
HAL Id: hal-00591807
https://hal.science/hal-00591807v1

Submitted on 10 May 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Localization of Damaged Resources in NoC Based
Shared-Memory MP2SOC, using a Distributed

Cooperative Configuration Infrastructure
Zhen Zhang, Dimitri Refauvelet, Alain Greiner, Mounir Benabdenbi, François

Pécheux

To cite this version:
Zhen Zhang, Dimitri Refauvelet, Alain Greiner, Mounir Benabdenbi, François Pécheux. Localization
of Damaged Resources in NoC Based Shared-Memory MP2SOC, using a Distributed Cooperative
Configuration Infrastructure. The 29th IEEE VLSI Test Symposium (VTS), May 2011, Dana Point,
California, United States. �hal-00591807�

https://hal.science/hal-00591807v1
https://hal.archives-ouvertes.fr

Localization of Damaged Resources in NoC Based Shared-Memory MP2SOC, using a
Distributed Cooperative Configuration Infrastructure

Zhen Zhang∗, Dimitri Refauvelet∗, Alain Greiner∗, Mounir Benabdenbi† and François Pecheux∗
∗ University Pierre et Marie Curie, LIP6-SoC laboratory, 4 place Jussieu, 75252 Paris, France

{zhen.zhang, dimitri.refauvelet, alain.greiner, francois.pecheux}@lip6.fr
† TIMA laboratory (Grenoble INP, CNRS, UJF), 46 avenue Felix Viallet, 38000 Grenoble, France

mounir.benabdenbi@imag.fr

Abstract—In this paper, we present a software approach for
localization of faulty components in a 2D-mesh Network-on-
Chip, targeting fault tolerance in a shared memory MP2SoC
architecture. We use a pre-existing and distributed hardware
infrastructure supporting self-test and de-activation of the faulty
components (routers and communication channels), that are
transformed into “black hole”. We detail the software method
used to localize these “black holes”, and centralize the informa-
tion in a single point, where a modified global routing function
can be defined. This embedded software makes an extensive use
of a distributed fault-tolerant configuration firmware assisted by
a Distributed Cooperative Configuration Infrastructure (DCCI),
that is also presented. Finally, “black hole” detection and local-
ization coverage is evaluated.

I. INTRODUCTION

According to the industrial forecast on high-performance
computing issues [1], Network-on-Chip (NoC) based, shared
memory, Massively Parallel Multi-Processor System-on-Chips
(MP2SoCs) architecture, will soon be implemented in a single
chip. However, with a high permanent failure rate [2] caused
by poor manufacturing yields or aging defaults, fault-tolerance
is a crucial issue that must be considered at a very early stage
in the design.

As future MP2SoC architectures will contain a large number
of replicated identical components, a simple fault-tolerant
approach is to disable faulty components (such as a proces-
sor core, or an embedded memory bank), once their erratic
behaviors have been detected, and to remap the embedded
software application on the remaining operational hardware.
Unfortunately, for the NoC itself, this approach is far from be-
ing sufficient. In order to save silicon area, and to minimize the
network latency, most NoCs use dedicated routing algorithms,
taking advantage of the regular micro-network topology. If a
single component (a router or a communication channel) is
faulty, the micro-network topology is modified and becomes
irregular. If a packet is routed toward the faulty component,
in the worst case, the whole NoC is blocked. Thus, the global
routing function, and the NoC itself must be reconfigured to
support the new topology.

In two previous works [3], [4], we presented a self-
testable&cleanable, reconfigurable 2D-mesh NoC. The two
key features are summarized below:

1) Self-testable&cleanable [4]: A fully distributed & de-
centralized hardware built-in self-test (BIST) mechanism
is integrated into the NoC. At power-on or system

reboot, all NoC components are tested in isolation and
in parallel. Each component that is found to be fault-
free is enabled. All faulty components are disabled to
prevent any fault propagation: A disabled component is
configured to behave as a black hole, that discards any
incoming packet, and produces no outgoing packet.

2) Reconfigurable [3]: A reconfigurable, dead-lock free
routing function (based on the X-First routing algorithm)
has been defined. In each router, the reference X-First
routing function can be modified through dedicated
addressable reconfiguration registers (4 bits per router),
to route the packets around the faulty components and
bypass the black holes.

In conclusion, the distributed hardware BIST mechanism
solves the problem of detection and de-activation of the
faulty components in the NoC. Moreover, when the faulty
components are localized, we have a general method to define
a modified global routing function, and the NoC itself contains
all the reconfiguration registers to implement the modified
routing function.

But the hardware test and deactivation procedure is fully
decentralized, and there is no centralization of the information
about the localization of the faulty components. Therefore, we
still have two problems to solve:

• Faulty components localization We need to centralize the
information regarding the localization of the black holes
(routers and channels), to be able to compute the global
modified routing function.

• NoC reconfiguration We need a configuration bus to
distribute the modified routing function in the reconfigu-
ration registers of the fault-free routers.

In this paper we present a fully software approach for the
localization problem. The only hypothesis is to have in each
cluster (a cluster is a node in the 2D-mesh) a programmable
processor and a ROM containing the fault tolerant configu-
ration firmware. This configuration firmware is part of the
Distributed Cooperative Configuration Infrastructure (DCCI),
described in this paper.

After this introduction, section II presents the related work.
Section III describes the generic 2D-mesh NoC based shared
memory MP2SoC architecture, i.e our reference architecture.
Section IV explains how the distributed configuration in-
frastructure is dynamically mapped onto this architecture on

reset. Section V details the black hole localization procedure.
And section VI presents experimental results for a mesh of
dimension 4×4 that proves the effectiveness of the proposed
approach.

II. RELATED WORK

The black hole model (proposed in [4]) is actually a
functional fault model where the faulty components can be
detected by means of a dedicated BIST approach, and de-
activated prior any localization. Several papers present so-
lutions for localization, [5], [6], [7], which rely on the use
of ATE (Automatic Test Equipment) and TAM (Test Access
Mechanism), to feed NoC inputs with external packets as the
test vectors, and to analyze NoC outputs. Such approaches
allow to test any deterministic end-to-end path (from an input
to an output, defined by a deterministic routing algorithm
such as X-First). The faulty components are identified by set
intersection of faulty & fault-free paths, using an exclusive
method.

In our 2D-mesh topology, any end-to-end path links a
processor in a source cluster to a physical memory bank in
a target cluster (a cluster is a node in the 2D-mesh). In a
shared memory architecture, where any processor can address
any memory location, such path can be tested by a simple
software transaction, i.e a software task in the source cluster
reads a data word mapped in the target cluster.

As we want to support “on the field” reconfiguration, we
don’t want to use an external ATE, and we propose an
embedded and distributed software approach to detect the
black holes.

It should be noted that our proposed strategy is different
with the solution [8] that proposed a mechanism for discov-
ering the faultless paths between an I/O port and the fault-
free cores in a MP2SoC. This centralized discovering process
is piloted by the smart I/O port, that is a critical resource.
But, our proposed solution is fully distributed, it’s achieved by
an faultless embedded processor core, profiting the hardware
redundancy of the MP2SoC architecture.

III. A NOC-BASED, SHARED MEMORY, MP2SOC
ARCHITECTURE

As presented in Section I, in our previous works [4], [3], we
designed and implemented a self-testable&cleanable, recon-
figurable 2D-mesh micro-network DSPIN (Distributed Scal-
able Predictable Interconnect Network. The original DSPIN
[9], [10] was designed by the LIP6 laboratory and was
physically implemented by ST Microelectronics, to support
MP2SoC architecture). In this paper, DSPIN is the self-
testable&cleanable, reconfigurable version.

As shown in Fig.1.A, a DSPIN-based MP2SoC architecture
is composed of a set of tiles called clusters.

As shown in Fig.1.B, a cluster may contain one or several
processors (with their associated instruction and data caches),
a local interconnect, an embedded RAM, an embedded ROM
(for configuration firmware) and two routers (In order to avoid
deadlocks in command/response traffic, each cluster contains

two independent routers implementing two separated sub-
networks for commands and responses). In addition, some
special clusters contain I/O ports controllers, used to access
external mass storage devices. To each processor is associated
a timeout mechanism: when it executes a memory load/store
operation, the timeout mechanism is triggered. In the event
the memory operation fails, the timeout generates an interrupt
and the processor enters its exception mode.

Fig.1.C details the generic DSPIN router, that contains
5 ports (North, East, South, West & Local) interlinked as
a full 5×5 crossbar. Each port contains two fifos, one for
input and one for output. An input fifo in a given router,
and the output fifo in the neighbor router define a point-to-
point communication channel. In the following, an half-path
(HP) is defined as the enumerated set of channels and routers
involved in the carrying of a command packet (resp. response
packet) from the initiator cluster (resp. target) to the target
cluster (resp. initiator) through the NoC. A path (P) is the
concatenation of two half-paths, one for the command (HPC)
and one for the response (HPR).

After power-on or system reboot, and thanks to the hardware
test & initialization mechanism, the fault-free components are
enabled. The faulty ones are disabled and configured as black
holes. The DSPIN NoC is not only cleaned from any evil
failure propagation, but the fault-free routers are configured to
implement the reference X-First routing function. Therefore,
the NoC supports local communications, between a cluster and
its neighbors clusters, as long as the corresponding communi-
cation channel is fault-free.

Finally, when there is more than one (fault-free) processor
in a cluster at the end of the local BIST procedure, a local
master is elected and can run the configuration firmware that
is stored in the embedded ROM of each cluster.

IV. DISTRIBUTED COOPERATIVE CONFIGURATION
INFRASTRUCTURE (DCCI)

During the classical (software) initialization of a system, the
boot code that performs various tests and configuration tasks
is generally located in a unique ROM, even in the case of
a multi-cores architecture. Our configuration firmware (called
CF in the following) is similar to the BIOS in a multi-cores PC,
but in a possibly damaged MP2SoC, the hardware resources
can not be trusted anymore, and chip initialization takes place
in an uncertain world where a processor, a memory bank, a
network interface controller, a router, or the boot ROM itself
may be defective.

A. DCCI general principle

To remove this uncertainty, the key idea is to have one
CF per cluster, to support a fully distributed approach, where
a cluster is able to communicate and exchange information
with its neighbor CFs, resulting in a Distributed Cooperative
Configuration Infrastructure (DCCI).

During initialization, the role of the DCCI is to progres-
sively build - only relying on local communications between
neighbor clusters - a trusted tree of operational clusters, where

[1
.2

]

A B

W
est

Loc
al

C

a
 ch

a
n

n
el

crossbar

South

NorthRouter

CMD

Cache3

µProc3

Cache2

µProc2

Cache0

µProc0

Router

RSP

NIC

Local Interconnect

ROM

Cache1

µProc1

I/O

RAM

E
ast

[0.0] [0.1] [0.2] [0.3]

[1.0] [1.1] [1.2] [1.3]

[2.0] [2.1] [2.2] [2.3]

Commands Responses

[1.3]

[0.3]

[1.3]

[2.3]

I/O cluster

I/O
 clu

ster

I/
O

 c
lu

st
er

I/O cluster

Figure 1. A typical 2D-mesh based, shared memory, MP2SoC architecture.

each operational cluster contains one operational processor
running the CF. This tree is built in a bottom-up way, starting
with operational clusters as leaves. This communication tree
uses a limited part of the routing capabilities of the NoC
(that has not yet been fully configured). It uses only the
local communication channels between neighbor clusters for
software based CF to CF communication through dedicated
mailboxes.

The root of tree is a cluster determined by a distributed
election process. The most important criterion in this election
process is the capability of this root cluster to access the
external mass storage where more exhaustive test programs
and the final operating system itself are available, and can be
loaded in the embedded RAM of the root cluster.

This software based communication tree can thus be seen
as a slow and temporary communication infrastructure, dy-
namically constructed during the boot stage, using the NoC
resources that have been identified as fault-free by the hard-
ware BIST.

As soon as this tree is constructed, and the root is elected,
this very unique master processor can access the external mass
storage containing a virtually unlimited software stack outside
the chip.

The master processor can use this communication tree to
make any processor in the tree execute any specific software
task (debug, fine-grain test), to propagate any configuration
command to any child tree node, or read any status informa-
tion. It can be used to complete the MP2SoC reconfiguration,
and especially the configuration of the NoC itself.

B. Cluster self-test

After hardware reset, each cluster has to test itself by
executing its local CF code, before it can try to participate in
the distributed procedure to build the DCCI communication
tree.

This local test is a 3 stages process:
1) local intra-cluster test: It is a first, coarse grain, func-

tional software based test (such as presented in [11]) for
all IPs belonging to the cluster, if a cluster is usable to

[1.0] [1.3][1.2][1.1]

[2.0] [2.3][2.2][2.1]

[0.0] [0.3][0.2][0.1]

Figure 2. DCCI example in a damaged MP2SoC. At coordinates [1.2], at
least one router (cmd or rsp) is faulty. A spanning DCCI communication
tree is built as a result of each local CF task communicating only with its
neighboring clusters. The tree node is presented as a circle, the tree root is
at coordinates [2,2].

participate to the tree building procedure. For instance,
a cluster which RAM does not pass its coarse march test
is declared unusable.

2) local leader election: Second, an operational processor
of the cluster is locally elected (the one with the smallest
processor identifier). The elected processor represents
the cluster with respect to the surrounding clusters. The
other operational processors are put in idle state.

3) access to the external memory: The locally elected
processor tries to establish a connection with the nearest
external I/O controller, using the default configuration
for the NoC infrastructure (standard X-first routing al-
gorithm).

If a cluster pass successfully the two first steps, it is declared
to be usable and the locally elected processor executes a
specific CF code to discover its environment. Additionally, if
the third test pass successfully, the cluster is a potential leader.

C. Spanning tree building

As stated before, the idea is to build a spanning tree
(as shown in Fig.2) covering all connex clusters declared
as usable. Each potential leader is a possible candidate to
become the root, and the active processor in the elected cluster

2.1

2.2

2.3

1.31.12.0

1.0 0.1

0.0 0.2

0.3

A

Router

CMD

2.2

Router

RSP

2.1

Router

RSP

2.2

CMD

Router

2.1

2.2 2.1
SYNC

SYNC

CB

2.1
Proc

2.1

RAM

NIC NIC

2.2

2.1

2.1 2.2
RAM

2.2

Proc

2.2

2.22.1

Figure 3. Correspondence between tree edges and hardware paths.

becomes the “chip leader”. Fig.2 shows an example of a DCCI
tree on a damaged MP2SoC (at least one router at coordinates
[1.2] is faulty).

The spanning tree is built by concurrent aggregation of sub-
trees. To manage concurrence between sub-trees, preference is
given to clusters that are located nearby an access port to the
external mass storage.

Fig.3.A presents a global representation of the final DCCI
tree. To be connected, two neighbor clusters (such as clusters
at coordinates [2.1] and [2.2]) must be able to communicate
through a bidirectional link composed of two directed edges,
for full duplex communication. Each edge corresponds to a
software mailbox, as shown in Fig.3.B. In the followings, an
edge from node/cluster A to node/cluster B is named eAB .

A mailbox is a data structure in memory composed of a
buffer for the message, and a synchronization flip-flop element.
In the DCCI each mailbox is located in the local memory
of the receiving node, and is shared by exactly one sender
and one receiver. Consequently, two mailboxes are used for
bidirectional communications.

Fig.3.C describes the whole set of hardware components
involved in the bidirectional communication between two
neighbor nodes using two mailboxes. As shown in the picture,
each bidirectional communication channel uses 12 hardware
channels and 4 routers. Each hardware element (channel or
router) must be faultless. After the self-test, each cluster
starts an handshake procedure to produce the list of neighbors
clusters with which the mailbox communication is possible.

Considering two neighbors nodes A and B, this handshake
algorithm performs the followings operations:

• Node A sends a PING message to node B using
edge eAB . This software transaction implies the use of
HPCAB (Half Path Command) and HPRAB (Half Path
Response).

• If node B receives the PING message it sends back an
ALIVE message to node A using eBA. This software
transaction implies the use of HPCBA and HPRBA.

• If A receives a timeout for its PING message, and still
receives the ALIVE response message, it means that
HPRAB is faulty. Thus, A sends a NOK message to
B to inform it that HPRAB is down.

The protocol is fully symmetric. If a timeout or a NOK
message is received by a node, the two involved edges are
declared has faulty. If the two paths between A and B are fault-
free, the A-B connection can be used for tree construction and
can potentially become active edges of the DCCI tree.

The characteristics of the resulting tree are the following:
• each node has been tested and is usable
• each edge of the tree has been tested and is usable
• there exists no edges between nodes that are not direct

neighbors
• any tree path between any couple of clusters belonging

to the tree is usable

D. Using the spanning tree
Like in [12], any message between 2 distant nodes N0 & N1

is propagated with the active cooperation of all intermediate
nodes on the path between N0 & N1. Each intermediate
node is actually acting as a software router. Therefore, and
unlike [12], which uses probabilistic broadcast for fault tol-
erant communication, the approach presented herein is purely
deterministic.

We previously indicated that a tree can be considered as
a trusted launching pad for exploration and testing. By using
end-to-end protocol or flooding protocol over the tree, we can
send command, application test, or test results to one or to
all nodes. For example, in the case of a more exhaustive NoC
test application, we can dispatch the test application from the
root to all tree nodes with flood message, execute application
on every nodes, and retrieve results to the root.

V. THE “BLACK HOLE” LOCALIZATION PROCEDURE

A. General Principle
In a shared memory architecture, any path in the NoC links a

processor (initiator cluster) to a physical memory bank (target
cluster). The multi-threaded, distributed, software application
for black hole localization is loaded by the master processor
on all usable clusters, using the DCCI communication tree. All
enabled NoC routers are initially configured to implement the
reference X-First routing algorithm. The software application
therefore tries to use the NoC routing infrastructure for inter-
thread communications, but some packets may be lost in the
black holes.

By collecting the informations stored in each cluster on
successful and unsuccessful transactions (through the DCCI
communication tree), the master processor (root of tree) is
able to localize the black holes.

It should be noted that, in (DCCI) tree creation, some paths
have been tested (the path between two neighboring clusters).
The tree topology implicitly already contains informations of
black hole locations, but these informations are very rough, so
we must use a dedicated application of black hole localization
to obtain most fine-grain informations.

B. Distributed Algorithm

A task (t), running in a cluster[y.x] (coordinates in the
2D-Mesh) makes a read transaction targeting a cluster [y’.x’].
According to the X-First routing policy, a path P between
two clusters define a unique set of routers and channels.
If the transaction succeeds (both the command packet and
the response packet), the task (t) receives the expected data,
and registers the path (y.x/y’.x’) as OK. If not, (t) receives
a timeout interrupt, indicating a packet loss. Once all paths
from cluster[y.x] to all other clusters have been tested, a list
of FaultLess Paths (FLP) can be constructed. Therefore, two
sets of FaultLess Routers FLR(y,x) and FaultLess Channels
FLC(y,x) can be derived from the FaultLess Paths list (FLP).

PathRegistration() :

Require: [Y.X] is the index of the source (the current cluster).
Require: FLP is the set of faultless paths seen by the source.
Require: FLC is the set of faultless channels seen by the source.
Require: FLR is the set of faultless routers seen by the source.
{In the following, CHC/RY X N/S/E/W/L I/O represents a channel. C/R
means cmd or rsp subnetwork, YX means that the channel belongs to router[Y.X],
N/S/E/W/L means the port that the channel belongs to, and I/O means input or output.
The same, RTC/RY X represents a router. C/R means cmd or rsp subnetwork, YX
means the index of router. For example, CHCY X L I means the input channel
of local port of cmd router [Y.X]. And RTCY X means the cmd router [Y.X].}

1: Construction of FLP
2: FLC ← NIL
3: FLR← NIL
4: for i = 0 to |FLP | do
5: [y.x]← FLP [i]

{Extract the target cluster index of a faultless path.}
6: FLC ← FLC

⋃
CHCY X L I

⋃
CHCyx L O

⋃
CHRyx L I

⋃
CHRY X L O

7: FLR ← FLR
⋃

RTCY X

⋃
RTCyx

⋃
RTRyx

⋃
RTRY X

8: if x > X then
9: for i = X to x− 1 do

10: FLC ← FLC
⋃

CHCY i E O

⋃
CHRyi E I

11: FLR← FLR
⋃

RTCY (i+1)

⋃
RTRyi

12: end for
13: else if x < X then
14: for i = X to x + 1 do
15: FLC ← FLC

⋃
CHCY i W O

⋃
CHRyi W I

16: FLR← FLR
⋃

RTCY (i−1)

⋃
RTRyi

17: end for
18: end if
19: if y > Y then
20: for j = Y to y − 1 do
21: FLC ← FLC

⋃
CHCjx S O

⋃
CHRjX S I

22: FLR← FLR
⋃

RTCjx

⋃
RTR(j+1)X

23: end for
24: else if y < Y then
25: for j = Y to y + 1 do
26: FLC ← FLC

⋃
CHCjx N O

⋃
CHRjX N I

27: FLR← FLR
⋃

RTCjx

⋃
RTR(j−1)X

28: end for
29: end if
30: end for
31: return FLC
32: return FLR

C. Localization and reconfiguration

The two sets FLR(y,x) and FLC(y,x) are distributed in each
cluster[y.x]. These information data can be collected by the
master processor, using the DCCI communication infrastruc-
ture, and merged in two global sets, GFLR and GFLC, as
shown in Fig.4. Finally, according to this method, any router
or communication channel that is not present in these GFLR
and GFLC sets is a black hole. So, theoretically, the black
hole Detection Coverage (DC) is 100%, for a defective NoC
with any number of fault. And this is confirmed in the section
VI by the experimental results.

It is worth noticing that the number of fault-free (usable)
communication resources (routers or communication channels)
identified by this procedure can be much larger than the
resources used by the DCCI covering tree.

Once all the black holes are identified and localized, it is
possible (if the number of faulty component is not too large)
to compute a modified routing function, and to use the DCCI
communication infrastructure to load this modified routing
function into the addressable configuration registers distributed
in the NoC.

Test Distribution Result Centralization

GFLC + GFLR FLP + FLC + FLR

Figure 4. Thanks to the DCCI communication tree, the root can load the test
code from the external memory, and to distribute the code to each tree node,
to do the black hole detection. Once all of detections have been achieved, the
root can centralize the FLC and FLR from each node, and to merge these
lists into two global sets, GFLC and GFLR.

VI. EXPERIMENTAL RESULTS

A. Detection Coverage

In this subsection, we present experimental results of Detec-
tion Coverage (DC) evaluation for the black hole localization
procedure. We have simulated two types of fault in a 4 × 4
clusters MP2SoC, 1st, single fault injection (one faulty router
or one faulty channel); 2nd, multi-faults injections. These fault
injections were simulated on a dedicated C simulator.

1) Single Injection: As in a M×N DSPIN 2D-mesh, there
are C cmd&rsp channels, and there are R cmd&rsp routers.
C = (M × (N −1)×2+N × (M −1)×2+M ×N ×2)×2
R = M ×N × 2

The Detection Coverage has been evaluated for all the
situations where the NoC contains one single fault: one faulty
router or one faulty channel defining a total of (C+R) different
faulty networks. In our example, with M = 4, N = 4, there
are 160 channels and 32 routers.

In all cases, the black hole has been identified and located,
resulting in a Detection Coverage of 100% for a single fault.

However, in some cases, some fault-free components are
wrongly identified as black holes, which is explained in the
following.

Proc RAM

2

41

3

Cmd
Router

Rsp
Router

Figure 5. Dependency
exists between chan-
nel 1 & channel 3 or
between channel 2 &
channel 4.

As shown in Fig.5 (a partial descrip-
tion of a cluster), there are some depen-
dencies between channels. For example,
channel 1 and channel 3 depends on
each other, because any path between the
local processor and a RAM of another
cluster will contain this couple. Channel
1 is a black hole, channel 3 can not be
tested with any faultless path, and it will
be identified as a black hole. But this
result is acceptable for the reconfigurable
routing [3], since in this case the whole
router is deactivated.

2) Multi-faults injection: The Detec-
tion Coverage of multi-faults injection has been evaluated for
all the situations of
• 1 faulty router and 1 faulty channel
• 2 faulty routers
• 2 faulty channels
• 2 faulty routers and 1 faulty channel
• 1 faulty routers and 2 faulty channels
• 2 faulty routers and 2 faulty channels
All these simulations resulted in a 100% coverage.

B. Application Execution Time Evaluation

The execution time is an important issue for a software
procedure that will be executed at each reboot of the system.
For this experiment we simulated the complete procedure on a
4×4 2D-mesh MP2SoC architecture containing 16 processors,
modeled with the cycle-accurate SoCLib virtual prototyping
platform [13]. This architecture contained one single fault. The
total time is 7.1× 106 cycles (without hardware test process):
• Time for (DCCI) tree construction: 1.9× 106 cycles
• Time for for test task distribution: 1.2× 106 cycles
• Time for test execution: 3.5× 106 cycles
• Time for test result centralization: 0.5× 106 cycles
As this procedure is executed using the system clock, we

obtain 0.014 second at 500Mhz. Which is fully acceptable.

C. Application Code Size

For a MIPS32 processor, the application code is split in:
DCCI : 5 Kbytes; Test and localization procedure : 2.5 Kbytes.
Embedding this application in a MP2SoC is thus affordable.

VII. CONCLUSION

In this paper, we presented a software approach to localize
faulty hardware components in a 2D-mesh NoC used in a
shared memory MP2SoC. The localization of faulty compo-
nents is mandatory to implement an “on the field” reconfigu-
ration mechanism supporting fault tolerance in the context of
permanent failures. These faulty components can either be a

point-to-point communication channel, or a complete router.
They can be transformed into black holes by a built-in self-
test (BIST) mechanism that is the basis of our fault model.
The localization algorithm relies on a Distributed Cooperative
Configuration Infrastructure that dynamically builds a software
based communication tree, covering all the nodes that have
successfully passed the local BIST. This DCCI communication
infrastructure is a distributed software mechanism that can be
used as a configuration bus. It does not use the full routing
capabilities of the NoC, but only the local communication
channels between two neighbor nodes. The proposed black
hole detection software algorithm has been evaluated in a
16 nodes MP2SoC architecture (4×4 mesh) modeled as a
SystemC virtual prototype, in the framework of the cycle
accurate SoCLib environment. It reaches a Detection Coverage
of 100% in all tested cases. The same DCCI communication
tree can be used to distribute the resulting modified routing
functions to the fault-free routers.

It should be noted that, the method proposed in this paper,
can be used in any shared memory multi-core architecture with
a 2D-Mesh NoC.

REFERENCES

[1] International Technology Roadmap for Semiconductors. [Online].
Available: http://www.itrs.net

[2] S. Furber, “Living with Failure: Lessons from Nature?” in Proc. of
ETS’06, the 11th IEEE European Test Symposium, 2006.

[3] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing algorithm
for a fault-tolerant 2D-Mesh Network-on-Chip,” in Proc. of DAC’08, the
45th Design Automation Conference, 2008.

[4] Z. Zhang, A. Greiner, and M. Benabdenbi, “Fully Distributed Initial-
ization Procedure for a 2D-Mesh NoC, Including Off Line BIST and
Partial Deactivation of Faulty Components,” in Proc. of IOLTS’10, the
16th IEEE International On-Line Testing Symposium, 2010.

[5] C. Grecu, P. Pande, B. Wang, A. Ivanov, and R. Saleh, “Methodologies
and Algorithms for Testing Switch-Based NoC Interconnects,” in Proc.
of DFT’05, the 20th IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, 2005.

[6] K. Stewart and S. Tragoudas, “Interconnect Testing for Networks on
Chips,” in Proc. of VTS’06, the 24th IEEE VLSI Test Symposium, 2006.

[7] J. Raik, R. Ubar, and V. Govind, “Test Configurations for Diagnosing
Faulty Links in NoC Switches,” in Proc. of ETS’07, the 12th IEEE
European Test Symposium, 2007.

[8] E. Kolonis, M. Nicolaidis, D. Gizopoulos, M. Psarakis, J. Collet, and
P. Zajac, “Enhanced self-configurability and yield in multicore grids,”
in Proc. of IOLTS’09, the 15th IEEE International On-Line Testing
Symposium, 2009.

[9] I. Panades, A. Greiner, and A. Sheibanyrad, “A Low Cost Network-on-
Chip with Guaranteed Service Well Suited to the GALS Approach,”
in Proc. of NanoNet’06. the 1st International Conference on Nano-
Networks and Workshops., 2006.

[10] I. Miro-Panades, F. Clermidy, P. Vivet, and A. Greiner, “Physical
implementation of the dspin network-on-chip in the faust architecture,”
in Proc. of NoCS’08, the 2nd ACM/IEEE International Symposium on
Networks-on-Chip, 2008.

[11] D. Gizopoulos, A. Paschalis, and Y. Zorian, Embedded processor-based
self-test. Kluwer Academic Pub, 2004.

[12] T. Dumitraş, S. Kerner, and R. Mărculescu, “Towards on-chip fault-
tolerant communication,” in Proc. of ASPDAC’03, the 8th Asia and South
Pacific Design Automation Conference, 2003.

[13] LIP6 et al. SoClib. [Online]. Available: https://www.soclib.fr

