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Abstract

Two main drawbacks can be stated in the Alternating Least Square (ALS) algorithm

used to fit the CANonical Decomposition (CAND) of multi-way arrays. First its slow

convergence caused by the presence of collinearity between factors in the multi-way array

it decomposes. Second its blindness to Hermitian symmetries of the considered arrays.

Enhanced Line Search (ELS) scheme was found to be a good way to cope with the

slow convergence of the ALS algorithm together with a partial use of the Hermitian

symmetry. However, to our knowledge, required equations to perform the latter scheme

are only given in the case of third and fifth order arrays. Therefore, our first contribution

consists in generalizing the ELS procedure to the case of complex arrays of any order

greater than three. Our second contribution is another improvement of the ALS scheme,

able to profit from Hermitianity and positive semi-definiteness of the considered arrays.

It consists in resorting to the CAND of a third order array having one unitary loading

matrix. An iterative algorithm is then proposed alternating between Procrustes problem

solving and the computation of rank-one matrix approximations.
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1. Introduction

CANonical Decomposition (CAND) of a Higher Order (HO) array is the decomposi-

tion of the array as a linear combination of a minimal number of rank-1 terms. Recall that

HO arrays are those arrays whose elements are addressed by more than two indices. In

addition to the Tucker decomposition/HO Singular Value Decomposition (HOSVD)[1, 2],

CAND is another possible generalization of SVD [3] to HO arrays but without any or-

thogonal constraint. According to its definition, CAND relies essentially on the concept

of HO array rank and low-rank decomposition, and its uniqueness properties mark its

specific characteristic. The symmetric variant of the CAND defined when those rank-1

terms are symmetric is going back to the nineteenth century in the context of invariant

theory [4]. Indeed, each symmetric 2q-th (q ¥ 1) order array of dimension N is associ-

ated to a 2q-th order homogeneous polynomial with N variables. Then the CAND of the

considered HO arrays is rephrased in terms of polynomials as the sum of N d-th powers

of linear forms. In fact, the unsymmetric variant was first tackled by Hitchcock in 1927

[5, 6]. Since then, the use of the CAND concept grows together with the technological

innovations that make possible the acquisition of multi-dimensional measurements with

meaningful form such as in psychometrics [7] where the term CAND is employed, in

chemometrics [8] where the term PARAFAC (PARallel FACtor analysis) is used instead,

in exploratory data analysis [9] and in signal processing area [10]. Even when the obser-

vation diversity is not sufficient, meaningful HO arrays can still be formed by resorting

to HO Statistics (HOS) of the data such as in radiocommunications [11, 12, 13, 14].

A multitude of methods have then been developed to fit the CAND of a given HO

array. Some of them are semi-algebraic and others are iterative. For example, author

in [15] shows that CAND of third and fourth order arrays can be performed by means

of a joint diagonalization of a set of matrices leading to a new uniqueness condition

less restrictive than the one defined by Kruskal [16] (see section 2). In addition, we

can find the Direct TriLinear Decomposition algorithm (DTLD) and the Generalized

Rank Annihilation Method (GRAM) [17]. Both the DTLD and the GRAM approaches

are based on a generalized eigenvalue problem. Authors in [18] show that CAND can

be solved by means of a simultaneous generalized Schur decomposition. On the other

hand, authors in [13] exploit redundancies in the considered Hermitian positive semi-
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definite arrays to perform CAND. Regarding the iterative approaches, several methods

were proposed such as the non-linear conjugate gradient approach [19], the Levenberg-

Marquardt method [20, 21, 22, 23], the Alternating Least Squares (ALS) algorithms [24],

the Alternating Slice-wise Diagonalization (ASD) [25] and Self Weighted Alternating

TriLinear Decomposition (SWATLD) [26], to cite a few. Due to its simplicity the ALS

algorithm is commonly used to fit the CAND of a given HO array. However, these

iterative algorithms do not benefit from the symmetries of the considered arrays, which

occur for instance when we resort to HOS [11, 12, 13, 14]. Moreover, several studies were

reported showing how the ALS convergence is slowed down in the presence of certain

symmetries [23, 27]. Bro and Harshman [28, 29] were the first to state that when ALS

is slow, there exists cycles of convergence defined by a unique direction. In each cycle,

factors evolve in the same direction to the final solution (see [27] and the references

therein). Enhanced Line Search (ELS) scheme was found to be a good tool to cope with

the problem of slow convergence [27, 30]. Indeed, ELS relies on an optimal extrapolation

of factors many iterations ahead (see section 3.1). This extrapolation allows the algorithm

to attain the final solution of a given cycle in a few iterations. To our knowledge, the

required equations to perform the ELS step were only given in the case of third order

[30, 27] and fifth order [31] arrays in spite of the need for general equations allowing us

to decompose for instance fourth [14] and sixth [13] order arrays.

The goal of this paper is twofold. First and following the same technique proposed in

[30], a generalization of the ELSALS approach to complex arrays of any HO is presented

(the real case is then straightforward). Second, a new ALS-like method, named CAN-

DHAP, is proposed to canonically decompose Hermitian positive semi-definite Arrays

based on Procrustes problem. For such arrays, CANDHAP allows for a reduction in the

dimensionality of the problem. Indeed, it reduces the CAND of a 2q-th (q¥2) order Her-

mitian positive semi-definite array to the CAND of a third order array having one unitary

loading matrix. The latter CAND is then originally performed by alternating between

Procrustes problem solving [32] and the computation of rank-one matrix approximations.

Consequently a higher accuracy, a faster convergence and a lower numerical complexity

than the ELSALS algorithm are guaranteed, as shown in our numerical experiments,

provided that the considered array is Hermitian positive semi-definite. Preliminary ver-
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sions of CANDHAP appeared in conference papers [33, 34]. However, this journal paper

presents a full and detailed study of the proposed algorithm in addition to the general-

ization of the ELSALS method to any order equal or higher than three. Application of

the proposed techniques to the Blind Underdetermined Mixture Identification (BUMI)

problem [13, 35, 36] is also considered.

2. Multilinear algebra preliminaries

In this paper, vectors, matrices and HO arrays are denoted with bold lowercase letters

(a,b, � � � ), with bold uppercase letters (A,B, � � � ) and with calligraphic letters (A,B, � � � ),
respectively. In addition, lower-order parts of a given structure are considered as scalars

and follow as a result the same notation of their structures. For instance, the entry

with row i and column j in a matrix A is symbolized by Ai,j and the (i1, i2, � � � , iq)-th
component of a q-th order array B is symbolized by Bi1,i2,��� ,iq . Sometimes we will use the

MATLAB colon/row notation to indicate sub-matrices of a given matrix or sub-arrays of

a given HO array. Upper bounds (e.g., n � 1, 2, � � � , N) will be denoted by italic capital

letters. Recall that the p-th column vector of the Khatri-Rao product AmB is given byrA1,p bp
T, � � �, AP,p bp

TsT where An,p and bp denote the (n, p)-th component of A and the

p-th column vector of B, respectively. Thus Amq will denote the product A m � � � mA

where m occurs q�1 times. Furthermore, the subscripts �,: , T, H and }.}F stand for

the complex conjugate, the Moore-Penrose pseudoinverse, the transpose, the complex

conjugated transpose and the Frobenius norm operators, respectively. In addition, the

(N � N) identity matrix is denoted by IN while |a| is the absolute value of a. Finally,

the Kronecker operator δa,b is defined such as δa,b � 1 if a � b and 0 otherwise. Now,

let us consider some basic definitions in multilinear algebra that will be used throughout

the paper [15, 37].

Definition 1. A rank-1 q-th order array T P CN1�����Nq is equal to the outer product

ap1q � � � ��apqq of q vectors apiq PCNi where each component of T is defined by Ti1,��� ,iq �
a
p1q
i1

� � � apqqiq
. Then a�q is the outer product of q vectors a.

Definition 2. The i-mode product of a q-th order array T P CN1�����Nq and a matrix
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U PCM�Ni is a q-th order array of CN1�����Ni�1�M�Ni�1�����Nq with components given by:pT�iUqn1,��� ,ni�1,m,ni�1,���,n2q
� Ni̧

ni�1

Tn1,��� ,ni,���,n2q
Um,ni

(1)

The rank of a HO array always exists and is defined by:

Definition 3. The rank of a q-th order (q¥ 2) array T PCN1�����Nq , denoted by rkpT q,
is the minimal number of rank-1 q-th order arrays that yield T in a linear combination.

It is noteworthy that despite the similarity between matrices and HO arrays, the rank

of multi-way arrays can exceed its smallest dimension. For instance, the rank of a third

order array of size (3 � 3 � 3) is generically equal to 5 [38]. Note that a property is

called generic when it holds everywhere except for a set of Lebesgue measure zero. From

definitions 1 and 3, CAND can be defined as follows [27, 30, 39]:

Definition 4. The CAND of a complex q-th order (q¥2) array T is the linear combi-

nation of P � rkpT q rank-1 q-th order arrays that yields T exactly:

T � P̧

p�1

λpa
p1q
p � ap2qp � � � � � apqqp (2)

with λp P C and where the q matrices Apiq � rapiq
1

, � � � ,apiqP s are called the loading

matrices of T . Sometimes we use the notation T pAp1q, � � � ,Apqqq to refer to the HO

array T with its loading matrices Ap1q, � � � ,Apqq.
Definition 4 shows that the different rank-1 terms can be permuted and scaled/counterscaled

within the rank-1 term without modifying the sum. A CAND is then considered to be

essentially unique when it is only subject to these trivial indeterminacies. Several studies

were performed in order to find the appropriate conditions for CAND’s uniqueness. The

first one was tackled by Cattell in 1944 [40] and addressed later by Harshman in 1970

[29]. Moreover, an important result on the CAND uniqueness was obtained by Kruskal

in 1977 [16] which is generalized to arrays with arbitrary order q, (q ¥ 3), by Sidiropoulos

and Bro [41]. Indeed, this condition shows that the CAND of a q-th order array T is

essentially unique when the following sufficient condition is satisfied [41]:

2P � q � 1 ¤ q̧

i�1

rkkpApiqq (3)
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where rkkpBq is the Kruskal rank of B, which is defined as the largest number z such

that every subset of z columns of B is linearly independent. Kruskal’s condition (3)

was first proposed for real third order arrays. Later, it was extended to arrays with

order higher than three [42] and for complex HO arrays [43]. Alternative less restrictive

conditions were also proposed dealing with special third order arrays [44, 15]. Indeed

authors in [44, 15] addressed the case of third order arrays with one loading matrix

being full column rank. On the other hand, authors in [45] stated that the CAND of a

symmetric HO array is essentially unique with probability one when the dimensions of

the latter does not exceed its order. Generically, it can be stated that each HO array

has a unique CAND when its rank falls between the rank defined by Kruskal’s condition

(3) and its generic rank (or its smallest typical rank in the case of real tensors) [23].

The definition of the CAND above (2) includes the case of Hermitian HO arrays defined

hereafter.

Definition 5. A P -rank q-way (q ¥ 2) array T P CN1�����Nq will be called Hermitian if

i) its order q is even, ii) it is cubic [46], say all its dimensions are equal, iii) it admits a

CAND with as many conjugate terms of the same factor as non-conjugate ones and iv)

the weights λp’s of its CAND have all values in the real field:

T � P̧

p�1

λpa
� q{2
p � a�� q{2p (4)

Particular Hermitian arrays are often used in signal processing known under the name

of cumulants [13, 35, 36, 47]. They allow for a blind identification of static mixture of

independent electromagnetic waves, say to solve the BUMI problem. In some practi-

cal contexts such as radiocommunications, human-made waves have generally positive

marginal Sixth Order (SixO) cumulants, implying the positive semi-definiteness of the

SixO cumulant arrays of every static mixture of such sources.

Definition 6. A HO Hermitian array is called positive semi-definite if the weights λp’s

of its CAND (4) are positive.

Definition 7. Let T be a 2q-th order (q ¥ 2) array whose dimensions are all equal to

N . Let also tq{2u and rq{2s be the lower and the upper integer parts of q{2, respectively.

Then the (i, j)-th component of the unfolding matrix mat1pT q of size (N q � N q) is
6



given by pmat1pT qqi,j � Tn1,���,nrq{2s,nrq{2s�1,��� ,nq,nq�1,���,nq�rq{2s,nq�rq{2s�1,��� ,n2q
where i �pn1�1qN q�1�� � ��pnrq{2s�1qN tq{2u�pnq�rq{2s�1�1qN tq{2u�1�� � ��pn2q�1�1qN�n2q and

j�pnq�1�1qN q�1�� � ��pnq�rq{2s�1qN tq{2u�pnrq{2s�1�1qN tq{2u�1�� � ��pnq�1�1qN�nq.

Then the unmat1 operator is defined such as unmat1pmat1pT qq � T .

Example 1. Let T be a square 6-th order array of dimensions N . Then the (i, j)-th com-

ponent of its square unfolding matrix mat1pT q is given by pmat1pT qqi,j � Tn1,n2,n3,n4,n5,n6

where i � pn1 � 1qN2 � pn2 � 1qN � n6 and j � pn4 � 1qN2 � pn5 � 1qN � n3.

Another way of unfolding HO arrays is presented hereafter.

Definition 8. Let T PCN1�����Nq be a q-th order array. Then the (ni,m)-th component

of the unfolding matrix mat
piq
2
pT q P CNi�Ni�1���NqN1���Ni�1 associated to the i-th mode

(1¤ i ¤q) of T is given by pmat
piq
2
pT qqni,m � Tn1,��� ,ni�1,ni,ni�1,��� ,nq

where m�pni�1 �
1qNi�2 � � �NqN1 � � �Ni�1�pni�2�1qNi�3 � � �NqN1 � � �Ni�1�� � � �pnq�1qN1N2 � � �Ni�1�pn1�1qN2N3 � � �Ni�1�pn2�1qN3N4 � � �Ni�1�� � ��ni�1. Then the unmat

piq
2

operator is

defined such as unmat
piq
2
pmat

piq
2
pT qq � T .

Example 2. Let T P CN1�N2�N3 be a third order array whose loading matrices are

Ap1q,Ap2q and Ap3q. Then we have mat
p1q
2
pT q � Ap1qpAp2q m Ap3qqT, mat

p2q
2
pT q �

Ap2qpAp3q mAp1qqT and mat
p3q
2
pT q � Ap3qpAp1q mAp2qqT.

Definition 9. Let T PCN1�����Nq be a q-th order (q¥ 2) array. Then the m-th element

of its vector representation, denoted by vecpT q P CN1N2���Nq , is given by pvecpT qqm �
Tn1,��� ,nq

where m � pn1�1qN2 � � �Nq�pn2�1qN3 � � �Nq�� � ��nq, for 1 ¤ ni ¤ Ni with

i P t1, � � � , qu. Conversely the unvec operator is defined such as unvecpvecpT qq � T .

3. ALS-like techniques for the CAND of multi-way arrays

Due to its simplicity, the ALS algorithm is commonly used to fit the CAND of a given

q-th order array T pAp1q, � � � ,Apqqq. At each iteration of this algorithm, the q loading

matrices are estimated one at a time:

A
piq
it � mat

piq
2
pT qrpApi�1q

it�1
m � � � mA

pqq
it�1

mA
p1q
it m � � � mA

pi�1q
it qTs: (5)
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where A
piq
it denotes the estimate of Apiq at the it-th iteration. In the presence of

collinearity between factors, the convergence speed of the ALS algorithm is slowed down

[23, 27, 30, 28, 29]. As mentioned above, this is due to some convergence cycles wherein

the ALS spends a lot of iterations to get the final solution of each cycle. To cope with

this slowness, Harshman and Bro [28, 29] have proposed a linear search scheme wherein

loading matrices are estimated many iterations ahead. For a given direction defined by

a convergence cycle, this estimation process is performed using a predefined step size

called relaxation factor. Instead of giving this relaxation factor a fixed value, as done by

Harshman and Bro, authors in [27] proposed to compute it optimally giving rise to the

Enhanced Line Search (ELS) scheme. However, in the ELS procedure [27], the relaxation

factor is still supposed to be real when dealing with complex HO arrays, which may be

suboptimal when complex arrays are processed. Therefore, an alternative solution was

proposed in [30], which consists of considering the relaxation factor as a complex number

when dealing with complex HO arrays. Nevertheless, this approach is limited to third

[30] and fifth order arrays [31].

3.1. A generalized Enhanced Line Search scheme for complex ALS-like algorithms

We propose in this section to extend the ELS procedure using a relaxation factor

to the case of complex arrays of any order greater than three. The generalized ELS

procedure to q-th (q ¥ 1) order arrays is defined as following:

Definition 10. The ELS procedure for ALS-like algorithms consists, for a given complex

q-way array T , in looking for the optimal relaxation factors, ρpiq (1 ¤ i ¤ q) that

minimize, the following criterion [27, 30]:

Ψpρq � ||T pqq �Apqq
newpAp1q

new m � � � mApq�1q
new qT||2F (6)

where T pqq � mat
pqq
2
pT q, Apiq

new � A
piq
it�2

� ρpiqGpiq
A

(1 ¤ i ¤ q) is the matrix that will be

used at the it-th iteration instead of A
piq
it�1

and G
piq
A

defines the search direction.

For real 3-way arrays, the optimal relaxation factors are obtained by solving a system

of three polynomials in three unknowns (ρp1q, ρp2q, ρp3q) [27]. However, this solution is

well-known to be of computational burden. Therefore, an alternative solution, subopti-

mal but less expensive was adopted. It consists in taking ρp1q � ρp2q � ρp3q � ρ. Then
8



ρ is computed by rooting a fifth order polynomial. Regarding the complex case, the

relaxation factor is defined by ρ � rejθ and then an iterative approach was proposed to

estimate this latter [30]. Indeed, at each iteration estimating ρ is achieved by alternating

between two steps: a minimization of Ψ with respect to (wrt) magnitude r and a mini-

mization of Ψ wrt phase θ. Following the same spirit and for ρp1q � ρp2q � � � � � ρpqq � ρ,

we generalize the ELS scheme proposed in [30] to arrays with order higher or equal to

three. As far as G
piq
A

is concerned, any type of search direction can be combined with

the ELS procedure - we will make a particular choice in the computer result section.

Let Ω
prq
i pqq be the i-th subset of r elements taken from the set Ωpqq � t1, � � � , qu of

q integers, sorted in an ascending way. The total number of combinations of r elements

taken among q is given by pqrq � q!{pr!pq � rq!q. Inserting now the expression of Apiq
new in

(6) and using some matrix manipulations, Ψ can be rewritten as:

Ψpρq � ||Cq
0
�C

q
1
ρ�C

q
2
ρ2 � � � � �Cq

qρ
q||2F (7)

where the q � 1 matrices Cq
n are defined by:

Cq
n� δ0,nT

pqq �pq�1

n q
i̧�1

Apqqp í
ωPΩpnq

i
pq�1qBpωqqT �pq�1

n�1
q

ķ�1

G
pqq
A
p í
ωPΩpn�1q

k
pq�1qBpωqqT (8)

where δ0,n � 1 if n � 0 and 0 otherwise. In addition for ω P t1, � � � , q� 1u Bpωq is given

by Bpωq � Apωq if ω P Ω
pnq
i pq � 1q and Bpωq � G

pωq
A

otherwise. Moreover,
Í

denotes

a succession of Khatri-Rao products and where Ω
p0q
i pqq � Ωpqq. Note that subscripts it

and it� 2 have been omitted for the sake of convenience. Equation (7) then becomes:

Ψpρq � || rCu||2F � uH rCH rCu � uHFu (9)

where rC � rvecpCq
qq, vecpCq

q�1
q, � � � , vecpCq

0
qs is a (N1N2 � � �Nq � q � 1) matrix, u �rρq, ρq�1, � � � , 1sT is a (q � 1)-dimensional vector and matrix F is Hermitian. The mini-

mization of Ψ wrt ρ � rejθ is thus performed in an iterative way by alternating at each

iteration between two steps [30]. The first step consists in minimizing Ψ wrt r while θ is

fixed to its last estimate. To do so, Ψ (9) can be written as a polynomial function of r

given by:

Ψprq � 2q̧

n�0

dnr
n (10)

9



where the coefficient dn is defined by:

dn �$''''''&''''''% °q�1

i�q�1�n FR
i,2q�n�2�i cosp|2q � n� 2� 2i|θq�

ηpi, 2q � n� 2� iqF I
i,2q�n�2�i sinp|2q � n� 2� 2i|θq if n ¤ q°2q�n�1

i�1
FR
i,2q�n�2�i cosp|2q � n� 2� 2i|θq�

ηpi, 2q � n� 2� iqF I
i,2q�n�2�i sinp|2q � n� 2� 2i|θq if n ¡ q

with ηpi, jq � 1 when j ¥ i and ηpi, jq � �1 otherwise. In addition, FR
i,j and F I

i,j denote

the real and the imaginary parts of the (i, j)-th entry of the Hermitian matrix F (9).

Next, r is updated by rooting a (2q � 1)-th polynomial given by:BΨprqBr � 2q�1

ņ�0

pn� 1qdn�1r
n (11)

Fixing now r to the root of (11), which minimizes (10), Ψ is then minimized wrt θ. To

this end, Ψ (9) has to be written as a function of θ:

Ψpθq� q̧

i�0

FR
q�1�i,q�1�i r

2i � 2

q̧

n�1

pan cospnθq � bn sinpnθqq (12)

where:

an � q�n�1

m̧�1

FR
m,m�n r

2q�2�n�2m, bn � q�n�1

m̧�1

F I
m,m�n r

2q�2�n�2m (13)

Angle θ is then updated by computing the zeros of the following equation:BΨpθqBθ � 2

q̧

n�1

npbn cospnθq � an sinpnθqq (14)

More precisely, first express both cospnθq and sinpnθq as a function of cospθq and sinpθq
using the following equations:

cospnθq � Intpn{2q
ℓ̧�0

p�1qℓpn2ℓq cospθqn�2ℓ sinpθq2ℓ
sinpnθq � Intppn�1q{2q

ℓ̧�0

p�1qℓp n
2ℓ�1q cospθqn�1�2ℓ sinpθq2ℓ�1 (15)

where Intpnq denotes the integer part of n. These equations are derived using both

Newton binomial and Moivre formulas as shown in appendix 9.1. Second resort to the

change of variable, t � tanpθ{2q, and next, use the following trigonometric statements:

cospθq � 1� t2

1� t2
sinpθq � 2t

1� t2
(16)
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Then injecting equations (15), (16) into equation (14) and using the Newton binomial

formula given in appendix, the update of θ is derived from the root of the following

polynomial in variable t, which minimizes (12):BΨpθqBθ � 2

q̧

n�1

Intpn{2q¸
ℓ1�0

Intpn{2q�ℓ1

i̧�0

nbnp�4qℓ1p n
2ℓ1
qpn�2ℓ1

2i qt2ℓ1�4i�4

q̧

n�1

Intppn�1q{2q¸
ℓ2�0

Intppn�1q{2q�ℓ2

j̧�0

nanp�4qℓ2p n
2ℓ2�1qpn�1�2ℓ2

2j qt2ℓ2�4j�1 (17)

Example 3. Let T pA,A,A,A�,A�,A�q be a Sixth Order (SixO) Hermitian positive

semi-definite array (here 2q � 6) defined according to equation (4) by:

T � rkpT q
p̧�1

ap � ap � ap � a�p � a�p � a�p (18)

Then according to equation (7) we have:

Ψpρq � ||C6

0 �C6

1ρ�C6

2ρ
2 �C6

3ρ
3 �C6

4ρ
4 �C6

5ρ
5 �C6

6ρ
6||2F (19)

where matrices C6

i (1 ¤ i ¤ 6) are given by equation (8). Then computing the optimal

relaxation factor ρ � rejθ is performed by alternating between a minimization of Ψ wrt

r and a minimization wrt θ. The minimization of Ψ wrt r is achieved by rooting the

eleventh degree polynomial (11) where the coefficients dn (0 ¤ n ¤ 11) are given in

appendix 9.2. Similarly, the minimization of Ψ wrt θ is achieved by rooting the following

twelfth degree polynomial in variable t:BΨpθqBθ � 12̧

i�0

zit
i (20)

where t � tanpθ{2q and the expressions of coefficients zk (0 ¤ k ¤ 12) are given in the

appendix 9.2.

3.2. CANDHAP (CAND of Hermitian positive semi-definite Arrays based on Procrustes

problem)

A new ALS-like method, named CANDHAP, to fit the CAND of HO Hermitian pos-

itive semi-definite arrays is presented in this section. Using definitions 5-7, the unfolding

11



matrix T � mat1pT q of a 2q-th (q¥ 2) order Hermitian positive semi-definite array T

has the following algebraic structure:

T � Amrq{2s mA�mtq{2u
ΛP pAmrq{2s mA�mtq{2uqH � Aq ΛP Aq

H (21)

where Aq � Amrq{2s mA�mtq{2u � rabrq{2s
1

ba
�btq{2u
1

, � � � ,abrq{2s
P ba

�btq{2u
P s, where ap is

the p-th column vector of A and where Λp � diagtrλ1, � � � , λP su is the diagonal matrix

built from the P strictily positive values λp involved in the CAND (4) of T (in the case

when λp   0 for 1 ¤ p ¤ P , matrix �T should be considered instead). Consequently, T

is positive semi-definite, its square root exists and is defined as follows:

T 1{2 � EL1{2 � AqΛ
1{2
P BH (22)

where L1{2 is the square root of the real-valued diagonal matrix of the P non-zero eigen-

values of T , E is the corresponding (N q � P ) unitary eigenmatrix, Λ
1{2
P is the square

root of Λ and B is a (P �P ) unitary matrix. The unitary property of B is derived from

the fact that two square roots of the same matrix are equal up to a unitary matrix.

Let us now consider, for an arbitrary value of q, the (P �N q) matrix pT 1{2qT (22).

Then we can write:pT 1{2qT � B�
Λ

1{2
P Aq

T � B�
Λ

1{2
P pAmW q�1qT (23)� B�pAΛ

1{2
P mW q�1qT � B�pD mW q�1qT � mat

p2q
2
p rT q (24)

where:

W q�1 � $&% Aq�1 if q is odd

ΠA�
q�1 if q is even

(25)

where Π is a permutation matrix defined as:$&% Πpi�1qN rpq�1q{2s�j,pj�1qN tpq�1q{2u�i � 1 if 1 ¤ i ¤ N rpq�1q{2s, 1 ¤ j ¤ N tpq�1q{2u
Πi,j � 0 elsewhere

(26)

According to equation (24), pT 1{2qT can be seen as the unfolding matrix associated to the

second direction of a third order array, named rT pW q�1,B
�,Dq, of size (N q�1�P �N)

and whose loading matrices are W q�1,B
� and D � AΛ

1{2
P . According to definition 4

the CAND of rT can then be written as:rT � P̧

p�1

wq�1,p � b�p � dp (27)

12



where wq�1,p, bp and dp are the p-th columns of matrices W q�1,B and D, respectively.

According to equation (22), identifying matrix Aq is immediate once the unitary matrix

B is well-estimated. Since B is a loading matrix of rT (27), its estimation is then possible

by fitting the CAND of rT . Note that each frontal slice of rT has the following algebraic

structure: �1 ¤ n ¤ N, rT p:, :, nq � W q�1diagtDpn, :quBH (28)

where Dpn, :q denotes the n-th row of D. Since B is unitary, then equation (28) can be

seen as a generalized version of the Procrustes problem defined by:

Problem 1. Given N couples of matrices Gn and F n of the same size, find a unitary

matrix B that minimizes the following least squares criterion:

ΨpBq � Ņ

n�1

}Gn � F nB
H}2F (29)

The solution of this problem is well-known to be B � V U H [32, chapter 12] where

Uand V are the matrices of the left and right singular vectors of matrix
°

n F n
HGn,

respectively. Nevertheless, such a solution is not directly applicable in our case since

according to equation (28) neither W q�1 nor D are known. Thus, resorting to an

alternating optimization scheme is suitable in such a case in order to estimate the three

loading matrices W q�1,B and D. Author in [48, pages 62-63] proposed a similar idea

in order to canonically decompose a real-valued three-way array with one orthogonal

loading matrix. It is noteworthy that no computer result was given in [48] to assess the

behavior of such an approach. But instead of alternating between three optimization

procedures, we propose to alternate between only two optimization procedures based on

the following proposition:

Proposition 1. The p-th vertical slice of T 1pW q�1,B
�,Dq� rT �2 B

T is a rank-1 ma-

trix.

Proof. According to equation (24) and since B is unitary, we have:

T 1 � rT �2 B
T � BTmat

p2q
2
p rT q � IP pD mW q�1qT � mat

p2q
2
pT 1q (30)

13



Then T 1pW q�1, IP ,Dq is a third order array whose loading matrix associated to its

second mode is the identity and consequently its p-th vertical slice is given by:

T 1p:, p, :q � W q�1diagtIP pp, :quDT � wq�1,p dp
T � wq�1,p � dp (31)

which is, according to definition 1, a rank-1 matrix.

As a result, using the last estimate of B, updating both vectors wq�1,p and dp, at each

iteration, is possible by computing the left and the conjugate of the right singular vectors

associated to the largest singular value of the p-th matrix T 1p:, p, :q, respectively. Next,

an update of B is done using the solution of problem 1. That is to say, using the SVD of

the (P�P ) matrix
°N

n�1
pdiagtDpn, :quq�W H

q�1
rT p:, :, nq. All previous steps are repeated

until the convergence of the algorithm. Algorithm 1 summarizes the proposed procedure,

named CANDHAP1, to fit the CAND of rT (27). The algorithm stops when the error

between the left and the right hand sides of (27) exhibits, between two iterations, a change

smaller than a predefined threshold. Once the convergence is attained, the P factors ap

are computed either by looking for the best rank-1 approximation of P q-th order arrays

with the HOPI method [37] or by repeating P times the joint diagonalization of N q�2

rank-1 matrices with for instance the diagonalization schemes described in [49, 50, 51].

Indeed, consider a rank-1 q-way array A � yp1q � � � � � ypqq, then, at each iteration of the

HOPI method, vector y
piq
it�1

is estimated in the following way:

y
piq
it�1

�A�1pyp1qit�1
qT�2 � � ��i�1pypi�1q

it�1
qT �i�1 pypi�1q

it qT�i�2 � � ��q pypqqit qT (32)

In our case, the p-th factor ap is estimated by looking for the best rank-1 approximation

of the p-th rank-1 q-th order array Ap P CN�N�����N defined as Ap � unvecprpq where

rp is the p-th column of R � T 1{2B. As far as the semi-algebraic scheme is considered,

the p-th factor ap is computed as the joint diagonalizer of N q�2 rank-1 matrices built

from the p-th column of the (N q � P ) matrix R. Indeed for each column rp of R, first

N q�2 N2-dimensional vectors zm
p (1 ¤ m ¤ N q�2) are extracted where each vector zm

p

is defined such as in [13]. Then each vector zm
p is remodeled as a matrix of size (N �N),

and finally the set of the resulting N q�2 matrices is jointly diagonalized. This joint

diagonalization can be performed by means of Jacobi-like algorithms such as the JAD

one [49]. Algorithm 2, named CANDHAP2, summarizes the global proposed algorithm

to fit the CAND of Hermitian positive semi-definite array T (4).
14



Algorithm 1 (CANDHAP1): Find the CAND of the rank-P 3-way arrayrT pW q�1,B
�,Dq P CNq�1�P�N (27) with B unitary.

Step1 Build T � mat
p2q
2
p rT q.

Step2 Repeat until the convergence: i) T 1 � rT �2 B
T ñ �1 ¤ p ¤ P, T 1p:, p, :q �

wq�1,pdp
T, ii) SVD(T 1p:, p, :q)=UpΣpV p

H ñ take both vectors wq�1,p and dp as

the left and the right singular vectors associated to the largest singular value in Σp,

respectively and iii) Compute the SVD:
°N

n�1
pdiagtDpn; :quq�W H

q�1
rT p:, :, nq �

UΣV H. Then, update B as B� UV H.

Algorithm 2 (CANDHAP2) Find the CAND of 2q-th order (q ¡ 2) Hermitian positive

semi-definite array T (4).

Step1 Build T � mat1pT q and compute P � rankpT q.
Step2 Compute a square root, T 1{2, of T (see equation (22)).

Step3 Build rT pW q�1,B
�,Aq (27): rT � unmat

p2q
2
ppT 1{2qTq.

Step4 Find the CAND of rT using the CANDHAP1 approach.

Step5 From B estimated using step 5, build Aq � T 1{2B� raq,1, � � � ,aq,P s.
Step6 Build the P q-th order rank-1 arrays Ap � unvecpaq,pq.
Step7 Compute the best rank-1 approximation of each array Ap using either the HOPI

method [37] or the approach based on joint matrix diagonalization [13].

15



It is noteworthy that two different ways can be used to initialize the HOPI method

[37] when processing the p-th array Ap. The first one consists of using the truncated

HOSVD [37]. The second one is to take the p-th column of D � rd1, � � � ,dP s (31) as

a start guess. The latter solution is valid since the loading matrix D associated to the

third mode of rT (27) is equal, up to a diagonal matrix, to A � ra1, � � � ,aP s. Note also

that the CAND of rT coud be computed without any orthogonality constraint on matrix

B. But in practice, the CAND analysis of a third order array is complicated by the

occurrence of "degeneracies" [52] while running a CAND algorithm. In such cases, the

CAND criterion function decreases very slowly, the estimated loading matrices diverge

towards an infimum that is not a minimum (individual terms go to infinity but they more

or less compensate, resulting in an ever improving fit), and the loading matrices become

nearly rank deficient. However, it was shown in [53] that degeneracies can be avoided by

imposing orthogonality restrictions on at least one of the three loading matrices. Hence

our choice to use the orthogonality of B in the optimization procedure.

4. Uniqueness

This section is devoted to study under which conditions on P , the solution proposed

to fit the CAND of a 2q-th order (q ¥ 2) array of Hermitian symmetry, is unique up

to the inherent indeterminacies of the CAND (e.g., scaling and permutation). Then, a

generic HO array with these previous properties and whose rank satisfies this condition,

has a CAND that is unique and comprises components that can be computed by means

of the CANDHAP2 algorithm. Since fitting the CAND of T (4) relies essentially on

fitting the CAND of the third order array rT pW q�1,B
�,Dq P CNq�1�P�N (27) with B

being unitary, the uniqueness condition will be basically derived from the CANDHAP1

algorithm.

Assume that matrix A is randomly sampled from an NP -dimensional continuous

distribution. Now, for q odd, matrix D m W q�1 is equal to A m Aq�1 up to a diag-

onal matrix Λ
1{2
P m INq�1 . Note that multiplying a matrix by an invertible diagonal

one does not affect its rank. Now, we can write A m Aq�1 � Amrq{2s m Am�tq{2u �rabrq{2s
1

b a
�btq{2u
1

, � � � ,abrq{2s
P b a

�btq{2u
P s. Due to the symmetry property of matrix

Amrq{2s (A�mtq{2u respectively), some rows appear rq{2s (tq{2u respectively) times. Then,
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keeping only one of the repeated rows is required when evaluating the rank of this matrix.

Let Arq{2s and A�tq{2u be two matrices of size (Nrq{2s �P ) and (Ntq{2u �P ), respectively,

and obtained once redundancies in Amrq{2s and A�mtq{2u are removed. The numbers

Nrq{2s and Ntq{2u of the distinct rows are computed using the combinatorial analysis with

repetition. More precisely, Nℓ is computed by looking for the combinations of ℓ elements

drawing from N distinct ones without taking into account their apparition order. Hence,

Nℓ � pN�ℓ�1

ℓ q. Then, since no redundancy can be now found in Arq{2s mA�tq{2u and since

B has a full column rank, the CAND of T is essentially unique with probability 1 if

(Arq{2smA�tq{2u) has a full column rank [54, Theorem 1]. According to the results of [54],

(Arq{2s mA�tq{2u) is full column rank if the following inequality holds.

P pP � 1q
2

¤ Nrq{2spNrq{2s � 1qNtq{2upNtq{2u � 1q
4

(33)

When q is even, matrix D mW q�1 is equal to AmA�
q�1 up to matrix Λ

1{2
P mΠ which

is full column rank. Then similarly to the case when q is odd, the same inequality in

equation (33) can be found but with tq{2u � rq{2s � q{2.
5. Numerical complexity

In this section we tackle the numerical complexity of the generalized ELSALS pro-

cedure and that of several variants of CANDHAP2. These different versions share steps

1 to 6 but they differ in the way they compute the best rank-1 approximation (see step

7). Therefore, the numerical complexity of step 7 is computed first while the numeri-

cal complexity of the left steps are computed thereafter. The numerical complexity is

expressed hereafter in complex flops. A flop corresponds to a multiplication followed

by an addition. In practice, the numerical complexity is assimilated to the number of

multiplications, since multiplications are more expansive than additions.

Based on the implementation presented in section 3.1, the ELSALS scheme requiresp6pP pN5 � N4 � N3 �N2q � 11P 3{3 � P 2 � P � 8N5P 2 � PN6q � 8pPN2 � PN3q �
8PN4� 10PN5� 12PN6� 49N6� 537it2qit1 flops where it1 and it2 denote the number

of iterations used by ALS and that used to estimate the relaxation factor of the ELS

step, respectively.
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As far as CANDHAP2 is concerned, two techniques are considered in order to compute

a best rank-1 approximation (see step 7). These techniques, whose convergence is linear,

are the HOPI method [37] and the simultaneous matrix diagonalization using the JAD

algorithm [49]. Each iteration of the HOPI method, when a q-th order array is considered,

requires the estimation of q vectors with q � 1 matrix multiplications for each. The

numerical complexity is then equal to qpN q�N q�1�� � ��N2�Nqt1 complex flops where

t1 denotes the number of used iterations. This amount will be increased by qp2N q�1 �
2N3{3� 5N � 1{3q complex flops when a truncated HOSVD is used as an initialization

procedure. As far as the numerical complexity of the JAD algorithm [49] is concerned, it

is equal to PINpN � 1qp4N q�1 � 17N q�2 � 4N � 75q{2 complex flops since there exists

N q�2 Hermitian matrices per q-th order rank-1 array to be jointly diagonalized where I

denotes the number of executed sweeps.

Regarding the numerical complexity of the other steps of CANDHAP2, it relies es-

sentially on the iterative approach CANDHAP1 (i.e. step 4). Each iteration in the

CANDHAP1 algorithm requires i) P 2N q complex flops to build the third order array

T 1pAq�1,, IP ,Dq (31), ii) P p2N q�1 � 2N3{3 � 5N q�1 � 5N � 2{3q complex flops to

estimate the dominant right and left singular vector of the P vertical slices of T 1 and

iii) 2P 2N q�35P 3{3 complex flops to compute the unitary matrix B by solving the gener-

alized Procrustes problem. As a result the total numerical complexity of CANDHAP1 is

equal to p3N qP 2�2PN q�1�5PN q�1�2PN3{3�5PN�35P 3{3qt2 complex flops where

t2 stands for the used number of iterations. This amount gives along with the computa-

tion of both T 1{2 (i.e. step 2) and the best rank-1 approximation (i.e. step 7), say the

numerical complexity of the whole CANDHAP2 algorithm. That is 4N3q{3� 2N qP 2 �p3N qP 2 � 2PN q�1 � 5PN q�1 � 2PN3{3� 5PN � 35P 3{3qt2 � ComppStep 7q complex

flops where ComppStep7q stands for the complexity of step 7. The latter depends on the

used rank-1 approximation technique.

6. Simulation results

A first analysis is presented in terms of convergence speed aiming on the one hand at

comparing the ALS algorithm with our extended ELSALS technique, and on the other

hand at assessing the behavior of the CANDHAP1 method. Next, the performance
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of the proposed ELSALS and CANDHAP2 algorithms is studied as a function of the

Signal-to-Noise Ratio (SNR) in terms of both decomposition accuracy and numerical

complexity. Note that when the convergence speed analysis is considered, it is mean-

ingful to evaluate only the CANDHAP1 approach instead of the global CANDHAP2

technique since the iterative part of CANDHAP1 is the core of CANDHAP2. It is worth

mentioning that evaluating the convergence speed of the classical ALS algorithm with

and without the ELS step may be not original in its spirit since several studies have

been conducted to show how ELS considerably speeds up the convergence of ALS in the

presence of ill-conditioned third order arrays [27, 30]. However, the novelty in our study

relies on evaluating the ELSALS behavior when processing complex arrays with order

higher than three such as SixO arrays, which, shows the interest of using our generalized

ELS procedure.

More particularly, a SixO rank-5 Hermitian positive semi-definite array T of dimen-

sions three is considered throughout this section and defined according to equation (18).

As pointed out previously, this kind of arrays is often encountered in practice such as in

radiocommunications when resorting to HOS in order to solve the BUMI problem [13, 36]

(see section 7). In this context, T (18) represents the SixO cumulant array obtained from

the available observations acquired through N sensors. Then, the p-th rank-1 term in

(18) denotes the contribution of the p-th user to these observations. Therefore and to

make our experiments somehow realistic, the loading matrix A � ra1, � � � ,aP s, is gen-

erated such that its p-th column ap models the transfer between the p-th user and a

Uniform Circular Array (UCA) of N � 3 sensors. Thus the n-th element, An,p, of ap is

given by [13]:

An,p � exptj2πrxn cospγpq cospφpq � yn cospγpq sinpφpqsu (34)

where xn � pR{λq cosp2πpn � 1q{Nq, yn � pR{λq sinp2πpn � 1q{Nq and R{λ � 0.55.

Regarding the Directions of Arrival (DOAs) γp and φp, the γp’s are chosen equal to

zero while the φp’s are randomly generated at each realization such that the angular

spacing ∆φi,i�1 between two successive angles is fixed to a predefined value ∆φ. All

results reported here are averaged over 200 trials. Note that the numerical complexity

required to compute the SixO cumulant array, which is of order N6{72 flops, was taken

into account in all the numerical complexity expressions.
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Figure 1: Convergence speed of ALS and ELSALS

applied to a SixO Hermitian positive semi-definite

array with ill-conditioned loading matrices.
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Figure 2: Convergence speed of CANDHAP1 ap-

plied to a SixO Hermitian positive semi-definite

array with ill-conditioned loading matrices.

6.1. Convergence speed analysis

As mentioned previously, we compare here the convergence speed of ALS with that of

the generalized ELSALS method. This study is performed by making close some factors

ap of the loading matrix A. Results are reported in the noise-free case when the angular

spacing between two successive DOAs is relatively small and equal to 25 degrees. In this

case, a bottleneck-like situation is expected which will affect the convergence speed of the

considered algorithms. Recall that a bottleneck is defined when the collinearity between

some factors is present in two or more directions of the considered HO array [27]. Figure

1 shows the evolution of the cost function Ψ defined by:

ΨpAq � ���mat
p6q
2
pT q �A�pAmAmAmA� mA�qT���2

F
(35)

as a function of the number of iterations. The ALS and ELSALS algorithms stop when

Ψ exhibits a value less or equal to 10�8. In addition, the six research directions G
piq
A

in equation (6) are defined here as G
piq
A

� A
piq
it�1

�A
piq
it�2

. Regarding the initialization,

ten random points were generated and tested over ten iterations of the ALS algorithm.

Then we retained among these ten points the one which fits better the CAND of T (18).

As expected, in the presence of close factors, ALS shows some slowness since it takes

approximatively ten thousand iterations to attain the optimal solution, as displayed in

figure 1. This is due to some convergence cycles wherein ALS spends more iterations to

reach the final solution. On the other hand, figure 1 shows that the use of the SixO ELS

step increases considerably the convergence speed of the ALS algorithm since it helps in
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attaining the final solution with only three thousand iterations. Note here that despite

the fact that the convergence speed of the ELSALS algorithm is considerably higher than

the one of the ALS approach, the numerical complexity of the latter is approximately

four times lower than the one of the former.

Let us now evaluate the convergence speed of CANDHAP1 algorithms when it is used

as part of the CANDHAP2 technique. Indeed, as described in section 3.2, CANDHAP1

can be used to decompose the special 3-way array rT built from T (18) according to

steps 1-3 of the CANDHAP2 algorithm. Then, following both equations (27) and (25),

the CAND of rT is computed by minimizing the following cost function:

Ψ1pA2,B,Dq � ||rT � 5̧

p�1

a2,p � b�p � dp||2F (36)

under the constraint BHB � IP , where a2,p � ap b a�p and bp,dp are the p-th column

of matrices B and D, respectively (see equations (23)-(24)). Similarly to the previous

experiment, CANDHAP1 stops when Ψ1 exhibits a value less or equal to 10�8, with initial

guess obtained such as in the previous experiment. Figure 2 shows how the proposed

CANDHAP1 method succeeds in attaining the optimal solution within a reasonable

number of iterations even in the presence of close factors.

6.2. Influence of the SNR

The goal of this section is to evaluate the performance of the proposed CANDHAP2

algorithm compared to ELSALS. This is performed in terms of decomposition accuracy

and numerical complexity as a function of SNR. Therefore, a noisy SixO array Y defined

as:

Y � T||T ||F � σν

N||N ||F (37)

is considered where T is generated such as described in the previous experiments, N

is a SixO array whose elements are drawn from a zero-mean normal distribution with

a standard deviation equal to one and σν is a scalar that controls the noise level. The

performance criterion is taken as the mean relative error defined as:

e � Er ||A� pA||F||A||F s (38)
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Figure 3: Influence of SNR for the CAND of a

SixO Hermitian positive semi-definite array with

ill-conditioned loading matrices.
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Figure 4: Influence of SNR for the CAND of a

SixO Hermitian positive semi-definite array with

very ill-conditioned loading matrices.

where pA represents the optimally ordered and scaled estimate of A. Algorithms in

this experiment stop when the model error between two successive iterations exhibits a

change less than a predefined threshold (ǫ � 10�9). As pointed out previously, three

variants of the proposed algorithm can be distinguished. All of them share steps 1-7 of

the CANDHAP2 algorithm while they differ in the way they identify the P vectors ap.

Therefore, the acronym CANDHAP2a will refer to the case when the HOPI method with

a truncated HOSVD for initialization is used [37]. The acronym CANDHAP2b will refer

to the case when the HOPI method [37] is initialized with an estimate of A resulting

from step 4 (i.e. CANDHAP1 method) and the acronym CANDHAP2c will denote the

case when the JAD scheme [49] for joint matrix diagonalization is employed.

6.2.1. Accuracy study

The first experiment conducted here is the case where ∆φ � 25�. Figure 3 shows

the accuracy of the CANDHAP2 method as a function of SNR and compared to the

ELSALS algorithm. For low SNR values, all considered methods here show a comparable

performance while the estimation quality of the CANDHAP2 approaches becomes higher

than the one of the ELSALS algorithm beyond SNR of 30 dB.

Let us now evaluate the aforementioned methods in a more difficult situation, i.e. ∆φ �
15�. In this case, the SixO array Y is ill-conditioned because of the high collinearity be-

tween factors in all modes. Figure 4 shows that contrary to the previous experiment, the

considered methods seem to be less effective even for high SNR, especially the ELSALS

22



−10 0   10 20 30 40 50 60

10
6

10
7

10
8

SNR=−20log
10

(σν)

co
m

pl
ex

ity
 (

flo
ps

)

 

 

6−CANDHAP2
a,b,c

6−ELSALS

Figure 5: Numerical complexity for the CAND of
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Figure 6: Numerical complexity for the CAND of

a SixO Hermitian positive semi-definite array with

very ill-conditioned loading matrices.

method. However, even in such a difficult situation, the CANDHAP2 method is more

reliable than ELSALS. Note that the initialization procedure used in these experiments

is the same as the one adopted in the previous experiment.

6.2.2. Complexity study

The computational complexity of the proposed CANDHAP2 and ELSALS algorithms

is also evaluated as a function of SNR thanks to the cost expressions given in section 5

using the numbers of iterations obtained from the computer results presented in section

6.2.1. Therefore, the same scenario used in the previous section was adopted here. For

∆φ � 25�, figure 5 shows that the proposed CANDHAP2 method is less expensive than

the ELSALS method. This can be explained, on the one hand, by the fact that contrary

to ELSALS, whatever the order of the original array Y to be canonically decomposed,

CANDHAP2 reduces the iterative decomposition of Y to that of a third order array rT
(27). On the other hand, it derives from the fast convergence of CANDHAP2, which

requires fewer iterations, especially for high SNR values.

In a more difficult situation where ∆φ � 15�, it is not surprising that all considered

methods show a higher numerical complexity compared to the first experiment as dis-

played in figure 6. Indeed, a higher number of iterations is required in the presence of

very close factors.
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7. Application to blind underdetermined mixture identification

This section is devoted to evaluate the performance of the proposed ELSALS and

CANDHAP2 methods in the context of BUMI. Note that a mixture is called under-

determined when the number of sources exceeds the number of sensors. Let x be an

N -dimensional random vector modeling K vector observations acquired through N sen-

sors such that:

x � As� ν (39)

where s is a P -dimensional random vector of sources supposed to be statistically inde-

pendent, A is the mixing matrix of size (N � P ) and ν is an N -dimensional vector of

Gaussian noise independent from s. Then, the BUMI problem consists in estimating

the potentially underdetermined mixing matrix, A, using only the K available realiza-

tions of x. As mentioned previously, HO cumulants are often used to solve this problem

[13, 35, 36]. In fact, cumulants are of great interest in signal processing due to their

attractive properties that make them easy to handle. In this section we are interested

in SixO circular cumulant array C6,x of the observation vector x, whose elements C
ℓ,m,n
i,j,k,x

are given in [13, appendix D]. Under the multilinearity property of cumulants and the

previous assumptions on x, s and ν, the SixO cumulant array of x is given by:

C6,x � P̧

p�1

C6,spap � ap � ap � a�p � a�p � a�p (40)

where C6,sp and ap stand for the real-valued SixO marginal cumulant of the p-th source

and the p-th column vector of the mixing matrix A, respectively. Note that according

to definition 5, C6,x is Hermitian. It appears from (40) that the P columns, ap, of A

can be identified by computing the CAND of C6,x. In practice, the exact cumulant array

C6,x is not available and need to be estimated from the K realizations of x using sample

statistics [13, section 3.3]. In our experiment, K realizations of P � 4 Quadrature Phase

Shift Keying (QPSK) sources linearly modulated with a pulse shape filter corresponding

to a 1{2-Nyquist filter with a roll-off of 0.3 are generated. The sources are supposed to

impinge on a UCA of N � 3 sensors with source DOAs equal to γ1 � γ2 � γ3 � γ4 � 0

and φ1 � 10�, φ2 � 40�, φ3 � 70� and φ4 � 100�, which allow us, thanks to equation

(34), to mathematically compute the components of the mixing matrix A and to derive K
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Figure 7: Criterion D at the output of 6-CANDHAP2 and 6-ELSALS for a UCA of three N � 3 sensors

and four P � 4 well-angularly equispaced QPSK sources with the same SNR� 15dB.

noisy realizations of x using an additive Gaussian noise. All sources have the same SNR

equal to 15 dB. Note that, since C6,s1 � C6,s2 � C6,s3 � C6,s4 � 4, C6,x (40) is Hermitian

positive semi-definite. Thus, the CANDHAP2 algorithm is appropriate to solve the

considered BUMI problem. Regarding the performance criterion, it is the pseudo-distance

between mixture A and its estimate pA, defined by DpA, pAq � pα1, α2, � � � , αP q where

αp � min1¤i¤P dpap,paiq with d the pseudo-distance between vectors given by [35]:

dpu,vq � 1� }uHv}2 { }u}2 }v}2 (41)

Figure 7 shows the variations of criterion D at the output of FOOBI1 [36], FOOBI2

[36], 6-CANDHAP2 and 6-ELSALS as a function of the data length K. We see in

the latter figure the higher identification performance of 6-CANDHAP2 compared to

6-ELSALS especially for the second and the fourth sources. Indeed, we note that while

6-CANDHAP2 requires around 1500 data samples to attain a resolution of 10�2 in iden-

tifying the fourth source (see figure 7(d)), 6-ELSALS exhibits a resolution value close to

10�1 even for a high number of data samples. Regarding the identification of the first

and the third sources (see figures 7(a) and 7(c)), we note a quasi-similar behavior of 6-

CANDHAP2a,b and 6-ELSALS with a slight superiority of 6-CANDHAP2c. Eventually,

note the good behavior of 6-CANDHAP2 with respect to both FOOBI techniques.
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8. Conclusion

Both algorithms proposed in this paper belong to the same family of canonical de-

composition methods, namely the family of Alternating Least Squares (ALS) techniques.

The main difference between them is the characteristics of the array to be decomposed

that they use and the way of using them. Particularly, our generalization of the ELSALS

method slightly uses symmetries of the array by computing the same relaxation factor

for all factor matrices while the CANDHAP algorithm uses strongly symmetries and

positive semi-definiteness of the array especially by reformulating the original CAND

problem as the CAND of a third array with a unitary factor matrix. By comparing

both approaches, we show through computer results in bottleneck-like situations that

the CANDHAP technique outperforms the ELSALS approach in terms of performance

and numerical complexity. This confirms that i) when some properties on the array are

available, they should be used in order to improve the results, and ii) the way of using

them is crucial.

9. Appendix

9.1. Proof of equation (15)

For all θ P R and for n P Z, Moivre formula is given by:

fpθq � cospnθq � j sinpnθq � pcospθq � j sinpθqqn (42)

where j2 � �1. On the other hand, according to Newton binomial formula we have:pcospθq � j sinpθqqn � ņ

i�0

pjqipni q cospθqn�i sinpθqi (43)

From equation (42) we can write:

cospnθq � ℜpfpθqq � ℜp ņ

i�1

pjqipni q cospθqn�i sinpθqiq (44)

Let us now perform a change of variable such that i � 2ℓ, then equation (44) can be

written as:

cospnθq�ℜpIntpn{2q
ℓ̧�0

pj2qℓpn2ℓq cospθqn�2ℓ sinpθq2ℓq�Intpn{2q
ℓ̧�0

p�1qℓpn2ℓq cospθqn�2ℓ sinpθq2ℓ (45)
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Similarly:

sinpnθq � ℑpfpθqq � ℑp ņ

i�1

pjqipni q cospθqn�i sinpθqiq (46)

Let us now perform a change of variable such that i � 2ℓ� 1, then equation (46) can be

written as:

sinpnθq � ℑpIntppn�1q{2q
ℓ̧�0

pjqp2ℓ�1qp n
2ℓ�1q cospθqn�1�2ℓ sinpθq2ℓ�1q� Intppn�1q{2q

ℓ̧�0

p�1qℓp n
2ℓ�1q cospθqn�1�2ℓ sinpθq2ℓ�1 (47)

where ℜprq and ℑprq denote the real and the imaginary parts of the complex variable r,

respectively.

9.2. Expressions of coefficients dn and zk in equations (11) and (20)

Updating the magnitude r and the phase θ of the relaxation factor ρ � rejθ is achieved

by rooting the two polynomials expressed in equations (11) and (20), respectively. The

twelves coefficients dn of equation (11) and the thirteen coeficients zk of equation (20)

are given by:

d0 � 2pFR
6,7 cospθq � F I

6,7q sinpθqq, d1 � FR
6,6 � 2pFR

5,7 cosp2θq � β5,7 sinp2θqq
d2 � 2pFR

5,6 cospθq � FR
5,6 sinpθq � FR

4,7 cosp3θq � F I
4,7 sinp3θqq

d3 � FR
5,5 � 2pFR

4,6 cosp2θq � F I
4,6 sinp2θq � FR

3,7 cosp4θq � F I
3,7 cosp4θqq

d4 � 2pFR
2,7 cosp5θq � F I

2,7 sinp5θq � FR
3,6 cosp3θq � F I

3,6 sinp3θq � FR
4,5 cospθq � F I

4,5 sinp2θqq
d5 � 2pFR

1,7 cosp6θq � F I
1,7 sinp6θq � FR

2,6 cosp4θq � F I
2,6 sinp4θq � FR

3,5 cosp2θq � F I
3,5 sinp2θqq

d6 � 2pFR
1,6 cosp5θq � β1,6 sinp5θq � FR

2,5 cosp3θq � FR
2,5 sinp3θq � FR

3,4 cospθq � F I
3,4 sinpθqq

d7 � FR
3,3 � 2pFR

1,5 cosp4θq � F I
1,5 sinp4θq � FR

2,4 cosp2θq � FR
2,4 sinp2θqq

d8 � 2pFR
1,4 cosp3θq � F I

1,4 sinp3θq � FR
2,3 cospθq � F I

2,3 sinpθqq
d9 � FR

2,2 � 2pFR
1,3 cosp2θq � F I

1,3 sinp2θqq, d10 � 2pFR
1,2 cospθq � F I

1,2 sinpθqq, d11 � FR
1,1
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and:

z0 � 4p10 � 5p11 � 6p12 � p7 � 2p8 � 3p9, z1 � �2p1 � 8p2 � 18p3 � 32p4 � 50p5 � 72p6

z2 � �104p10 � 220p11 � 396p12 � 4p7 � 4p8 � 36p9

z3 � �10p1 � 24p2 � 6p3 � 160p4 � 550P5 � 1320p6

z4 � 60p10 � 825p11 � 2970p12 � 5p7 � 34p8 � 81p9

z5 � �20p1 � 16p2 � 108p3 � 192p4 � 660p5 � 4752p6

z6 � 336p10 � 5544p12 � 56p8, z7 � �20p1 � 16p2 � 108p3 � 192p4 � 660p5 � 4752p6

z8 � 60p10 � 825p11 � 2970p12 � 5p7 � 34p8 � 81p9

z9 � �10p1 � 24p2 � 6p3 � 160p4 � 550p5 � 1320p6

z10 � �104p10 � 220p11 � 396p12 � 4p7 � 4p8 � 36p9, z11 � �2p1 � 8p2 � 18p3 � 32p4 � 50p5 � 72p6

z12 � 4p10 � 5p11 � p7 � 2p8 � 3p9 � 6p12

where the twelve coefficients pn are given by:

p0 � FR
7,7 � FR

6,6r
2 � FR

5,5r
4 � FR

4,4r
6 � FR

3,3r
8 � FR

2,2r
10 � FR

1,1r
12

p1 � 2pFR
1,2r

11 � FR
2,3r

9 � FR
3,4r

7 � FR
4,5r

5 � FR
5,6r

3 � FR
6,7rq

p2 � 2pFR
1,3r

10 � FR
2,4r

8 � FR
3,5r

6 � FR
4,6r

4 � FR
5,7r

2q, p3 � 2pFR
1,4r

9 � FR
2,5r

7 � FR
3,6r

5 � FR
4,7r

3q
p4 � 2pFR

1,5r
8 � FR

2,6r
6 � FR

3,7r
4q, p5 � 2pFR

1,6r
7 � FR

2,7r
5q, p6 � 2FR

1,7r
6

p7 � 2pF I
1,2r

11 � F I
2,3r

9 � F I
3,4r

7 � F I
4,5r

5 � F I
5,6r

3 � F I
6,7rq

p8 � 2pF I
1,3r

10 � F I
2,4r

8 � F I
3,5r

6 � F I
4,6r

4 � F I
5,7r

2q, p10 � 2pF I
1,5r

8 � F I
2,6r

6 � F I
3,7r

4q
p9 � 2pF I

1,4r
9 � F I

2,5r
7 � F I

3,6r
5 � F I

4,7r
3q, p11 � 2pF I

1,6r
7 � F I

2,7r
5q, p12 � 2F I

1,7r
6
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