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Abstract

This paper presents in a reasoned way our works on resource analysis by quasi-
interpretations. The controlled resources are typically the runtime, the runspace or
the size of a result in a program execution.

Quasi-interpretations allow analyzing system complexity. A quasi-interpretation
is a numerical assignment, which provides an upper bound on computed func-
tions and which is compatible with the program operational semantics. Quasi-
interpretation method offers several advantages: (i) It provides hints in order to
optimize an execution, (ii) it gives resource certificates, and (iii) finding quasi-
interpretations is decidable for a broad class which is relevant for feasible com-
putations.

By combining the quasi-interpretation method with termination tools (here term
orderings), we obtained several characterizations of complexity classes starting from
Ptime and Pspace.

1 Introduction

This paper is part of a general investigation on program complexity analysis. We
present the quasi-interpretation method which applies potentially to any formalism
that can be reduced to transition systems. A quasi-interpretation gives a kind of
measure by assigning to each symbol of a system a monotonic numerical function
over R

+. A quasi-interpretation possesses two main properties. First, the quasi-
interpretation of a constructor term is a real which bounds its size. Second, a quasi-
interpretation weakly decreases when a term is reduced.
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From a practical point of view, the quasi-interpretation method is a tool to perform
complexity analysis in a static way. Quasi-interpretations allow to establish an upper
bound on the size of intermediate values which occur in a computation. This was
used for a resource byte-code verifier in [2]. Moreover in the context of mobile-code
or of secured application, a resource certificate can be sent which consists in the
(partial) proof of the fact that a program admits a quasi-interpretation.

We restrict our study to quasi-interpretations over R+ which are bounded by some
polynomials. A consequence of Tarski’s Theorem [37] is that it is decidable whether
or not a program admits a Max-Poly quasi-interpretation which are built by com-
bining max operator of fixed arity and polynomials of bounded degrees. This leads
to an automatic synthesis procedure of a meaningful class of quasi-interpretations.

From a theoretical point of view, we combine quasi-interpretations with termination
tools. We focus on simplification orderings and we consider in particular Recursive
Path Orderings introduced by Dershowitz [16]. It turns out that we characterize the
class Ptime of functions computable in polynomial time [31] and the class Pspace
of functions computable in polynomial space [8].

This work is related to Cobham [12], Bellantoni and Cook [5], Leivant [25] and
Leivant-Marion [26] ideas to delineate complexity classes. Note that most of the
machine-independent characterizations of complexity classes have an extensional
point of view. They study functions and do not pay too much attention to the al-
gorithmic aspects. In this paper, we try an alternative way of looking at complexity
classes by focusing on algorithms. In this long-term research program, the complete-
ness problematic has moved and the nature of the problem has changed. Indeed,
the class of algorithms (with respect to some encoding), say which run in polyno-
mial time, is not recursively enumerable. So we cannot expect to characterize all
Ptime algorithms. But we think that this question could shed light on the nature of
computations and contribute to an intentional computability theory. Similar ques-
tions have been brought up by Caseiro [10], Hofmann [20] and Jones [22]. It is also
worth mentioning the studies on intentionality of Colson, see for example [13], and
of Moschovakis, as well as Gurevich.

Lastly, Marion and Péchoux suggest a new method, called sup-interpretation [32],
which is closely related to quasi-interpretations. Sup-interpretations allow to cap-
ture more algorithms, and to characterize small parallel complexity classes [9].
On the other hand, sup-interpretations do not have the nice properties of quasi-
interpretations.

The paper organization is the following. The next Section introduces the first order
functional programming language. The quasi-interpretations are defined next in Sec-
tion 3. We suggest a classification of quasi-interpretations which induces a natural
complexity hierarchy. Then, we study quasi-interpretation properties. Section 4 es-
tablishes that it is decidable if a program admits a quasi-interpretation with respect
to a broad class of polynomially bounded assignments. Section 5 defines recursive
path orderings used to prove termination of programs and some properties that we
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shall use later on. After these three sections, we state the main results at the begin-
ning of Sections 6 and 7. Roughly speaking, the first result says that programs which
terminate by product or lexicographic orderings are computable in polynomial-space.
The second result means that programs that terminate by product ordering or that
are tail recursive are computable in polynomial time. It is worth noticing that we
have to compute the program by call by value semantics with a cache in order to
have an exponential speed-up. The last Section 8 is devoted to simulations of both
space and time bounded computations.

2 First order functional programming

Term rewriting systems underpin first order functional programming, that is why
we refer to Dershowitz and Jouannaud survey [17]. Throughout the following dis-
cussion, we consider three finite disjoint sets X ,F , C of variables, function symbols
and constructors.

2.1 Syntax of programs

Definition 1 The sets of terms and the rules are defined in the following way:

(Constructor terms) T (C) ∋ v ::= c | c(v1, · · · , vn)

(terms) T (C,F ,X ) ∋ t ::= c | x | c(t1, · · · , tn) | f(t1, · · · , tn)

(patterns) P ∋ p ::= c | x | c(p1, · · · , pn)

(rules) D ∋ d ::= f(p1, · · · , pn)→ t

where x ∈ X , f ∈ F , and c ∈ C. We shall use a type writer font for function symbols
and a bold face font for constructors.

Definition 2 A program is a quadruplet f = 〈X , C,F , E〉 such that E is a finite set
of D-rules. Each variable in the right-hand side of a rule also appears in the left
hand side of the same rule. We distinguish among F a main function symbol whose
name is given by the program name f.

The set of rules induces a rewriting relation →. The relation
∗
→ is the reflexive

and transitive closure of →. Throughout, we consider orthogonal programs which
is a sufficient condition in order to be confluent. Following Huet [21], the program
rules satisfy both conditions: (i) Each rule f(p1, · · · , pn) → t is left-linear, that is a
variable appears only once in f(p1, · · · , pn), and (ii) there are no two left hand-sides
which are overlapping. Lastly, a ground term is a term with no variables.
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c ∈ C ti ↓ wi
(Constructor)

c(t1, · · · , tn) ↓ c(w1, · · · , wn)

ti ↓ wi f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = wi rσ ↓ w
(Function)

f(t1, · · · , tn) ↓ w

Fig. 1. Call by value semantics with respect to a program 〈X , C,F , E〉.

2.2 Semantics

Orthogonal programs define a class of deterministic first order functional programs.
The domain of the computed functions is the constructor term algebra T (C).

A substitution σ is a mapping from variables to terms. We say that it is a constructor
substitution when the range of σ is T (C). We note S the set of these constructor
substitutions.

We consider a call by value semantics which is displayed in Figure 1. The mean-
ing of t ↓ w is that t evaluates to a constructor term w. The program f computes
a partial function JfK : T (C)n → T (C) defined as follows. For every v1, · · · , vn ∈
T (C), JfK(v1, · · · , vn) = w iff f(v1, · · · , vn) ↓ w. Otherwise, it is undefined and
JfK(v1, · · · , vn) = ⊥.

Notice that if t ↓ w then t
∗
→w, because programs are confluent.

3 Quasi-interpretations

3.1 Quasi-interpretation definition

To approach the resource control problem, we suggest the concept of quasi-interpretation
which plays the main role in this study. Quasi-interpretations have been introduced
by Marion [29,30], Bonfante [6], and Marion-Moyen [31]. There are related to inter-
pretation to prove termination, an in particular to [7].

The fundamental property of a quasi-interpretation is that it is a numerical approxi-
mation from above of the size of each intermediate values (that is constructor terms),
which appears in a reduction process. However, a quasi-interpretation does not give
an upper bound on a term size which appears in a reduction process. A typical ex-
ample is the lcs example in 6 whose reduction involved terms of exponential size,
but the lcs program admits an additive quasi-interpretation, as we shall see later.

Let R+ be the set of non-negative real numbers. An assignment L− M is a mapping
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from constructors and function symbols, that is C
⋃

F , such that for each symbol f
of arity n it yields

(1) An non-negative real number Lc M of R+, for every symbol c of arity 0.
(2) a n-ary function Lb M : (R+)n → R

+ for every symbol b of arity is n > 0.

Take a denumerable sequence X1, . . . , Xn, . . .We extend an assignment L− M to terms
canonically. Given a term t with n variables x1, . . . , xn, the assignment Lt M denotes
a function from (R+)n to R

+ and is defined as follows:

Lxi M = Xi xi ∈ X

Lb(t1, · · · , tn) M = Lb M(Lt1 M, · · · , Ltn M)

An assignment satisfies the subterm property if for any i = 1, n and any X1, · · · , Xn

in R
+, we have

Lb M(X1, · · · , Xn) ≥ Xi (1)

A direct consequence of the subterm property is that for any ground term s and any
subterm t of s, Ls M ≥ Lt M.

An assignment is weakly monotone if for any symbol b, Lb M is an increasing (not
necessarily strictly) function with respect to each variable. That is, for every symbol
b and for all i = 1, n if Xi ≥ Yi, we have Lb M(X1, · · · , Xn) ≥ Lb M(Y1, · · · , Yn).

A substitution σ is defined over a term t, if the domain of σ contains all variables of t.
Given two terms t and u, we say that Lt M ≥ Lu M if for every constructor substitution
σ defined over t and u, we have Ltσ M ≥ Luσ M.

Definition 3 (Quasi-interpretation) A quasi-interpretation L− M of a program f

is a weakly monotonic assignment satisfying the subterm property such that for each
rule l → r

Ll M ≥ Lr M

Throughout, when we shall write “quasi-interpretation”, we always mean “quasi-
interpretation of a program f = 〈X , C,F , E〉”.

It is worth noticing that the inequalities that defines a quasi-interpretation are not
strict which differs from the notion of interpretation used to prove termination.

Proposition 4 Assume that L− M is a quasi-interpretation of a program f. For any
ground terms u and v such that u

∗
→v, we have Lu M ≥ Lv M

PROOF. A context is a particular term that we write C[⋄] where ⋄ is a new variable.
The substitution of ⋄ in C[⋄] by a term t is noted C[t].
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The proof goes by induction on the derivation length n. For this, suppose that
u = u0 → . . .→ un = v. If n = 0 then the result is immediate. Otherwise n > 0 and
in this case, there is a rule f(p1, · · · , pn)→ t and a constructor substitution σ such
that u0 = C[f(p1, · · · , pn)σ] and u1 = C[tσ]. Since L− M is a quasi-interpretation,
we have Ltσ M ≤ Lf(p1, · · · , pn)σ M. The weak monotonicity property implies that
LC[tσ] M ≤ LC[f(p1, · · · , pn)σ] M. We conclude by induction hypothesis. 2

Example 5 Given a list l of tally natural numbers, sort(l) sorts the elements of l
by insertion. The constructor set is C = {tt,ff,0, suc,nil, cons}.

if tt then x else y → x

if ff then x else y → y

0 < suc(y)→ tt

x < 0→ ff

suc(x) < suc(y)→ x < y

insert(a,nil)→ cons(a,nil)

insert(a, cons(b, l))→ if a < b then cons(a, cons(b, l))

else cons(b, insert(a, l))

sort(nil)→ nil

sort(cons(a, l))→ insert(a, sort(l))

Constructors admit the following quasi-interpretation.

Ltt M = Lff M = L0 M = Lnil M = 0

Lsuc M(X) = X + 1

Lcons M(X, Y ) = X + Y + 1

And function symbols

Lif then else M(X, Y, Z) = max(X, Y, Z)

L< M(X, Y ) = max(X, Y )

Linsert M(X, Y ) = X + Y + 1

Lsort M(X) = X

This example illustrates two important facts. Quasi-interpretations can be max-
functions like in the case of <. And, the quasi-interpretations of both sides of a
rule can be the same. For example take the last rule. We see that

Lsort(cons(a, l)) M = A+ L+ 1 = Linsert(a, sort(l)) M

Example 6 Given two binary words u and v over the constructor set {a, b, ǫ},
lcs(u, v) returns the the length of the longest common subsequence of u and v.
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The expression lcs(ababa, baaba) evaluates to suc4(0) because the length longest
common subsequence is 4 (take baba).

max(n,0)→ n

max(0, m)→ m

max(suc(n), suc(m))→ suc(max(n,m))

lcs(ǫ, y)→ 0

lcs(x, ǫ)→ 0

lcs(i(x), i(y))→ suc(lcs(x, y)) i ∈ {a, b}

lcs(i(x), j(y))→ max(lcs(x, j(y)), lcs(i(x), y)) i 6= j, j ∈ {a, b}

It admits the following quasi-interpretation:

• Lǫ M = L0 M = 0
• La M(X) = Lb M(X) = Lsuc M(X) = X + 1
• Llcs M(X, Y ) = Lmax M(X, Y ) = max(X, Y )

3.2 Taxonomy of Quasi-interpretations

Our aim is to study feasible computations. That is why we confine ourselves to pro-
grams admitting quasi-interpretations which are bounded by polynomials. We insist
that assignments are bounded by polynomials, but are not necessarily polynomials.

Definition 7 An assignment L− M is polynomial if for each symbol b ∈ F
⋃

C, Lb M
is a function bounded by a polynomial.

Next, we classify polynomial assignment according to the rate of growth of construc-
tor assignments.

Definition 8 Let c be a constructor of arity n > 0.

• An assignment of c is additive (or of kind 0) if

Lc M(X1, · · · , Xn) =
n
∑

i=1

Xi + α

where α ≥ 1.
• An assignment of c is affine (or of kind 1) if

Lc M(X1, · · · , Xn) =
n
∑

i=1

βiXi + α α ≥ 1

where the βi’s are constants of R+ and α > 1.
• An assignment c is multiplicative (or of kind 2) if

Lc M(X1, · · · , Xn) = Q(X1, · · · , Xn) + α α ≥ 1
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where Q is a polynomial.

We classify polynomial assignments by the kind of assignments given to construc-
tors, and not to function symbols. If each constructor assignment is additive (resp.
affine, multiplicative) then the assignment is additive (resp. affine, multiplicative)
assignment.

A program f admits an additive quasi-interpretation L M if it is an additive assign-
ment. We shall also just say that f is additive, without explicitly mentioning the
additive quasi-interpretation tied to it.

Similarly, A program f admits an affine (resp. a multiplicative) quasi-interpretation
L M if it is an affine (resp. a multiplicative). We shall also just say that f is affine
(resp. multiplicative).

In both previous examples, programs admit a polynomial quasi-interpretation be-
cause each quasi-interpretation is bounded by a polynomial. In example 5, the quasi
interpretation of the function symbol < is not a polynomial. The insertion sort pro-
gram admits an additive quasi-interpretation because each constructor (that is the
symbol in {tt,ff , 0, suc,nil, cons}) admits an additive assignment. On the other
hand, the assignment of the function symbol < is not additive but it is does not
matter because it is not a constructor. For the same reason, the lcs example admits
also an additive quasi-interpretation.

Example 9 We give three programs which illustrate the three kinds of program
classes delineated by quasi-interpretations.

add(0, y)→ y (2)

add(suc(x), y)→ suc(add(x, y)) (3)

mult(0, y)→ 0 (4)

mult(suc(x), y)→ add(y, mult(x, y)) (5)

These rules define the addition and the multiplication. They admit the following
additive quasi-interpretation.

L0 M = 0 (6)

Lsuc M(X) = X + 1 (7)

Ladd M(X, Y ) = X + Y (8)

Lmult M(X, Y ) = X × Y (9)

So, addition and multiplication are additive programs (additivity only refers to the
interpretation of constructors). Now, in order to define the exponential, we introduce
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another successor s which has an affine assignment.

exp(0)→ suc(0) (10)

exp(s(x))→ add(exp(x), exp(x)) (11)

The quasi-interpretations of the new symbols are:

Ls M(X) = 2X + 1 (12)

Lexp M(X) = X + 1 (13)

The above program which defines the exponential admits an affine quasi-interpretation.
We see that the domain of exp and its co-domain are not the same. Indeed, the do-
main is generated by {0, s} whose quasi-interpretation is affine and the co-domain
is generated by {0, suc} whose quasi-interpretation is additive. We shall see later on
that it is necessary to have two successors with different kinds of quasi-interpretations.
Similar observations have be done in [7] and on tiering system in which an argument
of tier 1 produces an output of tier 0. We think that it is worth to investigate this
analogy in order to interpret tiering concepts by quasi-interpretations.

We define the doubly-exponential function, i.e. n 7→ 22
n

, as follows (here we need
yet another successor, s′).

dexp(0)→ suc(suc(0)) (14)

dexp(s′(x))→ mult(dexp(x), dexp(x)) (15)

and

Ls′ M(X) = (X + 2)2 (16)

Ldexp M(X) = X + 2 (17)

Again we see that the domain and co-domain are not the same. The domain admits
a multiplicative quasi-interpretation and the co-domain has an additive one.

Other classes of assignments could be introduced such as elementary or primitive
recursive assignments, but we will not discuss about them in this paper. This type
of extensions is related to Lescanne’s paper [28] about interpretation for termination
proofs.

3.3 Elementary properties of assignments

We study now some quantitative properties of assignments when they are of the
kind mentioned above. The size |t| of a term t is defined by

|t| =







0 if t is 0-ary symbol

1 +
∑

i=1,n |ti| if t = f(t1, . . . , tn)

9



Proposition 10 Assume that L M is an additive, an affine or a multiplicative as-
signment. For any constructor term t in T (C), we have |t| ≤ Lt M.

PROOF. The proof goes by induction on the size of t. 2

Proposition 11 Assume that L M is an additive, an affine or a multiplicative quasi-
interpretation of a program f. For any term u and any constructor term t ∈ T (C),
if u

∗
→t, we have |t| ≤ Lu M.

PROOF. Proposition 4 implies that Lu M ≥ Lt M. Then from Proposition 10, we have
|t| ≤ Lt M. So, |t| ≤ Lu M. 2

Proposition 12

• If L M is an additive assignment, for any constructor term t in T (C),
we have Lt M ≤ k × |t|.
• If L M is an affine assignment, for any constructor term t in T (C),
we have Lt M ≤ 2k×|t|.
• If f is a multiplicative program, for any constructor term t in T (C),

we have Lt M ≤ 22
k×|t|

.

where in each case k is a constant which depends on the assignment L M given to
constructors.

PROOF. The proof goes by induction on the size of t. 2

It is worth noticing that the above Proposition illustrates a general phenomenon
that we shall see all along this paper. Roughly speaking, the complexity increases
by an exponential when we jump from additive to affine quasi-interpretations, or
from affine to multiplicative ones.

3.4 Call-trees

We present now call-trees which are a tool that we shall use all along. A call-tree
gives a static view of an execution which captures all function calls. Hence, we can
study dependencies between function calls without taking care of the extra details
provided by the underlying rewriting relation.

Take a program f = 〈X , C,F , E〉. A state of a program f is a tuple 〈h, v1, · · · , vp〉
where h is a function symbol of F of arity p and v1, . . . , vp are constructor terms
of T (C). Throughout, we may omit to mention the program f when the context is
clear.
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Assume that η1 = 〈h, v1, · · · , vp〉 and η2 = 〈g, u1, · · · , um〉 are two states. A transition
is a triplet η1

e
; η2 such that:

(i) e is a rule h(q1, · · · , qp)→ t of E ,
(ii) there is a constructor substitution σ such that qiσ = vi for all 1 ≤ i ≤ p,
(iii) there is a subterm g(s1, · · · , sm) of t such that for any 1 ≤ i ≤ m, siσ

∗
→ui and

ui ∈ T (C).

The reflexive transitive closure of ∪e∈E
e
; is

∗
;.

Proposition 13 Let L− M be a quasi-interpretation of a program f. Assume that
〈h, v1, · · · , vp〉 and 〈g, u1, · · · , um〉 are two states such that

〈h, v1, · · · , vp〉
∗
; 〈g, u1, · · · , um〉

Then we have Lg(u1, · · · , um) M ≤ Lh(v1, · · · , vp) M and also Lui M ≤ Lh(v1, · · · , vp) M for
all 1 ≤ i ≤ m.

PROOF. The hypothesis 〈h, v1, · · · , vp〉
∗
; 〈g, u1, · · · , um〉 means that there is a

term t such that h(v1, · · · , vp)
∗
→t and that g(u1, · · · , um) is a subterm of t. Proposi-

tion 4 states Lh(v1, · · · , vp) M ≥ Lt M. Since a quasi-interpretation satisfies the subterm
property, we have Lui M ≤ Lg(u1, · · · , um) M ≤ Lh(v1, · · · , vp) M. 2

Next, we define the 〈g, u1, · · · , um〉-call tree as a tree where (i) 〈g, u1, · · · , um〉 is
the root. (ii) the set of nodes is {η | 〈h, v1, · · · , vp〉

∗
; η} and (iii) there is an edge

between the state η1 and the state η2 if η1
e
; η2.

Some state may actually appear several time in the tree. This happen typically in
two cases: when there is a loop in the computation or when there are two different
sequences of call leading to the same one (such as with the Fibonacci function). We
do not merge identical states in the call-tree, hence nodes are occurrences of a state
rather that a state alone.

Keeping several occurrences of the same state is useful because here we need to
mimic the call by value semantics of Figure 1. This semantics actually performs
identical calls several times. In Section 7 identical nodes in a call tree will be merged
and the tree will thus turn into a directed acyclic graph.

The size of a state 〈g, u1, · · · , um〉 is
∑m

i=1 |ui|.

Lemma 14 Let L− M be an additive (or affine, or multiplicative) quasi-interpretation
of a program f. The size of each node of the 〈f, t1, · · · , tn〉-call graph is bounded by
d× Lf(t1, · · · , tn) M where d is the maximal arity of a function symbol in f.

PROOF. Suppose that 〈g, u1, · · · , um〉 is a state of the 〈f, t1, · · · , tn〉-call graph. It
follows from Proposition 13 that Lui M ≤ Lf(t1, · · · , tn) M. As each ui is a constructor
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term, Proposition 10 entails that |ui| ≤ Lui M. Therefore

|〈g, u1, · · · , um〉| =
∑

i=1,n

|ui| ≤ d× Lf(t1, · · · , tn) M

where d is the maximal arity of a function symbol. 2

3.5 Upper bound on the complexity

It turns out that we can now state a quite important practical point. Indeed, con-
sider an additive program f. Then, the quasi-interpretation of Lf(t1, · · · , tn) M is
bounded by a polynomial in the input size, that is in

∑

i=1,n(|ti|). Next, by com-
bining Lemma 14, we deduce that the size of each state of the 〈f, t1, · · · , tn〉-call
tree is bounded by a polynomial in the input size. Because, the size of each state is
bounded by the quasi-interpretation of the root.

Theorem 15 Assume that f is a program. For any constructor terms t1, . . . , tn,

• If f is an additive program, the size of each state of the 〈f, t1, · · · , tn〉-call tree is
bounded by P (m) where P is some polynomial.
• If f is an affine program, the size of each state of the 〈f, t1, · · · , tn〉-call tree is
bounded by 2k×m where k is some constant.
• If f is a multiplicative program, the size of each state of the 〈f, t1, · · · , tn〉-call tree
is bounded by 22

k×m

where k is some constant.

where m = maxi=1,n |ti|.

PROOF. It is a consequence of Lemma 14 and Proposition 12. 2

From this result, we can see that the halting problem on a given input is decidable,
thus leading to a potential runtime detection of non-termination. In [1], Amadio
wrote a first proof of the result above.

Theorem 16 There is an evaluation procedure which, given an additive program
f and given n constructor terms t1, · · · , tn, computes the value w if f(t1, · · · , tn) ↓ w
and otherwise returns ⊥, that is if the evaluation does not terminate. This evaluation
procedure runs in exponential time, i.e. in 2P (maxn

i=1 |ti|), where P is a polynomial.

PROOF. We build a call by value evaluator with a deterministic Turing machine
with an extra tape which behaves as a stack in order to evaluate f(t1, · · · , tn). The
stack is used for the recursive calls and the normal tapes contain the current context.
Actually, a call by value procedure computes the value of each state of 〈f, t1, · · · , tn〉-
call graph and for this we perform breadth-first exploration. A context corresponds
to a state and the number of states that we have to memorize is bounded by the
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width of the call-graph. And the width is bounded by te maximal arity d of a function
symbol. So, the space use on the space is bounded by k′ × d × Lf(t1, · · · , tn) M for
some constant k′. (Notice that here, we do not take into consideration the size of
the stack.) Cook’s theorem [14] implies that the call by value evaluator can be then
simulated in time 2K×Lf(t1,··· ,tn) M for some constant K (which depends on k′ and d).
Since the program admits a polynomial quasi-interpretation, the time is bounded
by 2P (maxn

i=1 |ti|), where P (X) = K × Lf M(kX, . . . , kX) by Proposition 12. 2

Corollary 17 There is an evaluation procedure which given an affine (resp. multi-
plicative) program f and n constructor terms t1, · · · , tn, computes the value w if t ↓ w

and otherwise returns ⊥ in double exponential time, i.e. in 22
K′×maxn

i=1
|ti|

(resp. in

triple exponential time, i.e. in 22
2
K′′×maxn

i=1
|ti|

), where K ′ and K ′′ are two constants.

3.6 Uniform Termination is undecidable

Quasi-interpretations do not ensure termination. Indeed, the rule f(x) → f(x) ad-
mits the quasi-interpretation Lf M(X) = X but does not terminate. Moreover, quasi-
interpretations do not give enough information to decide uniform termination as
stated in the following theorem.

Theorem 18 It is undecidable to know whether a program which admits a polyno-
mial quasi-interpretation, terminates or not on all inputs.

PROOF. Senizergues proved in [36] that the uniform termination of non-increasing
semi-Thue systems is undecidable. These semi-Thue systems are a particular case of
rewriting systems with a quasi-interpretation (simply take the identity polynomial
for the unary symbols and 1 for the unique constant ǫ) . The conclusion follows
immediately. 2

4 Synthesis of Quasi-interpretations

We consider now the problem of finding program quasi-interpretations, which is an
important practical question. For this, we restrict assignments to the class Max-
Poly. The class of Max-Poly functions contains constant functions ranging over
non-negative rationals and is closed by projections, maximum, addition, multiplica-
tion and composition.

We establish as a direct consequence of Tarski’s Theorem [37] that finding a program
quasi-interpretation, which belongs to the class Max-Poly over non-negative real
numbers, is decidable, when degrees are fixed. Indeed, Tarski demonstrated that
the first-order theory for reals containing the addition +, the multiplication ×, the
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equality =, the order > with variables over reals and rational constants is decidable.
On the other hand, the same question over natural numbers is undecidable because
it is a consequence of Matiyasevich’s Theorem [33].

We consider two related problems. The first one is the verification problem:

inputs: A program f and an assignment L− M.
problem: Is L− M a quasi-interpretation for f?

The second one is the synthesis problem:

input: A program f.
problem: Is there an assignment L− M which is a quasi-interpretation for f?

Before proceeding to the main discussion, it is convenient to have a normal repre-
sentation of function in Max-Poly.

Proposition 19 (Normalization) A Max-Poly function Q can always be ex-
pressed as:

Q(X1, . . . , Xn) = max(P1(X1, . . . , Xn), . . . , Pk(X1, . . . , Xn))

where each Pi is a polynomial. We say that the max-degree of Q is k and the degree
of Q is the maximum degree of the polynomials P1, . . . , Pk.

PROOF. This is due to the fact that max is distributive with + and × over the
non-negative reals. 2

Now consider a Max-Poly assignment L− M of a program f. Take a rule l → r and
define

Sl→r = ∀X1, . . .Xp ≥ 0 :
∨

i=1..n

∧

j=1..m

Pi(X1, . . . , Xp) ≥ Qj(X1, . . . , Xp)

where Ll M = max(P1, . . . , Pn), Lr M = max(Q1, . . . , Qm) and X1, . . . , Xp are all the
variables of Ll M. (Recall that the variables of Lr M are also variables of Ll M.)

We see that the first order formula Sl→r is true iff Ll M ≥ Lr M.

Theorem 20 The verification problem for Max-Poly assignments is decidable in
exponential time in the size of the program.

PROOF. In order to solve the verification problem, we have to decide whether or
not the following first order formula is true.

SE =
∧

l→r∈E

Sl→r for a given assignment
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This is performed by Tarski’s decision procedure. Basu, Pollack and Roy [4] estab-
lished that such procedure is at most exponential in the number of quantifiers. In
our case, it corresponds to the maximum arity of symbols. 2

Theorem 21 The synthesis problem for Max-Poly assignment of bounded degree
and bounded max-degree is decidable in doubly exponential time in the size of the
program.

PROOF. Without loss of generality, we restrict ourselves to unary functions. Func-
tions with many variables are handled in the same way but with more coefficients and
indexes. By Theorem hypothesis, we assume that the degree is d and the max-degree
is k.

Suppose that there are n symbols, constructors or functions, b1, . . . , bn. The assign-
ment of bi is of the form

Lbi M(X) = max(P bi
1 (X), . . . , P bi

k (X)) where P bi
m =

d
∑

j=0

abi,m,jX
j

Now, we have to guess polynomial coefficients by proving the validity of the formula:

∃ab1,1,0 . . . ab1,k,d, . . . , abn,1,0, . . . , abn,k,d : SE

where SE is defined in the previous proof. Lastly, we need to verify that the subterm
and the weak monotonicity properties and the fact that the coefficient of degree 0
for constructors is ≥ 1.

The total number of quantifiers is k × (d + 1) × n. So, the decision procedure is
doubly exponential in the size of the program. 2

Remark 22 The quasi interpretations of all examples belong to the classMax-Poly.
Actually, it appears that the class of Max-Poly quasi-interpretations is sufficient
for daily programs. In practice, each program appears to admit a Max-Poly quasi-
interpretation with low degrees, usually no more than 2 for both the degree of poly-
nomials and the arity of max.

Although a solution of the decision of Max-Poly synthesis problem is presented
above, yet the procedure for carrying out the decision is complex. There is need
of specific methods for finding quasi-interpretations which are in a smaller class
but which are relevant. For this reason, Amadio [1] considered the max-plus algebra
over rational numbers. A program which admits a quasi-interpretation over the max-
plus algebra are related to non-size increasing according to Hofmann [19]. Amadio
established that the synthesis of max-plus quasi-interpretation is in NPtime-hard
and NPtime-complete in the case of multi-linear assignments.
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5 Termination

We now focus on termination which plays the role of a mold capturing certain algo-
rithm patterns. We obtain a finer control resource by the combination of termination
tools and quasi-interpretations. Here, we consider Recursive Path Orderings which
are simplification orderings and so well-founded. Among the pioneers of this subject,
there are Plaisted [34], Dershowitz [16], Kamin and Lévy [23]. Finally, Krishnamoor-
thy and Narendran in [24] have proved that deciding whether a program terminates
by Recursive Path Orderings is a NP-complete problem.

5.1 Extension of an ordering to sequences

Suppose that� is a partial ordering and ≺ its strict part. We describe two extensions
of ≺ to sequences of the same length.

Definition 23 The product extension 1 of ≺ over sequences, noted ≺p, is defined
as follows.
We have (m1, · · · , mk) ≺

p (n1, · · · , nk) if and only if (i) ∀i ≤ p,mi � ni and (ii)
∃j ≤ k such that mj ≺ nj.

Definition 24 The lexicographic extension of ≺, noted ≺l, is defined as follows.
We have (m1, · · · , mk) ≺

l (n1, · · · , nk) if and only if there exists an index j such
that (i) ∀i < j,mi � ni and (ii) mj ≺ nj.

The product ordering of sequences in a restriction of the more usual multi-set order-
ing of sequences. We do not need here the full power of the multi-set ordering mainly
because we only compare sequences of the same length will the multi-set ordering
works on sequences of any length.

Notice that the product ordering of sequences is also a restriction of the lexicographic
ordering, that is two sequences ordered by the product extension are also ordered
lexicographically.

5.2 Recursive path ordering with status

Let ≺F be an ordering on F and ≈F be a compatible equivalence relation such that
if f ≈F g then f and g have the same arity. The quasi-ordering �F=≺F ∪ ≈F is a
precedence over F .

1 Unlike [31], we have decided to present the product extension instead of the permutation
extension. This simplifies the presentation without loss of generality. Actually, there is a
tedious procedure to transform the rules in order to prove termination by product ordering.
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u = ti or u ≺rpo ti
f ∈ F

⋃

C
u ≺rpo f(. . . , ti, . . .)

∀i ui ≺rpo f(t1, · · · , tn)
f ∈ F , c ∈ C

c(u1, · · · , um) ≺rpo f(t1, · · · , tn)

∀i ui ≺rpo f(t1, · · · , tn) g ≺F f
f, g ∈ F

g(u1, · · · , um) ≺rpo f(t1, · · · , tn)

(u1, · · · , un) ≺
st(f)
rpo (t1, · · · , tn) f ≈F g ∀i ui ≺rpo f(t1, · · · , tn)

f, g ∈ F
g(u1, · · · , un) ≺rpo f(t1, · · · , tn)

Fig. 2. Definition of ≺rpo

Definition 25 A status st is a mapping which associates to each function symbol
f of F a status st(f) in {p, l}. A status is compatible with a precedence �F if it
satisfies the fact that if f ≈F g then st(f) = st(g).

Throughout, we assume that status are compatible with precedences.

Definition 26 Given a precedence �F and a status st, the recursive path ordering
≺rpo is defined in Figure 2.

When st(f) = p, the status of f is said to be product. In that case, the arguments
are compared with the product extension of ≺rpo. Otherwise, the status is said to
be lexicographic.

A program is ordered by ≺rpo if there is a precedence on F and a status st such that
for each rule is decreasing, that is each rule l → r, we have r ≺rpo l.

Theorem 27 (Dershowitz [16]) Each program which is ordered by ≺rpo termi-
nates on all inputs.

Example 28

(1) The shuffle program rearranges two words. It terminates with a product status.

shuffle(ǫ, y)→ y

shuffle(x, ǫ)→ x

shuffle(i(x), j(y))→ i(j(shuffle(x, y))) i, j ∈ {0,1}

(2) The following program reverses a word by tail-recursion. It terminates with a
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lexicographic status.

reverse(ǫ, y)→ y

reverse(i(x), y)→ reverse(x, i(y)) i ∈ {0,1}

(3) The program sort of Example 5 terminates if each function symbol has a prod-
uct status and by setting the precedence if then else ≺F insert ≺F sort

(4) The lcs program of Example 6 is ordered by taking max ≺F lcs, and both
symbols have a product status.

5.3 Extensional Characterization

The orderings considered are special cases of more general ones and in particular of
Multiset Path Ordering and Lexicographic Path Ordering. Nevertheless, they charac-
terize the same set of functions. Say that a RPOPro-program is a program in which
each function symbol has a product status. Following the result of Hofbauer [18], we
have 2

Theorem 29 The set of functions computed by RPOPro-programs is exactly the set
of primitive recursive functions.

Now, say that a RPOLex-program is a program in which each function symbol has a
lexicographic status. Weiermann [38] has established that 3

Theorem 30 The set of functions computed by RPOLex-programs is exactly the set
of multiple-recursive functions.

5.4 Consequences of termination proofs

We write u E t to say that u is a subterm of t.

Proposition 31

(1) For each constructor term t and u, u ≺rpo t iff u ⊳ t.
(2) For each constructor term u1, · · · , un and t1, · · · , tn,

(u1, · · · , un) ≺
x
rpo (t1, · · · , tn) implies (u1, · · · , un) ⊳

x (t1, · · · , tn), where x is a
status p or l and ⊳x is the corresponding extension based on the subterm relation.

2 Since the product ordering is a restriction of the multiset ordering, any RPOPro-program
is also terminating by the more usual MPO termination ordering. Conversely, as stated
above, there is a (somewhat tedious) procedure to turn MPO programs into RPOPro-
programs.
3 here, the RPOLex-programs are exactly the programs terminating by the usual LPO
termination ordering.
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(3) For each constructor term u1, · · · , un and t1, · · · , tn,
(u1, · · · , un) ≺

x
rpo (t1, · · · , tn) implies (|u1|, · · · , |un|) <x (|t1|, · · · , |tn|), where

x is a status p or l and <x is the corresponding extension of the ordering over
natural numbers.

PROOF. The proofs go by induction on the size of terms. 2

Remark 32 The ordering ≺rpo is not stable for constructor contexts. Indeed, we
have 1(ǫ) ≺rpo 0(1(ǫ)), but 1(1(ǫ)) ≺rpo 1(0(1(ǫ))) does not hold. So, ≺rpo is not
a reduction ordering but there is no rewriting inside constructor terms.

Lemma 33 Let f be a program which is ordered by ≺rpo, α be the number of function
symbols and d be the maximal arity of function symbols. Assume that the size of each
state of the 〈f, t1, · · · , tn〉-call tree is strictly bounded by A. Then the following facts
hold:

(1) If 〈f, t1, · · · , tn〉
∗
; 〈g, u1, · · · , um〉 then

(a) g ≺F f or

(b) g ≈F f and (u1, · · · , um) ≺
st(f)
rpo (t1, · · · , tn).

(2) If 〈f, t1, · · · , tn〉
∗
; 〈g, u1, · · · , um〉 and g ≈F f then the number of states be-

tween the states 〈f, t1, · · · , tn〉 and 〈g, u1, · · · , um〉 is bounded by Ad.
(3) The length of each branch of the call-tree is bounded by α×Ad.

PROOF.

(1) Because the rules of the program decrease by ≺rpo.
(2) Suppose that 〈h, v1, · · · , vp〉 is a state between 〈f, t1, · · · , tn〉 and 〈g, u1, · · · , um〉.

Due to the first point of this lemma, we have h ≈F f and (v1, · · · , vp) ≺
st(f)
rpo

(t1, · · · , tn). So, by proposition 31(3), we have (|v1|, · · · , |vp|) <
st(f) (|t1|, · · · , |tn|).

Since the size of each component is bounded by A and n ≤ d, the length of the
decreasing chain is bounded by Ad.

(3) In each branch, the previous point of the Lemma claims that there are at most
Ad states whose function symbols have the same precedence. Next, there are Ad

states whose function symbols have the precedence immediately below, and so
on. As there are only α function symbols, the length of the branch is bounded
by α× Ad.

2
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6 Characterizing space bounded computation

6.1 Polynomial space computation

Definition 34 A RPOQI-program is a program that (i) admits a quasi-interpre-
tation and (ii) which terminates by ≺rpo.

Theorem 35 The set of functions computed by additive RPOQI-programs is exactly
the set of functions computable in polynomial space.

The upper-bound on space-usage is established by Theorem 38. The completeness
of this characterization is established by Theorem 55.

Example 36 The Quantified Boolean Formula (QBF) problem is Pspace complete.
It consists in determining the validity of a boolean formula with quantifiers over
propositional variables. Without loss of generality, we restrict formulae to ¬,∨, ∃.
QBF problem is solved by the following program.

not(tt)→ ff not(ff)→ tt

or(tt, x)→ tt or(ff, x)→ x

0 = 0→ tt suc(x) = 0→ ff

0 = suc(y)→ ff suc(x) = suc(y)→ x = y

in(x,nil)→ ff in(x, cons(a, l))→ or(x = a, in(x, l))

verify(Var(x), t)→ in(x, t)

verify(Not(φ), t)→ not(verify(φ, t))

verify(Or(φ1, φ2), t)→ or(verify(φ1, t), verify(φ2, t))

verify(Exists(n, φ), t)→ or(verify(φ, cons(n, t)), verify(φ, t))

qbf(φ)→ verify(φ,nil)

Booleans are encoded by {tt,ff}, variables are encoded by unary integers which are
generated by {0, suc}. Formulae are built from {Var,Not,Or,Exists}. All these
symbols are constructors. The main function symbol is qbf.

Rules are ordered by ≺rpo by putting

{not, or, = } ≺F in ≺F verify ≺F qbf

and each function symbol has a product status except verify which has a lexico-
graphic status.
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They admit the following additive quasi-interpretations :

Lc M = 0 where c is a constructor of arity 0

Lc M(X1, · · · , Xn) = 1 +
n
∑

i=1

Xi where c is a constructor of arity > 0

Lverify M(Φ, T ) = Φ + T

Lqbf M(Φ) = Φ + 1

Lg M(X1, · · · , Xn) =
n

max
i=1

Xi for other function symbols

6.2 RPOQI-programs are Pspace computable

We are now establishing that a RPOQI-program f is computable in polynomial
space.

Lemma 37 Let f be a RPOQI-program. For each constructor term t1, · · · , tn, the
space used by a call by value interpreter to compute f(t1, · · · , tn) is bounded by a
polynomial in Lf(t1, · · · , tn) M.

PROOF. Take an innermost call by value interpreter, like the one of Figure 1.
It builds recursively in a depth first manner the 〈f, t1, · · · , tn〉-call tree, evaluates
nodes and backtracks. Put A = Lf(t1, · · · , tn) M. The interpreter only needs to store
states along a branch of the call-tree. Each state as well as the intermediate results
are bounded by O(A). The maximal length of a branch is bounded by α × Ad by
Lemma 33(3). The number of states and results to memorize for the depth first
search is bounded by α × Ad+1 × β where β is the maximal size of a rule. In other
words, β is an upper bound on the width of the call-tree. Therefore, the space used
by the interpreter is bounded by O(Ad+1). 2

Theorem 38 Let f be an additive RPOQI-program. For each constructor term t1, · · · , tn,
the space used by a call by value interpreter to compute f(t1, · · · , tn) is bounded by
a polynomial in maxni=1 |ti|.

PROOF. By Proposition 12, we have Lti M ≤ O(|ti|). Because quasi-interpretations
are polynomially bounded, we have Lf(t1, · · · , tn) M ≤ P (maxni=1 |ti|), for some poly-
nomial P . So the space is bounded by O(P (maxni=1 |ti|)

d+1) following Lemma 37. 2

6.3 Beyond polynomial space

The kind of constructor quasi-interpretations provides an upper bound on the space
required to evaluate a program.
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Theorem 39

• The set of functions computed by affine RPOQI-programs is exactly the set of
functions computable in linear exponential space, that is in space bounded by 2O(n)

where n is the size of the inputs.
• The set of functions computed by multiplicative RPOQI-programs is exactly the
set of functions computable in linear double exponential space, that is in space
bounded by 22

O(n)
where n is the size of the inputs..

Proofs are very similar to the one of Theorem 38. The kind of quasi-interpretation
gives the different upper-bounds on the space-usage as established in Proposition 12.
The converse is established by Theorems 58 and 61.

7 Characterizing time bounded computation

7.1 Polynomial time computation

Definition 40 A function symbol f is linear in a program terminating by ≺rpo if for
each rule f(p1, · · · , pn)→ r, then there is at most one occurrence in r of a function
symbol g with the same precedence than f, that is f ≈F g.

Definition 41

(1) A RPOQI
Pro-program is a program that (i) admits a quasi-interpretation, (ii)

which terminates by ≺rpo and (iii) each function symbol has a product status.

(2) A RPOQI
Lin-program is a program that (i) admits a quasi-interpretation, (ii)

which terminates by ≺rpo, and (iii) each function symbol is linear and has a
lexicographic status.

(3) A RPOQI
Pro+Lin-program is a program that (i) admits a quasi-interpretation, (ii)

which terminates by ≺rpo and (iii) each function symbol which has a lexico-
graphic status is linear, and others have a product status.

Tail recursive programs are RPOQI
Lin-programs as it is illustrated by the reverse pro-

gram in Example 28. On the other hand, the program that solves QBF in Exam-
ple 36, is not a RPOQI

Lin-program, because of the definition of verify (in the case
of Exists(n, φ)) which leads to two recursive calls with substitution of parameters.
Note that lexicographic ordering captures the template of recursion with parame-
ter substitutions which was the key ingredient of the characterization of polynomial
space functions [27] by tiering discipline.

Theorem 42 The set of functions computed by additive RPOQI
Lin-programs (resp.

RPOQI
Pro-programs and RPOQI

Pro+Lin-programs) is exactly the set of functions com-
putable in polynomial time.
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The upper-bound on time-usage is established by Theorem 47 below. The complete-
ness of this characterization is established by Theorem 54.

Example 43 The lcs example 6 is quite interesting and is an illustration of an
important observation. Indeed, if one applies the rules of the program following a call
by value strategy, one gets an exponentially long derivation chain. But the theorem
states that the lcs function is computable in polynomial time. Actually, one should
be careful not to confuse the algorithm and the function it computes. This function
(length of the longest common subsequence) is a classical textbook example of so called
“dynamic programming” (see chapter 16 of [15]) and can in this way be computed
in polynomial time.

So, the theorem does not characterize the complexity of the algorithm, which we
should call its explicit complexity but the complexity of the function computed by
this algorithm, which we should dub its implicit complexity.

7.2 RPOQI
Pro+Lin-programs are Ptime computable

In order to avoid an exponential explosion like, for instance, in the lcs case, we
switch from the call-by-value semantics previously defined to a call-by-value seman-
tics with cache, see Figure 4. Hence, we simulate dynamic programming techniques,
which consist in storing each result of a function call in a table and avoiding to re-
compute the same function call if it is already in the table. This technique is inspired
from Andersen and Jones’ rereading ([3]) of Cook simulation technique over 2 way
push-down automata ([14]) and is called memoization.

The expression 〈C, t〉 ⇓ 〈C ′, w〉means that the computation of t is w given a program
f and an initial cache C. The final cache C ′ contains C and each call which has been
necessary to complete the computation.

More precisely, say that a configuration is a list such as (g, w1, · · · , wm, w) where

〈lcs,a,aba〉 〈lcs,ba,ba〉 〈lcs,aba,a〉

〈lcs, ǫ,ba〉 〈lcs,a,a〉 〈lcs,ba, ǫ〉

〈lcs, ǫ, ǫ〉

〈lcs,ba,aba〉 〈lcs,aba,aba〉 〈lcs,baba,ba〉

〈lcs,aba,aaba〉 〈lcs,baba,aba〉

〈lcs,baba,baaba〉 〈lcs,ababa,aaba〉

〈lcs,ababa,baaba〉

〈max, 1, 2〉

〈max, 0, 1〉

〈max, 3, 2〉

〈max, 2, 1〉

〈max, 1, 0〉 〈max, 0, 0〉

〈max, 1, 1〉

〈max, 2, 2〉

〈max, 3, 3〉

〈max, 4, 4〉

Fig. 3. The 〈lcs,ababa,baaba〉-call tree with memoization.
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(Constructor)

c ∈ C 〈Ci−1, ti〉 ⇓ 〈Ci, wi〉

〈C0, c(t1, · · · , tn)〉 ⇓ 〈Cn, c(w1, · · · , wn)〉

(Read)

〈Ci−1, ti〉 ⇓ 〈Ci, wi〉 (f, w1, · · · , wn, w) ∈ Cn

〈C0, f(t1, · · · , tn)〉 ⇓ 〈Cn, w〉

(Update)

〈Ci−1, ti〉 ⇓ 〈Ci, wi〉 f(p1, · · · , pn)→ r ∈ E σ ∈ S piσ = wi 〈Cn, rσ〉 ⇓ 〈C,w〉

〈C0, f(t1, · · · , tn)〉 ⇓ 〈C ∪ (f, w1, · · · , wn, w), w〉

Fig. 4. Call-by-value interpreter with Cache of 〈X , C,F , E〉.

〈g, w1, · · · , wm〉 is a state, and JgK(w1, · · · , wm) = w. When a term g(w1, · · · , wm) is
considered, we search for a configuration (g, w1, · · · , wm, w) in the current cache C.
If such configuration exists, we use it to short-cut the computation and so we return
w. Otherwise, we apply a program equation, say l → r, by matching g(w1, · · · , wm)
with l. Then, we update C by adding the configuration (g, w1, · · · , wm, w) to the
current cache C.

Figure 3 shows what happens to the 〈lcs, ababa,baaba〉-call tree when memoiza-
tion is applied. Notice that identical subtrees are merged and the call-tree becomes
a directed acyclic graph.

The key point for additive programs, is to establish that the size of a cache C is
polynomially bounded in the size of the input arguments.

Lemma 44 Suppose that 〈C0, f(t1, · · · , tn)〉 ⇓ 〈C,w〉. The size of the final cache C

is bounded by a polynomial in Lf(t1, · · · , tn) M.

PROOF. Define Cg as the set of m-uplets of T (C)-terms which are the arguments
of states of g. That is, (u1, · · · , um) ∈ Cg iff (g, u1, · · · , um, v) ∈ C. We have

#C =
∑

g∈F
#Cg (18)

where we write #S for the cardinal of a set S.

To give an upper-bound on the cardinality of Cg, we define two sets C∨
g and C∧

g.
The idea is to separate the calls which come from functions of strictly higher prece-
dence and the ones which come from functions of the same precedence. Consider
the 〈f, v1, · · · , vn〉-call tree. Say that the covering graph of g is the subgraph of the
〈f, v1, · · · , vn〉-call tree obtained by removing all states which are not labeled by
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functions h which has precedence equivalent to g, that h ≈F g. Define two sets C∨
g

and C∧
g as follows. C∨

g contains all the roots of the covering graph of g labeled by g,
and C∧

g contains all the other nodes of the covering graph labeled by g.

• We consider the C∨
g’s. Suppose that f ≈F g, but f 6= g. For the special case where

g ≈F f, we have #C∨
f = 1. By definition, we have #C∨

g = 0.

Suppose that g ≺F f. Then, (u1, · · · , um) ∈ C∨
g. It follows that the cardinality of

C∨
g is bounded by

#C∨
g ≤

∑

g≺Ff

#Cf (19)

• We consider C∧
g.

(1) The status of g is product. Proposition 31 states that sub-calls of the same rank
starting from f(v1, · · · , vn) have arguments which are subterms of the vi’s. There-
fore there are at most

∏

i≤n(|vi| + 1) such sub-calls. It follows from Lemma 14
that the number of sub-calls is bounded

∏

i≤n

(|vi|+ 1) ≤ (d× Lf(t1, · · · , tn) M)d (20)

where d is the maximal arity of a function symbol.
(2) The status of g is lexicographic. But by definition of RPOQI

Lin-programs, there is
at most one recursive call starting from g for each rule application. Lemma 33(3)
entails that the maximal length of a branch is Lf(t1, · · · , tn) Md which is also a
bound on the number of successive calls initiated by f.

From both previous points, we obtain that

#C∧
g ≤ (#C∨

g + 1)× dd × Lf(t1, · · · , tn) Md (21)

Finally, we have
#Cg ≤ #C∨

g +#C∧
g (22)

By combining (18), (19), (21), and (22), we see that the cardinality of C is polyno-
mially bounded in Lf(t1, · · · , tn) M. 2

Example 45 Figures 5 and 6 show the covering graphs of lcs and max in the
〈lcs,ababa, baaba〉-call tree. Nodes in C∨

g have been squared while nodes of C∧
g

have been circled (g ∈ {lcs, max}).

Lemma 46 Let f be a RPOQI
Pro+Lin-program. For each constructor term t1, · · · , tn,

the runtime of the call by value interpreter with cache to compute f(t1, · · · , tn) is
bounded by a polynomial in Lf(t1, · · · , tn) M.

PROOF. Since an evaluation procedure memorizes all necessary configurations, the
runtime is at most quadratic in the size of the cache. Note that the exact runtime
depends on the implementation strategy and in particular on the cache manage-
ment. 2
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〈lcs,a,aba〉 〈lcs,ba,ba〉 〈lcs,ba,ba〉 〈lcs,aba,a〉

〈lcs, ǫ,ba〉 〈lcs,a,a〉 〈lcs,a,a〉 〈lcs,ba, ǫ〉

〈lcs, ǫ, ǫ〉 〈lcs, ǫ, ǫ〉

〈lcs,ba,aba〉 〈lcs,aba,aba〉 〈lcs,baba,ba〉

〈lcs,aba,aaba〉 〈lcs,baba,aba〉

〈lcs,baba,baaba〉 〈lcs,ababa,aaba〉

〈lcs,ababa,baaba〉

Fig. 5. The lcs-covering graph of the call-tree.

Theorem 47 Let f be an additive RPOQI
Pro+Lin-program (resp. RPOQI

Pro-program and

RPOQI
Lin-program). For each constructor term t1, · · · , tn, the runtime to compute

f(t1, · · · , tn) is bounded by a polynomial in maxni=1 |ti|.

PROOF. By Proposition 12, we have Lti M ≤ O(|ti|). For some polynomial P we
have Lf(t1, · · · , tn) M ≤ P (maxni=1 |ti|), because quasi-interpretations are polynomi-
ally bounded. Lemma 46 implies that the time is bounded by a polynomial in
maxni=1 |ti|. 2

In the general case, memoization is not used because one cannot decide which results
will be reused and the cache may become too big to be really useful. In our particular
case, the termination ordering gives enough information on the structure of the
program to minimize the cache [29].

We see that if a function symbol is linear, see Definition 40, then no result needs to
be recorded. More generally, consider the 〈f, t1, · · · , tn〉-call tree. When evaluating
〈f, t1, · · · , tn〉, the call by value semantics with cache stores all values. Say that a
separation set N is a set of states such that each chain starting from the root state
〈f, t1, · · · , tn〉 meets a state of N . If we know the value of each state of N , then values

〈max, 1, 2〉

〈max, 0, 1〉

〈max, 3, 2〉

〈max, 2, 1〉

〈max, 1, 0〉 〈max, 0, 0〉

〈max, 1, 1〉

〈max, 2, 2〉

〈max, 3, 3〉

〈max, 4, 4〉

Fig. 6. The max-covering graph of the call-tree.
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of the states below N -states are useless in order to determine 〈f, t1, · · · , tn〉. And,
we can forget them. Therefore, it is sufficient to store in a cache a separation set N
for each function symbol. Now say that a separation set N is minimal if for each
state s ∈ N , N \ {s} is not a separation set. We can require an implementation to
keep a minimal separation set. To perform dynamically, we have to compare configu-
rations in the cache. Take two configurations (f, t1, · · · , tn, t) and (g, u1, · · · , um, u).
If f(t1, · · · , tn) ≺rpo g(u1, · · · , um) then we do not need anymore the configuration
(f, t1, · · · , tn, t) and we can erase it from the cache.

7.3 Beyond polynomial time

Theorem 48

• The set of functions computed by affine RPOQI
Pro+Lin-programs (resp. RPOQI

Pro-

programs and RPOQI
Lin-programs) is exactly the set of functions computable in lin-

ear exponential time, that is in time bounded by 2O(n).
• The set of functions computed by multiplicative RPOQI

Pro+Lin-programs (resp. RPOQI
Pro-

programs and RPOQI
Lin-programs) is exactly the set of functions computable in lin-

ear double exponential time, that is in time bounded by 22
O(n)

.

Proofs are very similar to the one of Theorem 47. The kind of quasi-interpretation
gives the different upper-bounds on the time-usage as established in Proposition 12.
The converse is again a consequence of Theorems 57 and 60.

8 Simulation of Parallel Register Machines

8.1 Parallel Register Machines

Following [27], we introduce Parallel Register Machines (PRM) which are able to
model the essential features of both traditional sequential computing like Turing
Machines and alternating computations like Alternating Turing Machines.

A PRM M works over the word algebra W generated by the constructors {0, 1, ǫ}
and consists in

(1) a finite set S = {s0, s1, . . . , sk} of states, including a distinct state begin.
(2) a finite list Π = {π1, . . . , πm} of registers ; we write output for πm; Registers

will only store values in W;
(3) a function com mapping states to commands which are

[Succ(π = i(π), s′)], [Pred(π = p(π), s′)], [Branch(π, s′, s′′)],
[Forkmin(s

′, s′′)], [Forkmax(s
′, s′′)], [End].
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A configuration of a PRM M is given by a pair (s, F ) where s ∈ S and F is a
function Π→W which stores register values. We note {π ← π′}F to mean that the
value of the register π is the content of π′, the other registers stay unchanged.

In order to have a choice mechanism to simulate alternation by the fork operation,
we define an ordering ◭ on W : ǫ ◭ y, 0(x) ◭ 1(y), i(x) ◭ i(y) if and only if x ◭ y.
We define the operations min◭ and max◭ wrt ◭.

Next, we define a semantic partial-function eval : N × S ×W
m 7→ W, that maps

the result of the machine in a time bound given by the first argument.

• eval(0, s, F ) is undefined.
• If com(s) is Succ(π = i(π), s′) then eval(t + 1, s, F ) = eval(t, s′, {π ← i(π)}F ).
• If com(s) is Pred(π = p(π), s′)], then eval(t+1, s, F ) = eval(t, s′, {π ← p(π)}F )
where p is the predecessor function on W;
• If com(s) is Branch(π, s′, s′′) then eval(t+ 1, s, F ) = eval(t, r, F ), where r = s′

if π = 0(w) and r = s′′ if π = 1(w);
• If com(s) is Forkmin(s

′, s′′) then
eval(t + 1, s, F ) = min◭(eval(t, s

′, F ), eval(t, s′′, F ));
• If com(s) is Forkmax(s

′, s′′) then
eval(t + 1, s, F ) = max◭(eval(t, s

′, F ), eval(t, s′′, F ));
• If com(s) is End then eval(t + 1, s, F ) = F (output).

Let T : N→ N be a function. A function φ : Wk →W is PRM-computable in time
T if there is a PRM M such that for each (w1, · · · , wk) ∈W

k, we have

eval(T (
k

max
i=1
|wi|),begin, F0) = φ(w1, · · · , wk)

where F0(πi) = wi for i = 1..k and otherwise F0(πj) = ǫ.

8.2 Space and Time bounded computation

A Register machines (RM) is a PRM without fork commands. A Turing machine
can be simulated linearly in time by a RM.

Proposition 49 A function φ is computable in polynomial (respectively exponential,
doubly exponential) time iff φ is RM-computable in polynomial time (resp. exponen-
tial, doubly exponential).

There are pleasingly well-known tight connections between space used by a Turing
machine and time used by PRM. The essence of the translation comes from the work
of Savitch [35] and Chandra, Kozen, Stockmeyer [11].

Theorem 50 A function φ is computable in polynomial (resp. exponential, doubly
exponential) space iff φ is PRM-computable in polynomial time (resp. exponential,
doubly exponential).
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8.3 Time bounded simulation with lexicographic termination

Without loss of generality, we consider only unary functions in the following. It
would be laborious to specify this simulation in full details otherwise.

Lemma 51 (Lexicographic Plug and play lemma) Assume that φ : W → W

is a PRM-computable function in time bounded by T . Define f by

f : N×W → W

(n, w) 7→ φ(w) if n > T (|w|)

(n, w) 7→ ⊥ otherwise

Then,

(1) the function f is computed by an additive RPOQI-program,
(2) and, if f is computed by a RM, then f is computable by an additive RPOQI

Lin-
program.

PROOF. Suppose that f is computed by a PRM M . The simulation of the PRM
M is done by following the rules of the semantic partial function eval. For this, the
set of constructors is C = {0, 1, s, ⋄, ǫ} ∪ S where S is the set of states.

We show first that min◭ and max◭ are additive RPOQI-program.

min(ǫ, w) → ǫ max(ǫ, w) → w

min(w, ǫ) → ǫ max(w, ǫ) → w

min(0(w), 1(w′)) → 0(w) max(0(w), 1(w′)) → 1(w′)

min(1(w), 0(w′)) → 0(w′) max(1(w), 0(w′)) → 1(w)

min(i(w), i(w′)) → i(min(w,w′)) max(i(w), i(w′)) → i(max(w,w′))

with i ∈ {0, 1}.

We associate the following quasi-interpretations:

Lǫ M = 0 L⋄ M = 0 ∀q ∈ S, Lq M = 0

L0 M(X) = X + 1 L1 M(X) = X + 1 Ls M(X) = X + 1

Lmin M(W,W ′) = max(W,W ′) Lmax M(W,W ′) = max(W,W ′)

Next, we write a program to compute the semantic partial function eval.

(a) Eval(s(t), s, π1, · · · , πm)→ Eval(t, s′, π1 · · · , i(πj), · · · , πm)
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if com(s) = Succ(πj = i(πj), s
′),

(b) Eval(s(t), s, π1, · · · , i(πj), · · · , πm)→ Eval(t, s′, π1, · · · , πj , · · · , πm)

if com(s) = Pred(πj = p(πj), s
′),

(c) Eval(s(t), s, π1, · · · , 0(πj), · · · , πm)→ Eval(t, s′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′),

(d) Eval(s(t), s, π1, · · · , 1(πj), · · · , πm)→ Eval(t, s′′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′),

(e) Eval(s(t), s, π1, · · · , πm)→ min(Eval(t, s′, π1, · · · , πm), Eval(t, s
′′, π1, · · · , πm))

if com(s) = Forkmin(s
′, s′′),

(f) Eval(s(t), s, π1, · · · , πm)→ max(Eval(t, s′, π1, · · · , πm), Eval(t, s
′′, π1, · · · , πm))

if com(s) = Forkmax(s
′, s′′),

(g) Eval(s(t), s, π1, . . . , πm)→ πm, if com(s) = End,

Finally, put f(t, w)→ Eval(t,begin, w, ǫ, . . . , ǫ). It is routine to check that f = JfK.

These programs admit the following quasi-interpretations:

LEval M(T, S,Π1, · · · ,Πm) = T + S +
m
∑

i=1

Πi

Lf M(T,X) = T +X

The status of each function symbol is lexicographic. The precedence satisfies {min, max} ≺F

Eval ≺F f. We see that each rule is decreasing by ≺rpo. Therefore, f is a RPOQI-
program.

Now, observe that Eval has always one occurrence in the right hand side of the rules
except in the fork cases. So, f is a RPOQI

Lin-program if f is computed by a RM. 2

8.4 Time bounded simulation with product termination

In [31], the simulation of RM is performed by a RPOQI
Pro-program in a different

manner because the status of function symbols is product and not lexicographic
as in the above result. For this reason, we give details of the simulation of a time
bounded function in the case where symbols have a product status.

Lemma 52 (Product Plug and play lemma) Assume that φ : W → W is a
RM-computable function in time bounded by T . Define f by

f : N×W → W

(n, w) 7→ φ(w) if n > T (|w|)

(n, w) 7→ ⊥ otherwise
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Then, f is computable by an additive RPOQI
Pro-program.

PROOF. Compared with the previous proof, the simulation is performed in bottom-
up way. For this, we use an extra constructor c to encode tuples. And we define Step
which gives the next configuration.

(a) Step(c(s, π1, · · · , πm))→ c(s′, π1 · · · , i(πj), · · · , πm)

if com(s) = Succ(πj = i(πj), s
′)

(b) Step(c(s, π1, · · · , i(πj), · · · , πm))→ c(s′, π1, · · · , πj, · · · , πm)

ifcom(s) = Pred(πj = p(πj), s
′)

(c) Step(c(s, π1, · · · , 0(πj), · · · , πm)→ c(s′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′)

(d) Step(c(s, π1, · · · , 1(πj), · · · , πm)→ c(s′′, π1, · · · , πm)

if com(s) = Branch(πj, s
′, s′′)

(e) Step(c(s, π1, . . . , πm)→ c(s, π1, . . . , πm)

if com(s) = End

The simulation is made by

Eval(ǫ, x)→ x

Eval(s(t), x)→ Step(Eval(t, x))

f(t, w) = Eval(t, c(begin, w, ǫ, . . . , ǫ))

The rules are ordered by putting Step ≺F Eval where each symbol has now a
product status. A quasi-interpretation of the rules is

Lc M(S,Π1, · · · ,Πm) = S +
∑

i

Πi + 1

LStep M(X) = X + 1

LEval M(T,X) = T +X

The others constructor assignments are identical to the ones in the previous simu-
lation described in the proof of Lemma 51

Lǫ M = 0 L⋄ M = 0 ∀q ∈ S, Lq M = 0

L0 M(X) = X + 1 L1 M(X) = X + 1 Ls M(X) = X + 1

2

Unlike the previous proof, this simulation can not be extended in order to capture
parallel computation.
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Now, it remains to compute the clock, that is the length of the iteration of the main
loop of the simulation in order to complete the simulation.

8.5 Simulation of Polynomial computations

Proposition 53 Any polynomial is computed by an additive RPOQI
Lin-programs (resp.

RPOQI
Pro-programs).

PROOF. We define any polynomial by composition from the additive programs for
the addition add and the multiplication mult.

add(⋄, y)→ y

add(s(x), y)→ s(add(x, y))

mult(⋄, y)→ ⋄

mult(s(x), y)→ add(y, mult(x, y))

The programs add and mult admits the following quasi-interpretations

Ladd M(X, Y ) = X + Y

Lmult M(X, Y ) = X × Y

where constructors have the quasi-interpretation

L⋄ M = 0

Ls M(X) = X + 1

The programs add and mult terminates by ≺rpo by putting add ≺F mult with a

product status. So, any polynomial is a RPOQI
Pro-program. On the other hand, add

and mult are linear and thus any polynomial is a also RPOQI
Lin-program. 2

Theorem 54

• A polynomial time function is computed by an additive RPOQI
Lin-program.

• A polynomial time function is computed by an additive RPOQI
Pro-program.

• A polynomial time function is computed by an additive RPOQI
Pro+Lin-program.

PROOF. Let φ be a function which is computed by a RM in time bounded by a
polynomial P .
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For the first case, the time bound P is computed by an additive RPOQI
Lin-program fol-

lowing Proposition 53. We compose with Lemma 51, we conclude that φ is computed
by an additive RPOQI

Lin-program.

For the second case, the time bound P is also an additive RPOQI
Pro-program following

Proposition 53. We compose with Lemma 52, we conclude that φ is computed by an
additive RPOQI

Pro-program.

The last case is an immediate consequence of the previous constructions. 2

Theorem 55 A polynomial space function is computed by an additive RPOQI-
program.

PROOF. Let φ be a function which is computed by a PRM in time bounded by
a polynomial P . Since P is also computed by a RPOQI-program following Proposi-
tion 53 and by composing with Lemma 51, we conclude that φ is computed by an
additive RPOQI-program. 2

8.6 Simulation of exponential computations

Proposition 56 Let γ > 0 be a constant. The function λn.2γn is computed by an
affine RPOQI

Lin-program (resp. RPOQI
Pro-program).

PROOF. The function λn.2γn is computed by

mkγ(⋄)→ ⋄

mkγ(s
′(x))→ s̃′(. . . (̃s′(mkγ(x))) . . .) γ times

d(x)→ add(x, x) add is defined in Prop 53

exp(⋄)→ s(⋄)

exp(̃s′(x))→ d(exp(x))

expγ(x)→ exp(mkγ(x))

We have JexpγK(n) = m where n = (s′)n(⋄) and m = (s)2
γn

(⋄).

Constructors have the following quasi-interpretation

L⋄ M = 0

Ls M(X) = X + 1

Ls′ M(X) = 2γX + 2γ − 1

Ls̃ M(X) = 2X + 1
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And this program admits the following quasi-interpretations

Lmkk M(X) = X

Ld M(X) = 2X

Lexp M(X) = X + 1

Lexpγ M(X) = X + 1

This program terminates by ≺rpo with a product status. So, λn.2γn is a RPOQI
Pro-

program and also a RPOQI
Lin-program. 2

Theorem 57 A exponential time function is computed by an affine RPOQI
Lin-program

(resp. RPOQI
Pro-program or RPOQI

Pro+Lin-program).

Theorem 58 An exponential space function is computed by an affine RPOQI-program.

8.7 Simulation of doubly exponential computations

Proposition 59 Let γ > 0 be a constant. The function λn.22
γn

is computed by an
multiplicative RPOQI

Lin-program (resp. RPOQI
Pro-program).

PROOF. The function λn.22
γn

is computed by

dmkγ(⋄)→ ⋄

dmkγ(s
′′(x))→ s̃′′(. . . (̃s′′(dmkγ(x))) . . .) γ times

square(x)→ mult(x, x) mult is defined in Prop 53

dexp(⋄)→ s(s(⋄))

dexp(̃s′′(x))→ square(dexp(x))

dexpγ(x)→ dexp(dmkγ(x))

We have JdexpγK(n) = m where n = (s′′)n(⋄) and m = (s)2
2γn

(⋄).

Constructors have the following quasi-interpretation

L⋄ M = 0

Ls M(X) = X + 1

Ls′′ M(X) = θγ(X)

Ls̃′′ M(X) = (X + 2)2

where

θ0(X) = X

θk+1(X) = (θk(X) + 2)2 0 ≤ k < γ
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And the program admits the following quasi-interpretations

Ldmkγ M(X) = X

Lsquare M(X) = X2

Ldexp M(X) = X + 2

Ldexpγ M(X) = X + 2

This program terminates by ≺rpo with a product status. So, λn.22
γn

is a RPOQI
Pro-

program and also a RPOQI
Lin-program. 2

Theorem 60 A doubly exponential time function is computed by a multiplicative
RPOQI

Lin-program (resp. RPOQI
Pro-program or RPOQI

Pro+Lin-program).

Theorem 61 A doubly exponential space function is computed by a multiplicative
RPOQI-program.
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