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Abstract. We address here the interior problem in local tomography, by means of

filtered backprojection (FBP). This algorithm, traditionally used in the context of

complete data, is usually not considered as valuable for the interior problem. However,

in this article, we prove that as well as more sophisticated methods, the FBP algorithm

ensures that the difference between the original and the reconstructed functions is

continuous. We verify numerically that the FBP method can supply satisfactory images

of discontinuities (on Shepp and Logan phantom and real data). Nevertheless, we also

show limits of FBP, by pointing up examples on which the dependence on exterior

structures damages the reconstruction quality in the Region Of Interest.
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The interior problem, also known as the interior Radon transform inversion, is a

particular case of 2D local tomography: it refers to the situation where only truncated

data, and more precisely only X-Ray projections through a central section of a larger

one, are available. This problem occurs in many situations, such as in interventional

reconstruction of tomographic sections [7, 10, 13] (the detector is usually too small for

complete projections), or in micro-CT [9], or because one wants to decrease the dose

to the patient. It is known that the local densities from interior incomplete projections

cannot be recovered, but that surfaces of discontinuity are accessible [20, 17, 12, 23].

These last years, new algorithms for the reconstruction of interior ROI from incomplete
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data have been proposed. They are based on a link between the Hilbert transform of the

projections in fan beam and parallel beam geometry, or based on the identification of the

Hilbert transform of the function to be reconstructed on a line (or a half line) crossing

a Region Of Interest (ROI) [18, 5, 24, 26]. These methods can not solve the interior

problem. From these ideas, approaches using a priori knowledge of the function within

an interior region, permit a reconstruction of the function in this ROI [4]. However, a

priori knowledge is usually not available.

Filtered backprojection is the conventional inversion algorithm in case of global

data. In case of local data, it is usually not considered as a valuable method, since it

relies on the ramp filter which is not compactly-supported. Complete projections are

thus required. However, in case of local data, it is known that, in practice, FBP supplies

satisfactory images of discontinuities. The goal of this paper is to assess efficiency

of this algorithm as regards this point. In section 2 we prove that, as well as more

sophisticated methods, FBP algorithm ensures that the difference between the original

and the reconstructed functions is a continuous function. In section 3 we illustrate

this result on some images (phantom and real data). Nevertheless, we also point up

reconstruction examples showing that the smooth dependence of local FBP on exterior

structures can introduce strong background artefacts.

1. Introduction and Notations

1.1. Filtered Backprojection Method

Let first introduce some notations and classical formulas: let S1 denotes the unit circle

in R2; the Radon Transform of f ∈ L1(R2) is defined by

∀(Θ, s) ∈ S1 ×R, Rθf(s)
def
=Rf(Θ, s)

def
=

∫

{x∈R2|x·Θ=s}

f(x)dx

where “·” is the euclidean inner product, θ ∈ [0, 2π[, Θ = (cos θ, sin θ). The projection-

slice theorem states that, for ω ∈ R,

R̂θf(ω) =
√
2πf̂(ωΘ),

where for all n ∈ N∗, the Fourier Transform of f ∈ L1(Rn) is normalized in the following

way: for k ∈ Rn,

f̂(k) =
1√
2π

n

∫

Rn

f(x)e−ix·kdk

This leads to the well-known filtered backprojection inversion formula [17]:

f(x) =
1

√
2π

3

∫ π

0

∫

R

R̂θf(ω)|ω|eiωx·Θdωdθ

which can be reformulated as [17]:

f(x) =
1

4π2
R# (g) (x)
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where

R# (g) (x) =

∫ 2π

0

g(Θ,x ·Θ)dθ

and

g(Θ, s) =

(
vp

(
1

s

)
∗ ∂sRθf

)
(s) = lim

ǫ→0+

∫

u∈R;|s−u|>ǫ

∂sRθf(u)

s− u
du

1.2. The interior problem

Let a (0 < a < 1) be the radius of the Region Of Interest (ROI), which, here, is assumed

to be also the region of exposure. It is well known [17, 16, 15], that the interior problem,

i.e. the reconstruction of f from

(Rf)int =
{
Rf(Θ, s);Θ ∈ S1, s ∈ [−a, a]

}

is not possible. More precisely, the interior problem is not uniquely solvable. Indeed, let

us suppose that we apply the inverse of the Radon transform R−1 to the interior data

only, in order to estimate f in the ROI. The set of non-considered data in the interior

problem will be denoted by:

(Rf)ext
def
=
{
Rf(Θ, s);Θ ∈ S1, |s| > a

}
.

As illustrated in Fig 1:

• left: when a structure with support included in the ROI is considered, the Radon

transform has only interior components (Rf = (Rf)int);

• right: when a structure with support outside the ROI is considered, the

Radon transform has exterior components ((Rf)ext), but also interior components

((Rf)int 6= 0).

Therefore, when a function f = fint 2D+fext 2D with structures both in the ROI (fint 2D)

and outside the ROI (fext 2D) is dealt with, the available data in the interior problem

are made of two components:

(Rf)int = Rfint 2D + (Rfext 2D)int

and the inversion of these data using global inversion operator, denoted here by R−1,

leads to the reconstruction of the following function:

floc = R−1 ((Rf)int) = R−1 (Rfint 2D)+R−1 ((Rfext 2D)int) = fint 2D+R−1 ((Rfext 2D)int)

Thus, in the ROI, the initial function fint 2D is corrupted by R−1 ((Rfext 2D)int) which

generally does not cancel in the ROI in 2D. This bias is present in all even dimensions

and observable in reconstructions.

In [17] the variations of R−1 ((Rfext 2D)int) are shown to be low. Moreover,

the singular value decomposition [16] and the wavelet analysis [19, 1] show that

R−1 ((Rfext 2D)int) has low frequency in the ROI. Nevertheless, the existence of this bias

usually motivates the search for other reconstruction approaches, such as singularity or

detail local reconstruction methods.
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Figure 1. Interior problem in 2D parallel geometry: on the left, the object is entirely

included in the ROI (dashed circle): the Radon transform reduces to interior data. On

the right, the object lies in the exterior of the ROI: the Radon transform data have

not only exterior contributions, but also interior contributions.

1.3. Local methods for the interior problem

Local methods aim at ”reconstructing discontinuities” in the ROI (in the sense: to

reconstruct a function with discontinuities exactly located as in the initial function,

and sometimes, even with the same jumps). The legitimacy of such a purpose relies

on a theorem of micro-local analysis, established by Quinto [20]: this theorem links

the singular supports (which correspond to discontinuity curves) and more precisely the

wavefronts (which additionally give the normal directions) of f and Rf (see [20] for

details).

The literature provides several approaches to the interior problem:

• Geometrical approaches (see for instance [21, 23]), but singularities are highly

difficult to detect in the data.

• Wavelet based-methods where separable [22, 1] or non separable [3] multiresolution

analysis are recovered using local data: the 2D wavelet transform of a function

f can be computed from a 1D wavelet transform of its Radon transform Rf ; it

can be seen as a generalization of the FBP algorithm. The locality of the wavelet

filtering enables to reconstruct wavelet coefficients of the function f up to a given

scale, according to the range of availability of data [19, 6], (fine details, and therefore

discontinuities, are thus visible). See also [11, 2] for an alternative wavelet approach.

• Λ-Tomography (see for instance [8]) where one reconstructs Λf instead of f (the

pseudo-differential operator Λ, defined by Λ̂f(k) = |k|f̂(k), is locally recoverable,

and known to preserve the discontinuities);

• Pseudolocal Tomography [12], where one copes with the non-locality of the ramp

filter by truncating it in the direct domain. We detail this method below.

In the following, we show that the classical FBP method is also relevant in this

context.
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2. Truncated formulas for truncated data

In the following the filtered backprojection applied to interior data is called Truncated

Filtered Backprojection or TFBP. From now, we suppose that f is compactly supported

in the open unit disk Ω of R2.

2.1. Pseudo-local tomography

This method has been designed by A. Katsevitch and A. Ramm [12]. The ramp filter

is truncated in the direct domain so as to filter local data with a filter restricted to an

interval [−d, d] (where d > 0 and for treatment of local data d << a); thus, instead of

reconstructing f with

f(x) =
1

4π2

∫ 2π

0

(
lim
ǫ→0+

∫

s∈R;ǫ<|x·Θ−s|

∂sRθf(s)

x ·Θ− s
ds

)
dθ

one reconstructs the function fd, defined by:

fd(x) =
1

4π2

∫ 2π

0

(
lim
ǫ→0+

∫

ǫ<|x·Θ−s|<d

∂sRθf(s)

x ·Θ− s
ds

)
dθ

fd can be reconstructed locally, in the sense that the reconstruction of f at point x

only requires the knowledge of Rf across the disk of center x and radius d. To identify

the information on f present in fd, the authors introduce the function fC
d , difference

between fd and the reference function f , defined by: fC
d (x) = f(x) − fd(x) and they

show the following theorem.

Theorem 2.1 (Discontinuities and pseudo-local tomography [12]) For all d >

0, the function fC
d is continuous in the direct domain.

It follows that for all d > 0, the discontinuities of fd are exactly the same as those of f

(location as well as amplitude). The proof of this result is based on continuity properties

of integrals with parameters, and can be found in [12]. In this approach the filtering

steps do not use all the range of data that are available in (Rf)int (the filter is the same

wherever it is applied).

2.2. Truncated FBP

In the context of TFBP, we introduce the following reconstructed function:

fa
TFBP(x) =

1

4π2

∫ 2π

0

Λa
TFBPRθf(x ·Θ)dθ

where

Λa
TFBPRθf(s) = lim

ǫ→0+

[∫ s−ǫ

−a

∂sRθf(u)

s− u
du+

∫ a

s+ǫ

∂sRθf(u)

s− u
du

]

In contrast with pseudo-local tomography, all available data, a priori, contribute to

the value of fa
TFBP(x), ∀x ∈ Ω. Whereas in pseudo-local tomography the same filter
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of constant width is applied to all projections, in Truncated Filtered Backprojection

the filtering operator is only a filter when applied to the truncated data completed by

extrapolated data (applied on truncated projections only, it is shift-variant).

The question that should be addressed now is: what can be learnt about f according

to fa
TFBP? In [17], Natterer proposes to complete the interior data Rf by consistency

into the whole domain. Applying the FBP to these completed data, he proves that the

reconstructed function only differs from the original one up to an essentially constant

function (in the framework of C∞-functions).

We introduce the difference between the original function f and fa
TFBP:

(fa
TFBP)

C (x) =
1

4π2

∫ 2π

0

[∫ −a

−1

∂sRθf(s)

x ·Θ− s
ds+

∫ 1

a

∂sRθf(s)

x ·Θ− s
ds

]
dθ (1)

and we prove in the following that (fa
TFBP)

C is a continuous function in the ROI.

Therefore the discontinuities of fa
TFBP are exactly the same as the discontinuities of

f within the ROI, just as in pseudo-local tomography. A close result is obtained

independently in [25] with different and stronger assumptions (the exterior data are

supposed to be smooth), using different arguments.

Theorem 2.2 (Discontinuities and Truncated Filtered Backprojection) For all

a > 0, the function (fa
TFBP)

C
is continuous in the disk {x ∈ R2; |x| ≤ r}, for all r such

that 0 < r < a.

Proof : First, remark that for all f ∈ L2(Ω), (1) is well-defined; indeed, if f ∈ L2(Ω),

then, for all θ ∈ [0; 2π], Rθf ∈ H
1

2 ([−1; 1]), and ∂sRθf ∈ H− 1

2 ([−1; 1]). (1) rewrites

(fa
TFBP)

C (x) =
1

4π2
R#

(
vp

(
1

s

)
∗
(
χ[−a,a] ∂sRθf

))
(x)

Since χ[−a,a] ∂sRθf belongs also to H− 1

2 ([−1; 1]) then vp
(
1
s

)
∗
(
χ[−a,a] ∂sRθf

)
remains

in H− 1

2 ([−1; 1]), which leads finally to R#
(
vp
(
1
s

)
∗
(
χ[−a,a] ∂sRθf

))
∈ L2(Ω).

Integration by parts on (1) (we recall that Rθf(−1) = Rθf(1) = 0 for all θ) yields:

(fa
TFBP)

C (x) =
1

4π2

∫ 2π

0

([ Rθf(s)

x ·Θ− s

]−a

−1

+

∫ −a

−1

Rθf(s)

(x ·Θ− s)2
ds

+

[ Rθf(s)

x ·Θ− s

]1

a

+

∫ 1

a

Rθf(s)

(x ·Θ− s)2
ds

)
dθ

=
1

4π2

∫ 2π

0

(Rθf(−a)

x ·Θ+ a
− Rθf(a)

x ·Θ− a

)
dθ (2)

+
1

4π2

∫ 2π

0

(∫ −a

−1

Rθf(s)

(x ·Θ− s)2
ds+

∫ 1

a

Rθf(s)

(x ·Θ− s)2
ds

)
dθ

Let us now consider the closed disk Dr, of radius r, strictly included in the region

of exposure (ie r < a), and a point x within Dr. In the following, we check that

the conditions that are required to apply the results about continuity of integrals with

parameters are fulfilled, so as to prove that (fa
TFBP)

C is continuous at point x.

For the first integral in (2), we have:
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• for all θ ∈ [0, 2π[, the functions x 7→ Rθf(−a)

x ·Θ+ a
and x 7→ Rθf(a)

x ·Θ− a
are continuous

in Dr (because for each θ, x ·Θ± a never vanishes, as |x ·Θ| ≤ |x| ≤ r < a);

• moreover for all x ∈ Dr, −r < x ·Θ < r, we have 0 < a− r < x ·Θ+ a, and then

∣∣∣∣
Rθf(−a)

x ·Θ+ a

∣∣∣∣ ≤
|Rθf(−a)|

a− r

which is a function (of θ), integrable on [0, 2π]. A similar argument can be used for

the function x 7→ Rθf(a)

x ·Θ− a
; it follows that the first integral of (2) is a continuous

function of x in Dr.

For the second integral in (2), we have:

• for each couple (θ, s) ∈ [0, 2π[×[−1,−a] (resp. each couple (θ, s) ∈ [0, 2π[×[a, 1]),

the function x 7→ Rθf(s)

(x ·Θ− s)2
is continuous in Dr (because x·Θ−s never vanishes);

• moreover for all x ∈ Dr, for all (θ, s) ∈ [0, 2π[×[−1,−a],

0 < −r + a ≤ −r − s ≤ x ·Θ− s

therefore ∣∣∣∣
Rθf(s)

(x ·Θ− s)2

∣∣∣∣ ≤
∣∣∣∣
Rθf(s)

(a− r)2

∣∣∣∣

the r.h.s. being a function of (θ, s), integrable on [0, 2π[×[−1,−a].

A similar proof can be made for the third integral of (2): the sum of the second and the

third integral is thus a continuous function of x in Dr. �

3. Discussion and tests

3.1. First experiments

Example 1: Shepp and Logan phantom We first show reconstruction results obtained

by Truncated Filtered Backprojection applied to Shepp and Logan phantom (displayed

on the first line of figure 2, with a zoom-in on the ROI displayed on the right). We fix

a > 0 and simulate the truncated Radon transform of the phantom:

∀(Θ, s) ∈ S1 × [−1, 1], g(Θ, s) =

{
Rf(Θ, s) if |s| ≤ a

0 else
(3)

The results are displayed on the left of figure 2 (second and third line). The initial

image is the square [−1, 1]2 sampled on 2562 pixels. The radius of the ROI is a = 0.25,

and the data are acquired on 450 equiangular projections on [0, π[, each of them sampled

with a step 2
256

.

There is only a bias, roughly constant in the ROI, between the phantom and the re-

construction, and as Theorem 2.2 asserts, the discontinuities of the phantom are clearly
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visible in the reconstruction. Although this reconstruction is satisfactory if one aims

at localizing discontinuities, it is common in local tomography literature to use a pro-

cedure to reduce artefacts at the ROI boundary [22, 3]: it consists in erasing disconti-

nuities at the truncated sinogram boundary, by extending by continuity interior data

in a constant way: ∀Θ ∈ S1, if s < −a then g(Θ, s) = Rf(Θ,−a), if s > a then

g(Θ, s) = Rf(Θ, a), else g(Θ, s) = Rf(Θ, s). Theorem 2.2 is still valid: discontinuities

of the reconstruction are the same as the ones of the phantom. The results are displayed

on the right of figure 2 (second and third line). The artefacts in the reconstruction are

clearly reduced at the borders at the ROI boundary, as well as the amplitude of the bias

in the ROI. Discontinuities are still clearly visible, but the visual similarity (as regards

gray levels) with the phantom is much improved: local reconstruction really “looks like”

the phantom.

Example 2: Real data We have then applied TFBP technique on real data (human

trabecular bone sample), kindly provided by F. Peyrin [14], and acquired on the medical

line of ESRF Grenoble (European Synchrotron Radiation Facility). The projections

were sampled on 1024 pixels of 15 µm, for 900 directions. The length of the medical

line is 145 m, thus we consider that parallel beam conditions are fulfilled. Results are

displayed on figure 3. They are fully satisfactory: even small details in the ROI are well

localized in the reconstruction.

3.2. Some limits

Both previous examples tend to show that TFBP is a very satisfactory method for the

interior problem. In order to assess the range of efficiency of TFBP, we have tried to

build phantoms for which TBFP behaviour is less convincing. As explained in paragraph

1.2, the bias created in the ROI in case of local data comes from exterior structures.

We thus compare influences of two kind exterior structures, by designing two phantoms

where only exterior structures are present. Results are displayed in figure 4.

It thus appears that in case of Shepp and Logan phantom, the different contributions

of external structures tend to compensate in the ROI, thus creating a bias which is

roughly constant, and thus leading to visually very satisfactory local reconstruction

results. On the contrary, for the second phantom, we have put structures with high

density, non-symmetrically distributed around the ROI. The bias implied in the ROI

has no discontinuity (as theory proves), but has significant decay in the ROI (with

even an inflection point). Therefore, the identification of discontinuities in the ROI

is not compromised, but dissymmetry is forced in the ROI. Consequently, in case of

such exterior structures, two similar structures in the ROI can be reconstructed in two

different ways: such an example is given in figure 5 where disks are not reconstructed

with the same gray levels whether they are close to the white exterior rectangles or not.

In such a case, the reconstruction image tends to show that the two structures have
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1  128 256

0

0.5

1

Figure 2. Results of TFBP applied on interior data on Shepp and Logan phantom.

First line, the phantom, with, on the right, a zoom-in on the ROI. Second and third

line, on the left: reconstructions from raw local data (exterior data are zero), and on

the right, reconstructions from data extended by continuity. Third line, in both cases,

a zoom-in on the ROI of the reconstruction and comparisons between the phantom

and the reconstruction horizontal cross-sections are displayed (the darker line stands

for the reconstruction). Note that the values of the jumps are well estimated.

different densities, whereas they actually have the same.

4. Discussion and conclusion

In this paper we have studied the behavior of ”Truncated Filtered Backprojection” (that

is to say FBP applied on interior problem data). As for pseudo-local tomography, we

have proved that the difference between the reference function and the reconstructed

function is continuous on the ROI. This supplies a justification to an experimental

intuition: this simple method provides with very satisfactory results if one is only

interested in the location of discontinuities in the reconstruction. Furthermore, we
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Figure 3. FBP-reconstruction results on real data (human trabecular bone sample

data, kindly provided by F. Peyrin, ESRF Grenoble [14]). These data were acquired at

ESRF (European Synchrotron Radiation Facility) on the medical line. The projections

were sampled on 1024 pixels of 15 µm, for 900 directions. The similarity between the

reconstruction from global data (left) and local data (right) is fully satisfactory in the

ROI, in particular for small details.

1  128 256
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1  128 256
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4. Comparisons of the influence of two kinds of exterior structures on the

TFBP-reconstruction within the ROI. Phantoms are displayed on the first line, and the

reconstructions obtained by TFBP applied on interior data, extended by continuity,

are displayed on the second line. For the Shepp and Logan phantom (left), only a

constant bias is created. For the second phantom with high density exterior structures

localized only on some sides of the ROI, the bias has significant decay across the ROI:

a dissymmetry is thus created in the ROI.
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Figure 5. Example where exterior data have influence on the TFBP-reconstruction

in the ROI. The phantom is displayed on the first line, with a zoom-in on the ROI,

the reconstruction obtained by TFBP on the second line, and the comparison of cross-

sections on the third line. A significant dissymmetry is created in the ROI by TFBP.

have shown that on some examples, such as the well-known Shepp and Logan phantom,

this method goes further: the visual similarity between the two images can be very

high. Nevertheless, we have also shown that this is not true for all images: TFBP

method remains strongly dependent on exterior structures. As shown on an example,

this similarity can be significantly damaged.

The main advantage of TFBP in comparison with other local methods is its

simplicity: conventional FBP algorithm, easily available, can be used without any

modification. Thanks to the theoretical result stated in this paper, TFBP, like Λ-

tomography and pseudo-local tomography, provides a reconstructed function which

has the same discontinuities as the reference function. TFBP has exactly the same

complexity as FBP; it is well-known that the most expensive step is the backprojection,

present in all considered local methods. Therefore, the complexity argument is not

very significative. The main drawback of TFBP is its still unpredictable ”qualitative

performance”, due to its might-be dependence on exterior structures. For a given

function f , other local algorithms, which implement truly local filters, reconstruct in

the ROI the same function whether the sinogram is complete or not; it is not the case

for TFBP.

In conclusion, if not only discontinuities but also symmetry preservation is crucial

in the application, other local methods should be considered. If only discontinuity

localization is sufficient, the TFBP algorithm is a very simple and efficient method.
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[13] D. Kendoff, M. Citak, T. Hüfner, S. Chaudhary, and C. Krettek. Current concepts and applications

of computer navigation in orthopedic trauma surgery. Central European Journal of Medicine,

2(4):392–403, 2007.

[14] Apostol L., Boudousq V., Basset O., Odet C., Yot S., Tabary J., Dinten J M., Boller E., Kotzki P

O., and Peyrin F. Relevance of 2d radiographic texture analysis for the assessment of 3d bone

micro-architecture. Medical Physics, 33(9):3546–3556, 2006.

[15] A.K. Louis and A. Rieder. Incomplete data problems in x-ray computerized tomography. Numer.

Math., 56:371–383, 1989.

[16] P. Maass. The interior radon transform. SIAM J. Appl. Math., 52(3):710–724, 1992.

[17] F. Natterer. The Mathematics of Computerized Tomography. Classics in Applied Mathematics.

SIAM, 2001.

[18] F. Noo, R. Clackdoyle, and J. Pack. A two-step hilbert transform method for 2d image

reconstruction. Phys. Med. Biol., 49:3903–23, 2004.

[19] T. Olson and J. DeStefano. Wavelet localization of the Radon transform. IEEE Transactions on

Signal Processing, 42 (8):2055–2067, 1994.

[20] E.T. Quinto. Singularities of the X-ray transform and limited data tomography in R2 and R3.

SIAM J. Math. Anal., 24:1215–1225, 1993.



FBP method and the interior problem in 2D tomography 13

[21] A.G. Ramm and A.I. Katsevich. The Radon Transform and Local Tomography. CRC Press, 1996.

[22] F. Rashid Farrokhi, K.J. Ray Liu, C. Berenstein, and D. Walnut. Wavelet-based multiresolution

local tomography. IEEE Transactions on Image Processing, 6(10):1412–1429, 1997.

[23] J.-P. Thirion. Segmentation of tomographic data without image reconstruction. IEEE

Transactions on Medical Imaging, 11(1):102–110, March 1992.

[24] Y. Ye, H. Yu, Y. Wei, and G. Wang. A general local reconstruction approach based on a truncated

hilbert transform. International Journal of Biomedical Imaging, Article ID 63634, 8 pages, 2007.

[25] H. Yu and G. Wang. Compressed sensing based interior tomography. Phys. Med. Biol., 54:2791–

2805, 2009.

[26] H. Yu, Y. Ye, and G. Wang. Interior reconstruction using the truncated hilbert transform via

singular value decomposition. Journal of X-Ray Science and Technology, 16:243–251, 2008.


