of de-

scriptors bri centered to cn:

T 2
n =

∑

bri such that NN(bri)=cn

(bri − cn)⊗ (bri − cn)(5)

=
∑

bri such that NN(bri)=cn

(bri − cn)(bri − cn)
⊤ (6)

More generally, we could add further tensor terms to the

signature by computing higher order p of tensor products on

centered descriptors:
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Fig. 1. Images from PASCAL Visual Object Classes Challenge 2007.

T p
n =

∑

bri such that NN(bri)=cn

⊗p(bri − cn) (7)

In practice, we limit the number of terms to the second

order. The final image signature is the vector concatenating

all the T p
n flatten in vectors for all clusters n. A further ℓ2

normalization of the signatures is done to ensure that images

with different numbers of descriptors are still comparable.

3.1. Relation to kernels on bags

In order to prove the soundness of the VLAT approach, let us

recall the sum kernel on bags for the Gaussian minor kernel:

K(Br, Bs) =
∑

i,j

e
−

||bri−bsj ||
2

σ2 (8)

If we assume that bag elements are normalized to unit ℓ2-

norm, we can simplify the above expression as:

K(Br, Bs) =
∑

i,j

e
−

2

σ2 e
2<bri,bsj>

σ2 (9)

Let us now compute its Taylor expansion:

K(Br, Bs) =
∑

i,j

∞
∑

p

αp(< bri,bsj >)p (10)

With αp being the coefficients of expansion. We now re-

mark (< bri,bsj >)p is the dot product between tensors of

order p:

(< bri,bsj >)p =< ⊗pbri,⊗pbsj > (11)

As the dot product is bilinear, we can further reduce the

sum kernel to a sum of dot product between n-order tensor of

elements of the bags:

K(Br, Bs) =

∞
∑

p

αp <
∑

i

⊗pbri,
∑

j

⊗pbsj > (12)

When limiting the order of expansion to a finite number

P, the sum can be interpreted as a dot product in a space con-

catenating flatten tensors. Furthermore, the higher the order

of the expansion, the better is the approximation of the Gaus-

sian kernel. However, this comes at the expense of the dimen-

sion D of the signatures, which increases exponentially with

the order of expansion:

D =

P
∑

p=1

k ×Np (13)

The main advantage of this approach is that it reduces a

costly quadratic computation of exponentials to a simple dot

product in a well chosen higher dimensional space obtained

by non-linear mapping.

Using this interpretation, we can explain the underlying

kernel on bags for the VLAT approach. It can be seen as the

sum kernel on bags with the following minor kernel:

k(bri,bsj) =























P
∑

p=1

< ⊗p(bri − c),⊗p(bsj − c) >

if NN(bri) = NN(bsj) = c,

0 otherwise

(14)

This kernel is a sum of dot products on tensors of centered

vectors falling in the same cluster. We claim this kernel has

two advantages: firstly, it reduces the noise of the sum kernel

by removing pairs not falling in the same cluster. The higher

the number of clusters, the less non matching pairs will be

added to the sum. Secondly, the minor kernel measuring the

similarity of a matching pair is non linear, and is indeed a

good approximation of the Gaussian kernel.

4. EXPERIMENTS

We tested our method on the well known VOC2007 [11]

dataset. This challenge is known as one of the most difficult

image classification tasks. It consists in about 10000 images

and 20 different categories. Fig. 1 shows random images

taken from this dataset highlighting the variety of categories.

We extracted SIFT features on a dense grid with 3 differ-

ent scales in order to obtain bags of about 15000 SIFT for

each image (about 150 millions of descriptors for the whole



dataset). All descriptors are reduced to only 32 dimension

using Principal Component Analysis (PCA).

We compared our approach with VLAD and state of the

art BOF approach like in [5]. The same set of descriptors were

used for all methods. For the BOF approach, we generated a

codebook of k =4000 visual words, which is known to have

good performances. For the VLAD and VLAT approach, we

had the parameter k varied from 16 to 64. All vector repre-

sentations are normalized to unit ℓ2-norm. We used a standard

SVM classifier with a triangular kernel, trained on the train-

val set, and evaluated on the test set. The hyperparameter C

of the SVM is set to 10, regardless of the category. No spatial

pyramids ([4]) were used for any of the methods, but all of

them can be improved with it.

BOF VLAD VLAT

Category 4k 16 32 64 16 32 64

aeroplane 65.3 60,2 61,0 62,0 64,6 65,9 66,1

bicycle 44.5 35,3 38,6 40,3 45,3 47,2 49,2

bird 38.7 33,7 34,6 35,1 38,1 39,6 39,5

boat 49.4 53,7 55,8 55,3 57,4 59,5 58,7

bottle 18.7 13,9 16,0 17,2 17,2 18,5 19,1

bus 37.1 41,0 44,8 47,6 46,8 48,3 48,9

car 63.3 65,8 68,3 69,2 70,5 71,1 71,0

cat 33.9 35,2 37,9 40,9 40,8 41,1 43,1

chair 39.0 38,2 40,2 40,4 41,3 43,1 42,8

cow 24.8 22,7 22,7 25,3 25,2 26,9 27,3

diningtable 22.3 23,3 25,9 28,3 25,7 30,4 30,4

dog 26.9 34,1 32,4 34,0 36,6 37,0 37,3

horse 58.4 65,8 65,2 66,7 70,7 70,6 70,8

motorbike 36.2 45,2 47,2 49,2 49,6 51,1 51,3

person 75.6 75,6 77,4 78,0 79,4 80,1 79,9

pottedplant 11.9 11,9 14,4 17,0 14,9 15,8 16,7

sheep 24.2 20,2 26,1 28,6 23,1 28,2 28,2

sofa 33.9 34,3 36,2 35,0 39,4 39,7 38,9

train 57.7 60,7 64,6 64,3 66,1 66,3 65,3

tvmonitor 39.8 37,3 34,9 38,3 38,1 42,3 42,4

all 40.1 40,4 42,2 43,6 44,5 46,1 46,4

Table 1. Comparison of mAP between VLAD and VLAT for

different size of dictionaries on VOC2007 dataset.

Tab. 1 sums up the mean Average Precision (mAP) for

all methods. At first, we remark that the BOF approach is

outperformed by VLAD, even with a much simpler codebook.

This is consistent with recently reported results.

For same sized dictionaries, our method improve the re-

sults over VLAD by a fair margin of about 4% of mAP. On

the category bicycle, the improvement is even as high as 9%.

Furthermore, we find by comparing VLAD for k = 64 and

VLAT for k = 16 that our method can lead to an improvement

even with a smaller codebook, which highlight the soundness

of the approach.

5. CONCLUSION

In this paper, we introduced a new vector image represen-

tation based on the aggregation of tensor products of local

descriptors. Our representation can be seen as a generaliza-

tion of state of the art representation methods, and outper-

forms them on the very difficult dataset VOC2007 by about

4%. When using more restrictive parameters such as a smaller

codebook, our approach can still provide better results than

state of the art with less restrictive parameters.

Moreover, we provide insightful clues showing that our

method can be seen as an approximation of kernels on bags.

This further explains the good performances of our signa-

tures, and is encouraging to further developments.
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