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A subordination principle. Applications to Carleson

measures and interpolating sequences in convex domains of

finite type in C
n.

Eric Amar

May 10, 2011

Abstract

The subordination principle states roughly: if a property is true for Hardy spaces in some

kind of domains in C
n then it is also true for the Bergman spaces of the same kind of domains

in C
n−1.

We give applications of this principle to Bergman-Carleson measures, interpolating se-

quences for Bergman spaces, Ap Corona theorem and characterization of the zeros set of

Bergman-Nevanlinna class.

1 Introduction.

The subordination principle states roughly: if a property is true for Hardy spaces in some kind of
domains in C

n, then it is also true for the Bergman spaces of the same kind of domains in C
n−1.

Let us start with some definitions. In all the sequel, domain will mean bounded domain in Cn

with smooth C∞ boundary defined by a real valued function r ∈ C∞(Cn),
i.e. Ω = {z ∈ Cn :: r(z) < 0}, ∀z ∈ ∂Ω, ∂r(z) 6= 0.
Associate to it the ”lifted” domain Ω̃ in (z, w) ∈ Cn+k with defining function

r̃(z, w) := r(z) + |w|2 .
This operation keeps the nature of the domain :

• if Ω is pseudo-convex, Ω̃ is still pseudo-convex ;
• if Ω is strictly pseudo-convex, so is Ω̃ ;
• if Ω is convex, so is Ω̃ ;
• if Ω is of finite type m, so is Ω̃.

Let dm(z) be the Lebesgue measure in Cn and dσ(z) be the Lebesgue measure on ∂Ω.
For z ∈ Ω, let δ(z) := d(z,Ωc) be the distance from z to the boundary of Ω.
Define the Bergman, Hardy and Nevanlinna spaces as usual:
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Definition 1.1 Let f be a holomorphic function in Ω ; we say that f ∈ Ap
k(Ω) if

‖f‖pk,p :=

∫

Ω

|f(z)|p δ(z)k dm(z) < ∞.

We say that f ∈ Nk(Ω) if

‖f‖Nk
=

∫

Ω

log+ |f(z)| δ(z)k dm(z) < ∞,

We say that f ∈ Hp(Ω) if

‖f‖pp := sup
ǫ>0

∫

{r(z)=−ǫ}

|f(z)|p dσ(z) < ∞.

Finally we say that f ∈ N (Ω) if

‖f‖N = sup
ǫ>0

∫

{r(z)=−ǫ}

log+ |f(z)| dσ(z) < ∞.

This is meaningfull because, for ǫ small enough, the set {r(z) = −ǫ} is a smooth manifold in Ω.
Now we can state our subordination lemma [3]:

Lemma 1.2 (Subordination lemma) Let F (z, w) ∈ Hp(Ω̃) we have f(z) := F (z, 0) ∈ Ap
k−1(Ω) and

‖f‖Ap

k−1
(Ω) . ‖F‖Hp(Ω̃) ;

if F (z, w) ∈ N (Ω̃), then f(z) := F (z, 0) ∈ Nk−1(Ω) and ‖f‖Nk−1(Ω) . ‖F‖N (Ω̃) .

A function f holomorphic in Ω is in the Bergman space Ap
k−1(Ω) (resp. in the Nevanlinna Bergman

space Nk−1(Ω)) if and only if the function F (z, w) := f(z) is in the Hardy space Hp(Ω̃) (resp. in
the Nevanlinna class N (Ω̃)) and we have ‖f‖Ap

k−1

≃ ‖F‖Hp(Ω̃) (resp. ‖f‖Nk−1(Ω) ≃ ‖F‖N (Ω̃)).

In the section 2 we prove the subordination lemma as a consequence of a disintegration of
Lebesgue measure.

In the section 3 we introduce the notion of a ”good” family of polydiscs, directly inspired by
the work of Catlin [12] and introduced in [5]. This notion allows us to define geometric Carleson
measure, denoted as Λ1(Ω), for Hardy spaces and denoted as Λ1

k(Ω), for Bergman spaces and to put
it in relation with the Carleson embedding theorem still for these two classes of spaces.

Definition 1.3 We shall say that the domain Ω has the p-Carleson embedding property, p-CEP, if

∀µ ∈ Λ1(Ω), ∃C = Cµ > 0 :: ∀f ∈ Hp(Ω),

∫

Ω

|f |p dµ ≤ C ‖f‖pHp(Ω) .

And the same for the Bergman spaces.

Definition 1.4 We shall say that the domain Ω has the (p, k)-Bergman-Carleson embedding prop-
erty, (p, k)-BCEP, if

∀µ ∈ Λ1
k(Ω), ∃C = Cµ > 0 :: ∀f ∈ Ap

k−1(Ω),

∫

Ω

|f |p dµ ≤ C ‖f‖p
Ap

k−1
(Ω)

.

Still in this subsection we define a homogeneous hypothesis, (Hg), on a good family P.
In subsection 3.1 we apply the subordination lemma to get a Bergman-Carleson embedding

theorem from a Hardy-Carleson embedding one.
This leads to the following theorems.
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Theorem 1.5 Let Ω be a domain in Cn and Ω̃ its lift ; suppose that Ω̃ is equipped with a good
family of polydiscs P̃ which verifies the hypotheses (Hg). If the lifted domain Ω̃ has the p-CEP then
Ω has the (p, k)-BCEP.

Now let Ω be a domain in Cn. We say that the Hp-Corona theorem is true for Ω if we have :
∀g1, ..., gm ∈ H∞(Ω) :: ∀z ∈ Ω,

∑m
j=1 |gj(z)| ≥ δ > 0

then
∀f ∈ Hp(Ω), ∃(f1, ..., fm) ∈ (Hp(Ω))m :: f =

∑m
j=1 fjgj.

In the same vein, we say that the Ap
k−1(Ω)-Corona theorem is true for Ω if we have :

∀g1, ..., gm ∈ H∞(Ω) :: ∀z ∈ Ω,
m
∑

j=1

|gj(z)| ≥ δ > 0 (1.1)

then
∀f ∈ Ap

k−1(Ω), ∃(f1, ..., fm) ∈ (Ap
k−1(Ω))

m :: f =
∑m

j=1 fjgj.
In the section 5 we apply again the subordination principle to get:

Corollary 1.6 We have the Ap
k(Ω)-Corona theorem in the following cases :

• with p = 2 if Ω is a bounded weakly pseudo-convex domain in Cn;
• with 1 < p < ∞ if Ω is a bounded stricly pseudo-convex domain in Cn.

In section 4.1 we define and study the interpolating sequences in a domain Ω. We also define the
notion of dual bounded sequences in Hp(Ω) and in Ap

k(Ω), and applying the subordination principle
to the result I proved for Hp(Ω) interpolating sequences [5], we get

Theorem 1.7 If Ω is a convex domain of finite type in Cn and if S ⊂ Ω is a dual bounded sequence
of points in Ap

k(Ω) then, for any q < p, S is Ap
k(Ω) interpolating with the linear extension property,

provided that p = ∞ or p ≤ 2.

Finally in the section 6 we study zeros set for Nevanlinna Bergman functions.
Let Ω be a domain in Cn and u a holomorphic function in Ω. Set X := {z ∈ Ω :: u(z) = 0} the

zero set of u and ΘX := ∂∂ log u its associated (1, 1) current of integration.

Definition 1.8 A holomorphic divisor X in the domain Ω is in the Blaschke class, X ∈ B(Ω), if
there is a constant C > 0 such that

∀β ∈ Λ∞
n−1, n−1(Ω),

∣

∣

∣

∣

∫

Ω

(−r(z))ΘX ∧ β

∣

∣

∣

∣

≤ C ‖β‖∞ , (1.2)

where Λ∞
n−1, n−1(Ω) is the space of (n− 1, n− 1) continuous form in Ω, equipped with the sup norm

of the coefficients.

If u ∈ N (Ω) then it is well known that X is in the Blaschke class of Ω.
We do the analogue for the Bergman spaces :
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Definition 1.9 A holomorphic divisor X in the domain Ω is in the Bergman-Blaschke class, X ∈
Bk(Ω), if there is a constant C > 0 such that

∀β ∈ Λ∞
n−1, n−1(Ω),

∣

∣

∣

∣

∫

Ω

(−r(z))k+1ΘX ∧ ∂∂r ∧ β

∣

∣

∣

∣

≤ C ‖β‖∞ , (1.3)

where Λ∞
n−1, n−1(Ω) is the space of (n− 1, n− 1) continuous form in Ω, equipped with the sup norm

of the coefficients.

If u ∈ Nk(Ω) then it is well known that X is in the Bergman-Blaschke class of Ω.
Hence exactly as for the Corona theorem we can set the definitions :

we say that the Blaschke characterization is true for Ω if we have :
X ∈ B(Ω) ⇒ ∃u ∈ N (Ω) such that X = {z ∈ Ω :: u(z) = 0}.

And the same for the Bergman spaces :
we say that the Bergman-Blaschke characterization is true for Ω if we have :

X ∈ Bk(Ω) ⇒ ∃u ∈ Nk(Ω) such that X = {z ∈ Ω :: u(z) = 0}.
We get, by use of the subordination lemma applied to the corresponding Nevanlinna Hardy

results,

Corollary 1.10 The Bergman-Blaschke characterization is true in the following cases :
• if Ω is a stricly pseudo-convex domain in C

n ;
• if Ω is a convex domain of finite type in Cn.

I stated and proved the subordination lemma for the ball in C
n in 1978 [3], and, since then, I

gave seminars and conferences about it in the general situation.
I am indebted to Marco Abate for an interesting discussion on Bergman-Carleson measures in

january 2010, which makes me realizing that we can apply the subordination principle not only to
interpolating sequences, zero sets of holomorphic functions and Corona theorems, but also to the
Carleson measure theory.

I thank him also for sending me his preprint with A. Saraco [1] on Carleson measures in strongly
pseudo-convex domains.

2 The subordination principle.

In all the sequel, domain will mean bounded domain in Cn with smooth C∞ boundary defined by
a real valued function r ∈ C∞(Cn), i.e.

Ω = {z ∈ Cn :: r(z) < 0}, ∀z ∈ ∂Ω, ∂r(z) 6= 0.
We have associated to it the ”lifted” domain Ω̃ in (z, w) ∈ Cn+k with defining function

r̃(z, w) := r(z) + |w|2 .

Recall that dm(z) will denote the Lebesgue measure in Cn and dσ(z, w) the Lebesgue measure
on ∂Ω̃. For z ∈ Ω, let δ(z) := d(z,Ωc) be the distance from z to the boundary of Ω.

We shall need the following lemma on the ”disintegration” of the Lebesgue measure on ∂Ω
with respect to a defining function r.
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Lemma 2.1 Let Ω be a bounded domain in Rn with a smooth boundary, defined by a function
r ∈ C∞, i.e.

Ω := {x ∈ R
n :: r(z) < 0}, ∀x ∈ ∂Ω, grad r(x) 6= 0.

Then the Lebesgue measure σ on ∂Ω is given by

∀g ∈ C(∂Ω),

∫

∂Ω

g dσ = lim
η→0

1

η

∫

{−η≤r(x)<0}

1

|grad r(α)|
g̃(x) dm(x),

where α = π(x) is the normal projection of x on ∂Ω and g̃(x) is any continuous extension of g near
∂Ω, for instance g̃(x) := g(α).

Proof.
set ∂Ωη := {x ∈ Ω :: d(x, ∂Ω) ≤ η}, where d(x, ∂Ω) is the euclidean distance. Let g ∈ C(∂Ω) and
extend g continously in a ∂Ωη. By its very definition, the measure on ∂Ω induced by the Lebesgue
measure of Rn is

∫

∂Ω

g dσ = lim
η→0

1

η

∫

∂Ωη

g(x) dm(x).

But at a point α ∈ ∂Ω, we have r(x) = r(α) + (x − α) · grad r(ζ), for a ζ between α and x. This
implies, because r(α) = 0,

r(x) = (x− α) · grad r(ζ),
hence the thickness λ = λ(α) of the strip {−η ≤ r(x) < 0} at a point x, r(x) = −η, on the normal
at the point α, i.e. x− α = λgrad r(α)/ |grad r(α)| , is

|λgrad r(α) · grad r(ζ)/ |grad r(α)|| = η ⇒ λ(α) =
|grad r(α)|

grad r(α) · grad r(ζ)
η.

Because we want a uniform thickness, we have to correct it :

lim
η→0

1

η

∫

∂Ωη

g(x) dm(x) = lim
η→0

1

η

∫

{−η≤r(x)<0}

1

|grad r(α)|
g(x) dm(x),

because grad r(ζ) → grad r(α) as η → 0 and this lemma by the dominated convergence theorem of
Lebesgue. �

Now we can prove our subordination lemma [3] stated in the introduction.
We copy from [3], and adapt from the ball to this general case. If F (z, w) = f(z) ∈ Hp(Ω̃) then we
have

‖F‖pp := sup
ǫ>0

∫

{r̃(z,w)=−ǫ}

|F (z, w)|p dσ(z, w) < ∞.

By the previous lemma, the Lebesgue measure on ∂Ω̃ is

where r̃(z, w) := r(z) + |w|2 . To simplify notations set A(z, w) :=
1

|grad r̃(α)|
, then clearly

0 < A1 ≤ A(z, w) ≤ A2 < ∞,
because A(z, w) is smooth and Ω is compact.

By Fubini we get
∫

{−η≤r̃(z,w)<0}

A(z, w)g(z, w) dm(z, w)

=
∫

{z::r(z)<0}

(

∫

{w∈Ck::−η−r(z)≤|w|2<−r(z)}A(z, w)g(z, w) dm(w)
)

dm(z).

Suppose that the function g is (real positive) subharmonic in w for z fixed. Then
1

η

∫

{w∈Ck::−η−r(z)≤ |w|2 < −r(z)}
A(z, w)g(z, w) dm(w) ≥
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≥ A1
1

η

∫

{w∈Ck::−η−r(z)≤ |w|2 < −r(z)}
g(z, w) dm(w) ≥

≥ g(z, 0) 1
η

∫

{w∈Ck::−η−r(z)≤|w|2<−r(z)}
dm(w),

because {w ∈ C
k :: −η − r(z) ≤ |w|2 < −r(z)} is a corona centered at 0 and g is subharmonic in

w. Now we have

1

η

∫

{w∈Ck::−η−r(z)≤ |w|2 < −r(z)}
dm(w) =

(−r(z))k − (−r(z)− η)k

η
→ k(−r(z))k−1, η → 0.

Hence we get for g a (real positive) subharmonic function in w for z fixed

∫

∂Ω̃

g(z, w) dσ(z, w) ≥ A1k

∫

{z::r(z)<0}

g(z, 0)(−r(z))k−1 dm(z) = A1k

∫

Ω

g(z, 0)(−r(z))k−1 dm(z).

Now apply this for Ω̃ǫ := {r(z) + |w|2 = −ǫ} instead of Ω̃, and with g(z, w) := |F (z, w)|p , (resp.
g(z, w) := log+ |F (z, w)|) which is pluri-subharmonic, hence in particular subharmonic in w for z
fixed, and continuous up to ∂Ω̃ǫ because ǫ > 0. So

∫

∂Ω̃ǫ

|F (z, w)|p dσ(z, w) ≥ A1k

∫

Ωǫ

|F (z, 0)|p (−r(z))k−1 dm(z).

Respectively
∫

∂Ω̃ǫ

log+ |F (z, w)| dσ(z, w) ≥ A1k

∫

Ωǫ

log+ |F (z, 0)|p (−r(z))k−1 dm(z).

But we have δ(z) ≃ −r(z) near the boundary. Hence by Fatou’s lemma with ǫ → 0,

A1k ‖F (·, 0)‖Ap
k−1

(Ω) = A1k

∫

Ω

|F (z, 0)|p δ(z)k−1 dm(z) ≤ ‖F‖p
Hp(Ω̃)

,

respectively

A1k ‖F (·, 0)‖Nk−1(Ω) = A1k

∫

Ω

log+ |F (z, 0)| δ(z)k−1 dm(z) ≤ ‖F‖N (Ω̃) ;

hence

‖F (·, 0)‖Ap
k−1

(Ω) ≤
1

A1k
‖F‖p

Hp(Ω̃)
,

respectively

‖F (·, 0)‖Nk−1(Ω) ≤
1

A1k
‖F‖N (Ω̃) .

Now if we set f(z) := F (z, 0) we get
‖f‖Ap

k−1
(Ω) ≤

1
A1k

‖F‖pp
respectively

‖f‖Nk−1(Ω) ≤
1

A1k
‖F‖N (Ω̃) .

Hence if F (z, w) := f(z) and F ∈ Hp(Ω̃) we have f ∈ Ap
k−1(Ω), respectively

F ∈ N (Ω̃) ⇒ f ∈ Nk−1(Ω).
So we have the first part of the lemma.
Conversely if f ∈ Ap

k−1(Ω) (resp. f ∈ Nk−1(Ω)), setting F (z, w) := f(z) and reversing the
previous computations, using equalities this time,

1

η

∫

{w∈Ck::−η−r(z)≤ |w|2 < −r(z)}
|f(z)|p dm(w) → |f(z)|p k(−r(z))k−1,
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respectively

1

η

∫

{w∈Ck::−η−r(z)≤ |w|2 < −r(z)}
log+ |f(z)| dm(w) → log+ |f(z)| k(−r(z))k−1,

we get ‖F‖Hp(Ω̃) ≤ A2k ‖f‖Ap
k−1

(Ω) (resp. ‖F‖N (Ω̃) ≤ A2k ‖f‖Nk−1(Ω)) and this lemma. �

Corollary 2.2 For any a ∈ Ω the Bergman kernel Bk(z, a) and the Szegö kernel S̃((z, w), (a, 0))
for the lifted domain Ω̃, verify, with ∀z ∈ Ω, z̃ := (z, 0) ∈ Ω̃ :

∀a ∈ Ω, ∀z ∈ Ω, Bk(z, a) = S̃(z̃, ã).
Moreover we have

∀a ∈ Ω,
∥

∥

∥
S̃(·, ã)

∥

∥

∥

Hp(Ω)
& ‖Bk(·, a)‖Ap

k−1
(Ω) .

Proof.
Let f ∈ A(Ω) be a holomorphic function in Ω, continuous up to ∂Ω. Let

∀(z, w) ∈ Ω̃, F (z, w) := f(z).
We have

∫

Ω
f(z)Bk(z, a) dmk(z) = f(a) = F (a, 0) =

∫

∂Ω̃
F (z, w)S̃((z, w), ã) dσ(z, w),

by the reproducing property of these kernels. But F does not depend on w and S̃((z, w) is anti-
holomorphic in w for z fixed in Ω, so

1

η

∫

{w∈Ck::−η−r(z)≤ |w|2 < −r(z)}
S̃((z, w), ã) dm(w) → S̃((z, 0), ã)k(−r(z))k−1,

by the previous proof, hence

∫

Ω

f(z)Bk(z, a) dmk(z) =

∫

Ω

f(z)S̃((z, 0), ã)k(−r(z))k−1 dm(z) =

∫

Ω

f(z)S̃((z, 0), ã) dmk(z).

So we have

∀f ∈ A(Ω),

∫

Ω

f(z)(S̃((z, 0), ã)− Bk(z, a)) dmk(z) = 0,

hence S̃((z, 0), ã) − Bk(z, a) ⊥ A(Ω) in A2
k(Ω). But S̃((z, 0), ã) − Bk(z, a) is holomorphic in z,

hence
∀z ∈ Ω, S̃((z, 0), ã) = Bk(z, a).

The second part is a direct application of the first part in the subordination lemma 1.2, and the
corollary. �
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3 Geometric Carleson measures and p-Carleson measures.

In order to define precisely the geometric Carleson measures, we need the notion of a ”good” family
of polydiscs, directly inspirated by the work of Catlin [12] and introduced in [5].

Let U be a neighbourhood of ∂Ω in Ω such that the normal projection π onto ∂Ω is a smooth
well defined application.

Let a ∈ Ω and let b(a) = (L1, L2, ..., Ln) be an orthonormal basis of Cn, such that (L2, ..., Ln)
is a basis of the tangent complex space TC

a of the level set ∂Ωa := {z ∈ Ω :: r(z) = r(a)} at a, hence
L1 is the complex normal at a to ∂Ωa.

Let α ∈ ∂Ω and let b(α) = (L1, L2, ..., Ln) be an orthonormal basis of Cn such that (L2, ..., Ln)
is a basis of the tangent complex space TC

α of ∂Ω at α ; hence L1 is the complex normal at α to ∂Ω.
Let m(α) = (m1, m2, ..., mn) ∈ Nn be a multi-index at α with m1 = 1, ∀j ≥ 2, mj ≥ 2.
For a ∈ U and t > 0 set α = π(a) and Pa(t) :=

∏n
j=1 tDj , the polydisc such that tDj is the disc

centered at a, parallel to Lj ∈ b(α), with radius t |r(a)|1/mj (in U we have |r(a)| ≃ d(a, Ωc) is the
distance from a to the boundary of Ω).

Set b(a) := b(π(a)), m(a) := m(π(a)), for a ∈ U .
This way we have a family of polydiscs P := {Pa(t)}a∈U defined by the family of basis {b(a)}a∈U ,

the family of multi-indices {m(a)}a∈U and the number t. Notice that the polydisc Pa(2) always
overflows the domain Ω.

It will be useful to extend this family to the whole of Ω. In order to do so let (z1, ..., zn) be
the canonical coordinates system in C

n and for a ∈ Ω\U , let Pa(t) be the polydisc of center a, of
sides parallel to the axis and radius td(a) in the z1 direction and td(a)1/2 in the other directions.
So the points a ∈ Ω\U have automatically a ”minimal” multi-index m(a) = (1, 2, ..., 2).

Now we can set

Definition 3.1 We say that P is a ”good family” of polydiscs for Ω if the mj(a) are uniformly
bounded on Ω and if it exists δ0 > 0 such that all the polydiscs Pa(δ0) of P are contained in Ω. In
this case we call m(a) the multi-type at a of the family P.

We notice that, for a good family P, by definition the multi-type is always finite. Moreover
there is no regularity assumptions on the way that the basis b(a) varies with respect to a ∈ Ω.

We can see easily that there is always good families of polydiscs in a domain Ω in Cn : for
a point a ∈ Ω, take any orthonormal basis b(a) = (L1, L2, ..., Ln), with L1 the complex normal
direction, and the ”minimal” multitype m(a) = (1, 2, ..., 2). Then, because the level sets ∂Ωa are
uniformly of class C2 and compact, we have the existence of a uniform δ0 > 0 such that the family
P is a good one. But, as seen in [5], this one is actually good just for the stricly pseudo-convex
domains.

The domain Ω is still defined by the function r ∈ C∞, ∀z ∈ ∂Ω, grad r(z) 6= 0 and we still
note σ the Lebesgue measure on ∂Ω and m the Lebesgue measure on Cn.

We can give the definitions relative to Carleson measures.

Definition 3.2 A positive borelian mesure µ on Ω is a geometric Carleson measure, µ ∈ Λ1(Ω), if
∃C = Cµ > 0 :: ∀a ∈ Ω, µ(Ω ∩ Pa(2)) ≤ Cσ(Ω ∩ Pa(2)).
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Definition 3.3 A positive borelian measure µ on Ω is a p-Carleson measure in Ω if

∃C > 0 :: ∀f ∈ Hp(Ω),

∫

Ω

|f(z)|p dµ(z) ≤ Cp ‖f‖pHp(Ω) .

And analoguously for the Bergman spaces.

Definition 3.4 A positive borelian mesure µ on Ω is a k-geometric Bergman-Carleson measure,
µ ∈ Λ1

k(Ω), if
∃C = Cµ > 0 :: ∀a ∈ Ω, µ(Ω ∩ Pa(2)) ≤ Cmk(Ω ∩ Pa(2)).

with dmk(z) := δ(z)k−1 dm(z) is the weighted Lebesgue measure.

Notice the gap k → k − 1.

Definition 3.5 A positive borelian measure µ is (p, k)-Bergman-Carleson measure in Ω if

∃C > 0 :: ∀f ∈ Ap
k−1(Ω),

∫

Ω

|f(z)|p dµ(z) ≤ Cp ‖f‖p
Ap

k−1
(Ω)

.

Definition 3.6 We shall say that the domain Ω has the p-Carleson embedding property, p-CEP, if

∀µ ∈ Λ1(Ω), ∃C = Cµ > 0 :: ∀f ∈ Hp(Ω),

∫

Ω

|f |p dµ ≤ C ‖f‖pHp(Ω) .

And the same for the Bergman spaces.

Definition 3.7 We shall say that the domain Ω has the (p, k)-Bergman-Carleson embedding prop-
erty, (p, k)-BCEP, if

∀µ ∈ Λ1
k(Ω), ∃C = Cµ > 0 :: ∀f ∈ Ap

k−1(Ω),

∫

Ω

|f |p dµ ≤ C ‖f‖p
Ap

k−1
(Ω)

.

3.1 Application of the subordination lemma to Carleson measures.

We shall fix k ∈ N and lift the mesure on the domain Ω̃ := {r̃(z, w) := r(z) + |w|2 < 0}, with
w = (w1, ..., wk) ∈ Ck. We already know how to lift the function, the lifted measure µ̃ of a measure
µ is just

µ̃ := µ⊗ δ,
with δ the delta Dirac measure of the origin in Ck. We shall need a lemma linking Bergman and
Hardy geometric Carleson measures.

Let Ω be a domain in Cn and Ω̃ be its usual lift, and suppose that Ω̃ is equipped with a good
family of polydiscs P̃.

Definition 3.8 We shall say that the good family of polydiscs P̃ on the domain Ω̃ is ”homogeneous”
if
(Hg) ∃t > 0, ∃C > 0 :: ∀b ∈ Ω ∩ Pa(2), Pb(t) ⊃ Pa(2) ; σ(Pb(t)) ≤ Cσ(Pa(2)),
where Ω = Ω̃ ∩ {w = 0} ⊂ Ω̃.
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Naturally the domain Ω is equipped with the family P induced by P̃ the following way
∀a ∈ Ω, Pa(u) := P(a,0)(u) ∩ {w = 0},

which is also a good family for Ω.
As examples we have the stricly pseudo-convex domains and the convex domains of finite type,
because both are domains of homogeneous type in the sense of Coifman-Weiss [13].

Lemma 3.9 Let (Ω, Ω̃) be as above and suppose that Ω̃ is equipped with a good family of polydiscs
P̃ which verifies the hypothesis (Hg). The measure µ is a k-geometric Bergman-Carleson measure
in Ω iff the measure µ̃ is a geometric Carleson measure in Ω̃.

Proof of the lemma.
Suppose that µ is a k-geometric Bergman-Carleson measure in Ω, we want to show :

∃C > 0 :: ∀(a, b) ∈ Ω̃, µ̃(Ω̃ ∩ P(a,b)(2)) ≤ Cσ(Ω̃ ∩ P(a,b)(2)),

with Pc the polydisc of center c = (a, b) ∈ Ω̃ of the family P̃. Let us see first the case where b = 0,
i.e. (a, b) ∈ Ω ⊂ Ω̃. Then, by definition of µ̃, we have

µ̃(Ω̃ ∩ P(a,0)(2)) = µ(Ω ∩ Pa(2)).
On the other hand, we have, exactly as in the proof of the subordination lemma,

σ(Ω̃ ∩ P̃(a,0)(2)) =

∫

Ω∩Pa(2)

k(−r(z))k−1 dm(z) = mk(Ω ∩ Pa(2)),

with dmk := k(−r)k−1 dm.
But if µ is a k-geometric Bergman-Carleson measure in Ω, we have

∃C > 0 :: ∀a ∈ Ω, µ(Ω ∩ Pa(2)) ≤ Cmk(Ω ∩ Pa(2)),
so

µ̃(Ω̃ ∩ P(a,0)(2)) = µ(Ω ∩ Pa(2)) ≤ Cmk(Ω ∩ Pa(2)) =
C

k
σ(Ω̃ ∩ P(a,0)(2)).

Now take a general P(a,b)(2). In order for µ̃(Ω̃ ∩ P(a,b)(2)) to be non zero, we must have
P(a,b)(2) ∩ {w = 0} 6= ∅ ⇒ ∃(c, 0) ∈ P(a,b)(2) ∩ {w = 0}.

By the (Hg) hypotheses, this means that we have P(c,0)(t) ⊃ P(a,b)(2) with the uniform control

σ(Ω̃ ∩ P(c,0)(t)) . σ(Ω̃ ∩ P(a,b)(2)).
We apply the above inequality

µ̃(Ω̃∩P(a,b)(2)) ≤ µ̃(Ω̃∩P(c,0)(t)) ≤ Cmk(Ω∩Pc(t)) =
C

k
σ(Ω̃∩P(c,0)(t)) . σ(Ω̃∩P(a,b)(2)),

hence µ̃ is a geometric Carleson measure on Ω̃.
Conversely suppose that µ̃ is a geometric Carleson measure on Ω̃, this means

∀(a, b) ∈ Ω̃, µ̃(Ω̃ ∩ P(a,b)(2)) ≤ Cσ(Ω̃ ∩ P(a,b)(2)),
hence, in particular for b = 0,

∀a ∈ Ω, µ̃(Ω̃ ∩ P(a,0)(2)) ≤ Cσ(Ω̃ ∩ P(a,0)(2)),

but then by definition of µ̃ and with the previous computation of σ(Ω̃ ∩ P(a,0)(2)), we get
∀a ∈ Ω, µ(Ω ∩ Pa(2)) ≤ Cmk(Ω ∩ Pa(2)),

hence the measure µ is a k-geometric Bergman-Carleson measure in Ω, and the lemma. �

Now we shall use the subordination lemma to get a Bergman-Carleson embedding theorem
from a Hardy-Carleson embedding theorem.

Theorem 3.10 Let (Ω, Ω̃) be as usual and suppose that Ω̃ is equipped with a good family of polydiscs
P̃ which verifies the hypotheses (Hg). If the lifted domain Ω̃ has the p-CEP then Ω has the (p, k)-
BCEP.
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Proof.
Suppose the positive measure µ is a k-geometric Bergman-Carleson measure ; by the previous
lemma, we have that the lifted measure µ̃ is a geometric Carleson measure in Ω̃. By the p-CEP we
have

∀F ∈ Hp(Ω̃),
∫

Ω̃
|F |p dµ̃ ≤ Cp

µ ‖F‖p
Hp(Ω̃)

.

Choose f(z) ∈ Ap
k−1(Ω) and set ∀(z, w) ∈ Ω̃, F (z, w) = f(z). By the subordination lemma we have

‖f‖Ap
k−1

(Ω) ≃ ‖F‖Hp(Ω̃) ,

and by definition of µ̃, we have
∫

Ω

|f |p dµ =

∫

Ω̃

|F |p dµ̃ ≤ Cp
µ ‖F‖p

Hp(Ω̃)
. ‖f‖Ap

k−1
(Ω) ,

hence µ is a (k, p)-Bergman-Carleson measure in Ω. �

Theorem 3.11 Let (Ω, Ω̃) be as usual and suppose that Ω̃ is equipped with a good family of polydiscs
P̃ which verifies the hypotheses (Hg). If p-Carleson implies geometric Carleson in Ω̃, then (p, k)-
Bergman-Carleson implies geometric k-Bergman-Carleson in Ω.

Proof.
If the positive measure µ is (p, k)-Bergman-Carleson in Ω then µ̃ is a p-Carleson measure in Ω̃
by lemma 3.9 hence a geometric Carleson measure in Ω̃ by the assumption of the theorem. Then
applying lemma 3.9 we get that µ is a k-geometric Carleson measure in Ω hence the theorem. �

Remark 3.12 In the case of the unit ball Ω of Cn, Ω̃ ⊂ Cn+1 N. Varopoulos showed me an
alternative proof for the fact that F (z, w) ∈ Hp(Ω̃) ⇒ F (z, 0) ∈ Ap(Ω) : the Lebesgue measure
on {w = 0} ∩ Ω̃ is easily seen to be a geometric Carleson measure in Ω̃, hence by the Carleson-
Hörmander embedding theorem [17] we have

∫

Ω

|F (z, 0)|p dm(z) ≤ C ‖F‖Hp(Ω̃) ,

and the assertion. Of course this is still valid in codimension k ≥ 1, with the weighted Lebesgue
measure on Ω, and for strictly pseudo-convex domains because the Carleson-Hörmander embedding
theorem is still valid there. But this is just one direction of the lemma, it works only if there is a
Carleson embedding theorem and this proof is much less elementary than the previous one.

In fact we can reverse things and say that one part of the subordination lemma asserts that the
weighted Lebesgue measure on Ω is always a Carleson measure in Ω̃, Ω stricly pseudo-convex or
not.

4 Application to convex domains of finite type in C
n.

In [5] we prove a Carleson embedding theorem for the convex domains of finite type in Cn.

Theorem 4.1 Let Ω be a convex domains of finite type in C
n ; if the measure µ is a geometric

Carleson measure we have
∀p > 1, ∃Cp > 0, ∀f ∈ Hp(Ω),

∫

Ω
|f |p dµ ≤ Cp

p ‖f‖
p
Hp .

Conversely if the positive measure µ is p-Carleson for a p ∈ [1, ∞[, then it is a geometric
Carleson measure, hence it is q-Carleson for any q ∈]1, ∞[.

11



We already know that if Ω is a convex domain of finite type, so is Ω̃ with the same type.
Moreover the hypotheses (Hg) are true for these domains equipped with a (slightly modified) McNeal
family of polydiscs, so we can apply what precedes in this case to get from the Carleson embedding
theorem the Bergman-Carleson embedding one.

Theorem 4.2 Let Ω be a convex domains of finite type in Cn ; if the measure µ is a k-geometric
Bergman-Carleson measure we have

∀p > 1, ∃Cp > 0, ∀f ∈ Ap
k−1(Ω),

∫

Ω
|f |p dµ ≤ Cp

p ‖f‖
p
Ap

k−1
(Ω)

.

Conversely if the positive measure µ is (p, k)-Bergman-Carleson for a p ∈ [1, ∞[, then it is a
k-geometric Bergman-Carleson measure, hence it is (q, k)-Bergman-Carleson for any q ∈]1, ∞[.

4.1 Interpolating sequences for the Bergman spaces.

For k ∈ N and a ∈ Ω, let bk, a(z) = Bk(z, a) denotes the Bergman kernel of Ω at the point a. It
is the kernel of the orthogonal projection from L2(Ω, mk) onto A2

k(Ω) ; it is also the reproducing
kernel for A2

k(Ω), i.e.

∀a ∈ Ω, ∀f ∈ A2
k(Ω), f(a) =

∫

Ω

f(z)bk,a(z) dmk(z) = 〈f, bk,a〉 .

Now we set ‖bk,a‖p := ‖bk,a‖Ap
k
(Ω) and:

Definition 4.3 We say that the sequence S of points in Ω is Ap
k(Ω) interpolating if

∀λ ∈ ℓp(S), ∃f ∈ Ap
k(Ω) :: ∀a ∈ S, f(a) = λa ‖bk,a‖p′ ,

with p′ the conjugate exponent for p, 1/p′ = 1− 1/p.

We say that S has the linear extension property if S is Ap
k(Ω) interpolating and if moreover

there is a bounded linear operator E : ℓp(S) → Ap
k(Ω) making the interpolation.

A weaker notion is the dual boundedness:

Definition 4.4 We shall say that the sequence S of points in Ω is dual bounded in Ap
k(Ω) if there is

a bounded sequence of elements in Ap
k(Ω), {ρa}a∈S ⊂ Ap

k(Ω) which dualizes the associated sequence
of reproducing kernels, i.e.

∃C > 0 :: ∀a ∈ S, ‖ρa‖p ≤ C, ∀a, c ∈ S, 〈ρa, bk,c〉 = δa,c ‖bk,a‖p′ .

If S is Ap
k(Ω) interpolating then it is dual bounded in Ap

k(Ω) : just interpolate the element of
the basic sequence in ℓp(S).

The converse is the crux of the characterization by Carleson [11] of H∞(D) interpolating se-
quences and the same by Shapiro & Shields [18] for Hp(D) interpolating sequences in D.

In [5], I proved

Theorem 4.5 If Ω is a convex domain of finite type in Cn and if S ⊂ Ω is a dual bounded sequence
of points in Hp(Ω), then, for any q < p, S is Hq(Ω) interpolating with the linear extension property,
provided that p = ∞ or p ≤ 2.

So we get
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Theorem 4.6 If Ω is a convex domain of finite type in Cn and if S ⊂ Ω is a dual bounded sequence
of points in Ap

k−1(Ω) then, for any q < p, S is Ap
k−1(Ω) interpolating with the linear extension

property, provided that p = ∞ or p ≤ 2.

Proof.
Let Ω̃ be the lifted convex domain of finite type obtained as in section 2. Let S̃ be the sequence S
viewed in Ω̃, S̃ := S ⊂ Ω ⊂ Ω̃. Let us denote by kã(z, w) := S((z, w), ã) the Szegö kernel of Ω̃, for
ã = (a, 0). Then we have, by corollary 2.2,

∀ã = (a, 0), a ∈ Ω, ‖bk−1,a‖Ap
k
(Ω) . ‖kã‖Hp(Ω) .

First we have to show that S dual bounded in Ap
k(Ω) implies S̃ dual bounded in Hp(Ω̃).

Let {ρa}a∈S ⊂ Ap
k−1(Ω) be the dual sequence to the sequence {bk−1,a}a∈S ; extend it to Ω̃ :

∀a ∈ S, Γa(z, w) := ρa(z),
then the subordination lemma gives us that ‖Γa‖Hp(Ω̃) ≃ ‖ρa‖Ap

k
(Ω) and we have, using corollary 2.2,

∀a, b ∈ S, 〈Γa, kb〉 =
〈

Γa, S((·, 0), b̃)
〉

= 〈ρa, B(·, b)〉 = δab,

hence S̃ is dual bounded in Hp(Ω̃).
Because S̃ is dual bounded in Hp(Ω̃) then we have, for q < p, that S̃ is interpolating in Hq(Ω̃)

provided that p = ∞ or p ≤ 2.

Now let µ = {µa}a∈S ∈ ℓq(S) and set λ = {λa}a∈S with ∀a ∈ S, λa := µa×
‖bk,a‖Aq′

k−1
(Ω)

‖kã‖Hq′(Ω)

; then

λ ∈ ℓq(S), ‖λ‖q ≤ ‖µ‖q .

So S̃ is interpolating in Hq(Ω̃) hence we have a linear operator Ẽ : ℓq(S̃) → Hq(Ω̃) such that
F (z, w) := Ẽ(λ)(z, w) verifies :

F ∈ Hq(Ω̃), ∀a ∈ S, F (ã) = λa ‖kã‖Hq′ (Ω̃) , ‖F‖Hq(Ω̃) . ‖λ‖q .

Set f(z) := F (z, 0) = Ẽ(λ)(z, 0) =: E(µ)(z), then clearly E is linear in µ and then still using
the subordination lemma we have

‖f‖Ap
k−1

(Ω) . ‖F‖Hq(Ω̃) . ‖λ‖q . ‖µ‖q
and

∀a ∈ S, f(a) = λa ‖kã‖Hq′ (Ω̃) = µa ‖bk,a‖Aq′

k−1
(Ω)

.

Hence µ → E(µ) is bounded from ℓq(S) in Ap
k−1(Ω) and S is Ap

k−1(Ω) interpolating with the linear
extension property, and the theorem. �

Remark 4.7 I applied the subordination principle since 1978 [2], [3] essentially in this case. For
instance in [2] we used it to show that the interpolating sequences for Hp(B), with B the unit ball
in Cn, n ≥ 2, are different for different values of p, opposite to the one variable case of Hp(D).

5 The Hp-Corona theorem for Bergman spaces.

Let Ω be a domain in Cn. We say that the Hp-Corona theorem is true for Ω if we have :
∀g1, ..., gk ∈ H∞(Ω) :: ∀z ∈ Ω,

∑m
j=1 |gj(z)| ≥ δ > 0

then
∀f ∈ Hp(Ω), ∃(f1, ..., fm) ∈ (Hp(Ω))m :: f =

∑m
j=1 fjgj.

In the same vein, we say that the Ap
k−1(Ω)-Corona theorem is true for Ω if we have :
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∀g1, ..., gm ∈ H∞(Ω) :: ∀z ∈ Ω,
m
∑

j=1

|gj(z)| ≥ δ > 0 (5.1)

then
∀f ∈ Ap

k−1(Ω), ∃(f1, ..., fm) ∈ (Ap
k−1(Ω))

m :: f =
∑m

j=1 fjgj.
We then have

Theorem 5.1 Suppose that the Hp-Corona is true for the domain Ω̃, then the Ap
k−1(Ω)-Corona

theorem is also true for Ω.

Proof.
Let Ω̃ be the lifted domain ; then set

∀j = 1, ..., m, gj ∈ H∞(Ω), f ∈ Hp(Ω), Gj(z, w) := gj(z), F (z, w) := f(z).
Clearly the Gj are in H∞(Ω̃) and by the subordination lemma, F ∈ Hp(Ω̃). Moreover, if the

condition (5.1) is true we have ∀(z, w) ∈ Ω̃,
m
∑

j=1

|Gj(z, w)| ≥ δ with the same δ. So we can apply

the hypothesis :
∃(F1, ..., Fm) ∈ (Hp(Ω))m :: F =

∑m
j=1 FjGj .

Now set fj(z) = F (z, 0) then applying again the subordination lemma, we have this theorem. �

Corollary 5.2 We have the Ap
k−1(Ω)-Corona theorem in the following cases :

• with Ω the unit ball in Cn, 2 generators and 1 < p < ∞ ;
• with p = 2 if Ω is a bounded weakly pseudo-convex domain in C

n;
• with 1 < p < ∞ if Ω is a bounded stricly pseudo-convex domain in Cn.

The first case because I proved [4] ( with [7] already in 1980) the Hp Corona theorem for two
generators in the ball ;

the second one because Andersson [8] (with a preprint in 1990) proved the H2 Corona theorem
for Ω bounded weakly pseudo-convex domain in Cn;

the last one for any number of generators because Andersson & Carlsson [9] (see also [6] proved
the Hp Corona theorem in this case. �

6 Zeros set of the Nevanlinna-Bergman class

Let Ω be a domain in Cn and u a holomorphic function in Ω. Set X := {z ∈ Ω :: u(z) = 0} the zero
set of u and ΘX := ∂∂ log u its associated (1, 1) current of integration.

Definition 6.1 A holomorphic divisor X in the domain Ω is in the Blaschke class, X ∈ B(Ω), if
there is a constant C > 0 such that

∀β ∈ Λ∞
n−1, n−1(Ω),

∣

∣

∣

∣

∫

Ω

(−r(z))ΘX ∧ β

∣

∣

∣

∣

≤ C ‖β‖∞ , (6.1)

where Λ∞
n−1, n−1(Ω) is the space of (n− 1, n− 1) continuous form in Ω, equipped with the sup norm

of the coefficients.
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If u ∈ N (Ω) then it is well known that X is in the Blaschke class of Ω.
We do the analogue for the Bergman spaces :

Definition 6.2 A holomorphic divisor X in the domain Ω is in the Bergman-Blaschke class, X ∈
Bk(Ω), if there is a constant C > 0 such that

∀β ∈ Λ∞
n−1, n−1(Ω),

∣

∣

∣

∣

∫

Ω

(−r(z))k+1ΘX ∧ ∂∂r ∧ β

∣

∣

∣

∣

≤ C ‖β‖∞ , (6.2)

where Λ∞
n−1, n−1(Ω) is the space of (n− 1, n− 1) continuous form in Ω, equipped with the sup norm

of the coefficients.

If u ∈ Nk(Ω) then it is well known that X is in the Bergman-Blaschke class of Ω.
Hence exactly as for the Corona theorem we can set the definitions :

we say that the Blaschke characterization is true for Ω if we have :
X ∈ B(Ω) ⇒ ∃u ∈ N (Ω) such that X = {z ∈ Ω :: u(z) = 0}.

And the same for the Bergman spaces :
we say that the Bergman-Blaschke characterization is true for Ω if we have :

X ∈ Bk(Ω) ⇒ ∃u ∈ Nk(Ω) such that X = {z ∈ Ω :: u(z) = 0}.

Theorem 6.3 Suppose that the Blaschke characterization is true for the domain Ω, then the Bergman-
Blaschke characterization is also true for Ω.

Proof.
Let Ω̃ be the lifted domain ; then set X = u−1(0), ΘX its associated current and suppose that
X ∈ Bk−1(Ω).

This means that

∀β ∈ Λ∞
n−1, n−1(Ω),

∣

∣

∣

∣

∫

Ω

(−r(z))k+1ΘX ∧ β

∣

∣

∣

∣

≤ C ‖β‖∞ . (6.3)

Let U(z, w) := u(z), X̃ := U−1(0) ⊂ Ω̃, Θ̃X̃ = ∂∂ log |U | ; we shall show that X̃ ∈ B(Ω̃). We have
that Θ̃X̃ does not depend on w, hence

∀β̃ ∈ Λ∞
n−1, n−1(Ω̃), A :=

∫

Ω̃

(−r̃(z, w))Θ̃X̃ ∧ β̃ =

∫

Ω

ΘX(z) ∧

∫

|w|2 < −r(z)
−(r(z) + |w|2)β̃(z, w).

(6.4)

hence A = A1 + A2 with

A1 :=

∫

Ω

ΘX ∧ (−r(z))

(

∫

|w|2 < −r(z)
β̃(z, w)

)

;

A2 :=

∫

Ω

ΘX ∧

(

∫

|w|2 < −r(z)
(− |w|2)β̃(z, w)

)

;

15



But β1(z) :=

∫

|w|2 < −r(z)
β̃(z, w) is clealy in Λ∞

n−1, n−1(Ω), because β̃(z, w) has bounded coeffi-

cients and the ball |w|2 < −r(z) is uniformly bounded hence ‖β1‖∞ .
∥

∥

∥
β̃
∥

∥

∥

∞
.

Let β2(z) :=

∫

|w|2 < −r(z)
|w|2 β̃(z, w), then

|A2| =

∣

∣

∣

∣

∫

Ω

ΘX ∧ β2

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω

ΘX ∧ (−r(z))β1

∣

∣

∣

∣

,

because |w|2 < −r(z) hence |β2| ≤ −r(z) |β1| , recall that ΘX is positive. Hence we can apply the
hypothesis to these integrals :

|A| ≤ |A1|+ |A2| . ‖β1‖∞ + ‖β2‖∞ .
∥

∥

∥
β̃
∥

∥

∥

∞
,

and X̃ ∈ B(Ω̃).
Now we apply the hypothesis of the theorem,

∃V ∈ N (Ω̃) :: X̃ = V −1(0),
and clearly X = V −1(0) ∩ {w = 0}, because if z ∈ X then ∀w :: |w|2 < −r(z), (z, w) ∈ X̃. Hence
we set

v(z) := V (z, 0) ∈ Nk(Ω),
by the subordination lemma, and we are done. �

Corollary 6.4 The Bergman-Blaschke characterization is true in the following cases :
• if Ω is a stricly pseudo-convex domain in C

n ;
• if Ω is a convex domain of finite type in Cn.

Proof.
The first case is true by the famous theorem proved by Henkin [16] and Skoda [19] which says that
the Blaschke characterization is true for stricly pseudo-convex domain in Cn.
The second one because the Blaschke characterization is true for convex domain of finite strict type
by a theorem of Bruna-Charpentier-Dupain [10] generalized to all convex domains of finite type by
Cumenge [14] and Diederich & Mazzilli [15]. �
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