
Quantifying the Discord: Order Discrepancies in
Message Sequence Charts

Edith Elkind
�

, Blaise Genest
�

, Doron Peled
�

, and Paola Spoletini
�

�

Division of Mathematical Sciences, Nanyang TechnologicalUniversity,
21 Nanyang Link, 637371, Singapore

�

CNRS/IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
�

Department of Computer Science, University of Warwick
Coventry CV4 7AL, United Kingdom

and Department of Computer Science, Bar Ilan University,
Ramat Gan 52900, Israel

�

DSCPI, Università dell’Insubria
via Valleggio 11 - 22100 Como, Italy

Abstract. Message Sequence Charts (MSCs) and High-level Message Sequence
Charts (HMSCs) are formalisms used to describe scenarios ofmessage passing
protocols. We propose using Allen’s logic to represent the temporal order of the
messages. We introduce the concept ofdiscordto quantify the discrepancies be-
tween the intuition and the semantics of the ordering between messages in d-
ifferent nodes of an HMSC. We study its algorithmic properties: we show that
while the discord of a pair of messages is hard to compute in general, the prob-
lem becomes polynomial-time computable if the number of nodes of the HMSC
or the number of processes is constant. Moreover, for a givenHMSC, it is always
computationally easy to identify a pair of messages that exhibits the worst-case
discord and compute the discord of this pair.

1 Introduction

Message Sequence Charts (MSCs) and High-level Message Sequence Charts (HMSCs)
are very useful tools for describing executions of communication protocols. They pro-
vide an intuitive visual notation, which is widely used in practice and has been formally
described in the MSC standard [13]. Moreover, a related notation was adopted as a part
of the UML standard. Informally, an MSC is described by a set of processesand a set
of messagesbetween these processes. The notation allows one to specifythe (partial)
order in which each process sends and receives messages. Furthermore, MSCs can be
generalized to HMSCs, which are graphs whose nodes are labeled with MSCs. An ex-
ecution of an HMSC is a concatenation of MSCs that appear on a path in this graph.
Using HMSC notation, one can describe alternative behaviors of systems, or even use
it as a scenario-based programming formalism [12]. The reader is referred to Section 2
for formal definitions.

Besides being used in practice, MSCs and HMSCs have been extensively studied
from theoretical perspective over the past few years. This research has pointed out sev-
eral difficulties with these formalisms. One such example isthe problem of detecting

race conditions in MSCs [2], i.e., the possibility that messages arrive out of order due to
lack of synchronization. This problem has also been studiedin the more general context
of HMSCs [16] and sets of MSCs [7]. Another problem is relatedto global choice [4,
3], where some processes behave according to one MSC scenario and other processes
behave according to another MSC scenario, resulting in new behaviors.

Continuing this line of research, in this paper we identify another ambiguity of the
MSC notation. Namely, in the definition of an HMSC, a concatenation of MSCs along
a path intuitively suggests that messages that appear in an earlier MSC precede in time
any message that appears in a later MSC. In fact, in some frameworks such aslive
sequence charts[6] there is a hidden assumption of such synchronization (its imple-
mentation would probably require additional mechanism or extra messages). However,
according to the MSC semantics, this is is not the case: concatenation of events accord-
ing to a path in the HMSC graph is done process by process. Thus, independence among
events happening in different sets of processes may allow messages in later MSCs to
(partially) overlap or sometimes even precede messages in previous MSCs. Clearly,
this discrepancy between intuition and semantics may result in users misinterpreting
the notation and, as a result, designing protocols that do not work as intended. Protocol
design could be helped if the user can check his intuition on MSC executions exhibiting
such discrepencies. Algorithms are thus needed to find (worst-case) discrepencies. This
is reminiscent of the concept of race conditions: the straightforward visual interpreta-
tion of concatenation is different from the intended semantics. However, unlike race
conditions, the aforementioned discrepancy has not been studied before.

In this paper, we provide a formal treatment of this issue. Weintroduce the notion
of discordof a pair of messages in different nodes of an HMSC. Intuitively, the discord
of two messages is the worst possible discrepancy between their order in an execution
and their “ideal” order, in which the message in the MSC that appears earlier on the
path precedes the message in the MSC later on the path. To formalize this intuition, we
need several tools that we introduce below.

We start our study of the message order in MSCs and HMSCs by defining the con-
cept of achain. Informally, a chain is a sequence of events where any adjacent pair of
events is ordered either by being a send-receive pair or by belonging to the same pro-
cess line. Hence, a chain represents a possible flow of information. Clearly, the order
between messages is determined not only by the relevant messages themselves, but also
by chains between their endpoints. We characterize the possible message orders by de-
scribing the possible communication patterns between their endpoints. We then project
each such pattern onto the global timeline, thereby obtaining an interval, and classify
the resulting scenarios.

To compare message intervals, we employ a subset ofAllen’s interval logic[1].
Allen’s logic is a formalism for describing the relative order of time intervals. For ex-
ample, Allen’s logic formula

���
expresses the fact that

�
happens during

�
, i.e.,

�
starts after

�
starts and ends before

�
ends. Allen’s logic has been widely studied in

the context of artificial intelligence and knowledge representation, and its expressive
power and computational properties are well understood [14]. Since messages can be
seen as time intervals, it provides a convenient language for describing the message
order. Indeed, for any pair of messages������� in an HMSC, we can identify the sub-

2

set of primitive predicates�������� of Allen’s logic (such as “during”, “precedes”
or “overlaps”) such that for any predicate� � �������� the relationship����� is
consistent with the HMSC semantics. There is also another primitive predicate that can
be associated with messages occuring in different nodes of the HMSC, namely, the one
that is suggested by the HMSC structure. More specifically, if �� and�� appear in
two HMSC nodes that are connected by a path, the HMSC structure suggests that one
of them precedes the other (even though this is not necessarily implied by the HMSC
semantics).

In this paper, we introduce a natural ordering on Allen’s logic primitive predicates.
We then define thediscordof a pair of messages��� ���� in an HMSC as the elemen-
t of the set�������� that is the furthest away (according to our ordering) from the
primitive predicate suggested by the HMSC structure. For example, if�� appears in
some HMSC node, while�� appears in a successor node (and thus the HMSC suggests
that�� precedes��, written as�����), the discord between�� and�� tells us
whether all or part of�� may appear before��. In the extreme case, when there are no
other events in the system and�� and�� belong to different processes, it may happen
that�� appears entirely before��. In this case, the discord between the two messages
is described by the Allen’s logic’s primitive predicate��

�

(“is preceded by”). To sum-
marize, the discord measures how much the actual order of appearance of messages can
deviate from the order within the HMSC graph.

We study the concept of discord from the algorithmic perspective. First, we show
that computing the discord of a pair of messages is coNP-complete. Our reduction as-
sumes that both the number of nodes in the HMSC and the number of processes are
part of the input. We show that this is inevitable: if either of these numbers is fixed, the
discord can be computed in polynomial time. We then focus on characterizing the glob-
al properties of discord in an HMSC. To this end, we define the discord of an HMSC
as the worst possible discord of a pair of messages in this HMSC. Surprisingly, it turns
out that this quantity can be computed in time polynomial both in the size of the HM-
SC graph and the number of processes. Intuitively, the reason for that is that it is easy
to identify a pair of messages that exhibits the worst-case behavior for a given HMSC
and compute the discord of such a pair. Our work also providesa general study of the
existence of communication chains, which we believe will beuseful in its own right in
studies of layered combination of communication algorithms.

A preliminary version of this paper (with Section 5.2 omitted and Section 5.1 short-
ened) appeared in ATVA’07 [8].

2 Preliminaries

2.1 Message Sequence Charts

Following [13], we formally define message sequence charts (MSCs), MSC concatena-
tion, and high-level message sequence charts (HMSCs).

Definition 1. A Message Sequence Chart(MSC) is a tuple� � �� �� �	�
������ �,
where

–
�

is a finite set ofprocesses;

3

– � is a finite set ofevents;
– 	 � � �� �

is a function that maps every event to the process on which it occurs;
–
 is a finite set of messages. Each message� �
 consists of a pair of events
����� for sendandreceive;

– For each process� � �, �� is a total order on the events of that process.

We define a relation� as �� ���� �� ������� 	 ����� �
� and let ��
be

the transitive closure of�. We require��
to be acyclic. We assume that MSCs are

FIFO, that is, if two messages������� and ��� ���� are between the same processes,
i.e.,	 ���� � 	 ���� and	 ���� � 	 ����, then�� � �� implies�� � ��.
We will occasionally abuse notation and write� � � instead of� �
.

Definition 2. Let�� ��� be two MSCs where�� � �� � ����	 ��
����

�����, �� �
��� ��� �	 � �
� ���

������ with
� �

� ��

� �
and �

� � ��

� �. Define their
concatenationas an MSC��� ���� � �� �� �	�
������ �, where� � �� � ��

,

 �
��
�

, the function	 is given by	 ��� � 	 ���� if � � ��

and	 ��� � 	 ����
if � � ��

, and for each� � � we define����
�

� � ��

� ��������� 	 �� � �� ��� �
�� �	 ����� � 	 ������.

Notice that there are no messages that are sent in one MSC and received in the other
(an extention of the HMSC notation in [11] allows a message tospan several MSC
nodes). Definition 2 can be naturally extended to sequences�� ��� � � � � ��� of three or
more MSCs by setting��� ��� � � � � ���� = ��� � � ��� �������� � � ��.
Definition 3. A High-level Message Sequence Chart (HMSC) is a tuple� � �� �� ��� ���, where

� � �� ��� is a directed graph with the vertex set
� � ���� � � � ����

and the edge set� � � � �
, � � ���� � � � ���� is a collection of MSCs with a

common set of processes and mutually disjoint sets of events,
�� � �

is a set ofinitial
nodes, and� � � �� � is a bijective mapping between the nodes of the graph and the
MSCs in�. To simplify notation, we assume����� � ��. Each vertex of

�
is reachable

from one of the initial nodes. Anexecutionof the HMSC is a finite MSC��� � � � � �� �
obtained by concatenating the MSCs in the nodes of a path�� � � � � �� of the HMSC
that starts with some initial node�� � ��. Thesize 	� 	 of an HMSC� is defined as	� 	� 	�� 	 ! " " " ! 	�� 	 ! 	� 	 ! 	� 	, where�� is the set of events of the MSC��.
Given a path# � ��� � � � � �� � in

�
of length at least$, we denote by��#� the MSC that

is obtained by concatenating the MSCs along#, i.e.,��� � � � � �� �. The set of executions
of an HMSC is also referred to as the set of MSCsgeneratedby that HMSC.

We can define infinite executions in a similar way. This requires defining the con-
catenation of an infinite sequence of MSCs, which is the limitof the sequence of finite
concatenations of prefixes. As the concepts studied in this paper are defined for finite
executions only, we chose not to present the background on infinite executions here; the
interested reader is refered to, e.g., [10].

Figure 1 shows an example of an HMSC. The node in the upper leftcorner, denot-
ed by
%, is the starting node, hence it has an incoming edge that is connected to no
other node. Initially, process	 % sends a message to	 $, requesting a connection (e.g.,

4

M1 M2

M3 M4P1 P2 P3

P1 P2 P3 P1 P2 P3

P1 P2 P3

Connect

Fail

Approve

ReqService
Report

Fig. 1.An HMSC

to an internet service), according to the node
%. This can result in either an approval
message from	 $, according to the node
$, or a failure message, according to the
node
�. In the latter case, a report message is also sent from	 $ to some supervi-
sory process	�. There are two progress choices, corresponding to the two arrows out
of the node
�. We can decide to try and connect again, by choosing the arrowfrom

� to
%, or to give up and send a service request (from process	 % to process	�),
by choosing to progress according to the arrow from
� to
�. Note how the HM-
SC description abstracts away the internal process computation, and presents only the
communications. Consider the path�
%�
��
��. According to the HMSC seman-
tics, process	 $ does not necessarily have to send itsReport message in
� before
process	 % has progressed according to
� to send itsReq service message. How-
ever, process	� must receive theReport message before theReq service message.

An implementation which fully adheres to this HMSC specification will thus need,
upon receiving ReqServices, to ensure that all Report messages have been received be-
forehand. The usual idea would be that process	� is polling on both channel from P1
and from P2, giving the latter the priority. That is, if thereis a message in both chan-
nels, then the message from P2 to P3 is first processed. Unfortunately, this idea does
not work out, as it is possible that the last report message has not been yet sent (hence
the channel is empty), while the ReqService has been sent, hence P3 would process the
message ReqService before the last Report, which would contradict the HMSC specifi-
cation. A designer which would only follow its (wrong) intuition (Report is sent before
ReqService because it is in a previous node) would miss the problematic case and may
perform a wrong design using the implementation with the polling technique described.
Our aim is to detect discrepencies - which is, potential problems - and provide the de-
signers with warnings (MSC executions of path of the HMSC) such that he can ensure
that what he is doing adheres with the specification - or that he should change either the
implementation or the specification (e.g. adding an acknowledgement message from
	� to 	 % after each reception of a report).

5

2.2 Allen’s logic

Allen’s logic [1] is a formalism that allows one to express temporal relationships be-
tween time intervals. It has 13 primitive predicates (relations) that correspond to possi-
ble relationships between two intervals, such as “

�
precedes

�
” or “

�
happens during�

”. Each primitive predicate describes a total order betweenthe endpoints of these in-
tervals. When working with MSCs, we normally assume that no two events can happen
at the same time, i.e., no two intervals have a common endpoint. Therefore, to represent
relationships between two messages�� � ��� ���� and�� � ��� ����, we will only
use 6 of these primitives, namely:

� — �� precedes�� (i.e., �� � �� � �� � ��);
��� — �� is preceded by�� (i.e.,�� � �� � �� � ��);� — �� overlaps�� (i.e.,�� � �� � �� � ��);��� — �� is overlapped by�� (i.e., �� � �� � �� � ��);�

— �� is during�� (i.e., �� � �� � �� � ��);��� — �� contains�� (i.e.,�� � �� � �� � ��).
Observe that for

� � ������� the predicate
���

is equivalent to
�����.

A
B

A
B

A
B

Fig. 2. Allen’s logic relationships:���, ���, and�����

An Allen’s logic formula is a concatenation of one or more of these six letters,
and is interpreted as a disjunction of the corresponding predicates. For example, the
formula

������� says that either
�

precedes
�

, or
�

overlaps
�

, or
�

happens
during

�
. Given the semantics of the primitive predicates, it is easyto see that this

formula says that
�

starts before
�

, but may end before (�), during (�), or after (
���)�

. There are several operations that can be performed on Allen’s logic formulas, such
as composition and intersection. However, in this paper we only use the Allen’s logic
as a means to describe the relationships between the duration of messages. Therefore,
we will not formally define these operations.

3 Relationships between Messages

In this section, we will show how to use Allen’s logic to reason about the relationship
between a given pair of messages.

Given an MSC�, a chain from an event� � � to an event	 � � is a sequence
of events�� � ����� � � � � ��
����
 � 	� such that� � � for � � %� � � � ��, and every
adjacent pair�� �� �� in the chain is either (i) a send and the corresponding receive,
or (ii) � appears before (above)� � in the same process line. Clearly,� �� 	 if and
only if there is a chain of messages from� to 	. Now, consider a pair of messages
������� and��� ����. By definition, there is always a chain from�� to �� and from�� to

6

Fig. 3. Impossible relationship between messages

��. Moreover, for any��� �� � ������� ���� ����, we have one of the following three
cases: (1) there is a chain of messages from� to �; (2) there is a chain of messages from
� to �; (3) there is no chain in either direction. As there are four pairs of points, this
corresponds to�

�

� �% combinations. However, not all of them are possible, as MSCs
do not admit cycles (see Figure 3). In fact, for two messages there are exactly twenty
possible combinations of orders between their endpoints. We list them in Figure 4.
In these figures, the two messages correspond to the full vertical arrows. Other arrows
correspond to chains of messages that begin and end at the endpoints of these messages.
Dotted arrows represent redundant information, i.e., chains that can be inferred from
other chains (denoted by the dashed arrows).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j) (k)

Fig. 4. The possible orders between messages (up to symmetry)

The patterns in Figure 4 correspond to the following Allen’slogic relationships:
(a)���

���������; (b)�; (c)�����; (d)��; (e)�; (f)
���; (g)����; (h)���������;

(i) ��; (j) ���; (k) ��������. Except for cases (a) and (k), both of which are sym-
metric, each other case has a symmetric twin that can be obtained by swapping the left
and the right message.

Given two messages, we can decide according to which of the patterns they are
ordered by calculating the transitive closure relation��

. While in general transitive

7

closure algorithms run in cubic time [9, 18], it has been observed [2] that in the MSC
case one can be more efficient since each event has at most two successors. Formally,
we have the following proposition.

Proposition 1. [2] Given an MSC
 with messages�� � " " " ���, one can decide in
time

����� the relation between every�� �� , % � ��� � �
.

We will now derive a corollary that will be useful in boundingthe running time of
our algorithms.

Corollary 1. Given an HMSC� � �� �� ��� ���, 	� 	 � �, one can compute the re-
lation ��

for all MSCs in� in time
��	� 	��. Moreover, one can compute in time��� 	� 	�� the relation��

for all concatenated MSCs of the form��� �� �, as well
as every Allen’s logic relationship for all pairs of messages� � ��, �� � � , where
�� �� � �.

Proof. Let�� be the set of events of the MSC��. By Proposition 1, we can compute
��

for �� in time
��	�� 	��. Therefore, computing��

for all ��, � � %� � � � ��, takes
time

��	�� 	� ! " " " ! 	�� 	�� � ���	�� 	 ! " " " ! 	�� 	��� � ��	� 	��.
Similarly, computing the relation��

for ��� �� � can be done in time
���	�� 	 !

	� 	���. As �	�� 	 ! 	� 	�� � $	�� 	� ! $	� 	�, computing��
for all MSCs of the form

��� �� �, ��� � %� � � � ��, can be done in time
����	�� 	� ! " " "! 	�� 	��� � ��� 	� 	��.

Now, fix % � ��� ��. Given the relation��
for ��� �� �, the Allen’s logic relationship

for any pair������, � � ��, �� � � , can be computed in constant time. As there
are

��	�� 		� 	� such pairs, computing the Allen’s logic relationship for all of them can
be done in time

��	�� 		� 	� � ���	�� 	 ! 	� 	���. Summing over all��� � %� � � � ��,
we obtain the bound of

��� 	� 	��, as claimed. �

4 Definition of Discord

Concatenating two MSCs�� and�� does not necessarily mean thatall messages of
�� precede in time all messages of��: for example, if�� consists of a single message
from �� to ��, and�� consists of a single message from�� to ��, the relation� does
not provide any information about the relative order of these two messages. In what
follows, we propose an Allen’s logic-based formalism that allows us to quantify the
ordering discrepancies that occur when concatenating MSCs. We start by considering
sequences of MSCs, and then extend our analysis to HMSCs.

Consider a concatenated MSC��� ����. For any two messages�� � ������� � ��

and�� � ��� ���� � ��, we know that�� � �� and�� � ��. Now, the scenario that
best matches our intuition about concatenation is when all messages in�� precede all
messages in��. In this case, we also have�� � ��, and thus we obtain�� � �� � �� �
��. This corresponds to case (b) in Figure 4. Note that this scenario is only possible
when�� has a unique maximal event�, �� has a unique minimal event��, and� and��
occur on the same process, i.e.,	 ��� � 	 ����.

Conversely, the most unintuitive situation is when the relation ��
for ��� ���� pro-

vides no information about the relative order of some message�� � �� and another

8

message�� � ��. That is, for some�� � �� and�� � ��, the situation is described
by case (a) in Figure 4, or by the Allen’s logic formula����������������. In this
case, the Allen’s logic formula allows�� to actually precede��, since the disjunction
permits in particular that�������. We consider this case to be theworst among all
orders between�� and��, because it can be the most deceiving when observing the
structure of the HMSC, and hence leads to design errors. As in[2], where the problem
of conflictsis identified and diagnosed, these are potential problems that arise from the
HMSC semantics. All remaining scenarios lie, as will be formulated below, between
these two cases. We will now introduce a measure of discrepancy, which we call the
discord, that allows us to order them more precisely.

Given a concatenation of two MSCs��� ����, two messages�� � ������� � ��

and�� � ��� ���� � �� are said to beout of orderif �� does not precede��, i.e.,
������. In Figure 4, this happens in cases (a), (c), (d), (h), and (j). Note that in our
setting, the cases (e), (f), (g), (i), and (k) are impossible: in each of these cases, there
are chains of messages starting from events of�� and ending in events of��, which
cannot happen under concatenation.

We now classify all primitive Allen’s logic predicates according to how well they
order the endpoints of the projected intervals, i.e., represent the order between the events
of the two messages�� and��. Recall that in the ideal case, i.e., when the order
between the intervals is described by Allen’s logic predicate �, we have�� � �� �
�� � ��. In this case, there are zero events in��� ���� that precede those in�������.
In the worst case, i.e., if�� fully precedes��, there are four inversions: namely,�� �
��, �� � ��, �� � �� and �� � ��. We thus order the predicates according to how
many of these four relationships are inverted. In case of a tie, we give preference to the
relationships that involve�� to those that involve��.
Definition 4. The total order� is the transitive closure of the partial order�� given
by��� ������� �������� ���� ���� �������� ���� ������. We denote by����� the
maximum element of the set� with respect to�.

Remark 1.Observe that the number of inversions in��
�

is 4, as explained above, in��� it is �, in
�

and
��� it is 2, in � it is 1, and in� it is 0. Therefore, our decision

that
��� � �

may appear quite arbitrary. We made this choice for two reasons. First,
we do think that the time when the messages are sent is more important than the time
when they are received, as the designer has more control overthe former, and second,
it is convenient to have a total order to work with.

Definition 5. Consider a sequence of MSCs��� � � � � ��
�and a pair of messages�� �
��, �� � �
 such that in the MSC� � ��� � � � � ��
�we have�����, where� is a
(possibly non-primitive) Allen’s logic predicate. Thediscordof�� and�� with respect
to � is the largest possible primitive predicate, according to� (i.e., the “worst”) that
appears in�, i.e., �	
���� ������� � �

, where
� � �������������������,

�
appears in�, and for all

�� that appear in�we have
�� � �

.

Let us now apply this definition to the six cases that can occurfor a pair of mes-
sages in a concatenated MSC, as illustrated in Figure 4. In case (a) the messages are in
relationship���

���������. The worst primitive predicate in this formula is��
�

, so

9

we conclude that the discord between the messages is���. For case (b), there is only
one relation�. Similarly, for case (c) the discord is

���, for case (d) it is�, for (h) it
is ���, and for (j) it is

�
. We conclude that the value of�	
���� ������� can beany

primitive Allen’s logic predicate.
We now extend the definition of a discord to messages in HMSCs.

Definition 6. Given an HMSC� � �� �� ��� ��� and a pair of messages�� � ����,�� � �����, let�	
���� ��� ���� �������	
�������������� 	 # � �� � � � � �����.

Consider now the HMSC in Figure 1. For the path�
%�
$�, the discord is�, since
the maximum event of
%, which is a receive, precedes the minimum event of
$,
which is the send of messageApprove. On the other hand, for the path�
%�
��
%�,
theReport message of
� corresponds to theConnect message of
% as in case (h)
of Figure 4, which means a discord of���. The discord of�
��
�� is

�
due to the

relative ordering betweenReport in
� andReqService in
�.
We will now state an observation that allows us to compute�	
���� ��� ����.

Recall that given a graph
� � �� ���, a path��� � � � � ���� in

�
is calledsimple if it

contains no cycles, i.e.,�� �� � for any % � � � � � �
. Similarly, a cycle���� � � � ��� ���� in

�
is calledsimpleif �� �� � for any % � � � � � �

, ���� � �� �%���.
Claim 1 Consider an HMSC� � �� �� ��� ���. For any� ��� � �

, � �� ��, and any�� � ����,�� � �����, we have�	
���� ��� ���� �������	
�������������� 	
� �� � � � � ���� is a simple path�. Also, for two messages����� � ����, we have
�	
���� ������� �������	
���������� ���� 	 # � �� � � � � ��� is a simple cycle�.

Proof. Clearly, removing a cycle from a path between� and�� can only worsen the
discord between�� and��, as this may eliminate some of the chains between the
endpoints of�� and��. Hence, the path that exhibits the worst-case discord is cycle-
free. The same argument applies for two messages in the same node of an HMSC. �

Observe that Claim 1 implies that the discord of the HMSC� in Figure 1 is��
�

.

5 Computing the Discord of a Pair of Messages

For a simple path# � �� � ��� � � � ��
 � ���, computing�	
�������������� for�� � ����, �� � ����� is easy. Namely, first we run the transitive closure algorithm
to determine the causal relationships between the endpoints of �� and��. We then
identify the corresponding scenario of Figure 4 and apply the case analysis presented
after Definition 5. The running time of this algorithm is quadratic in the total number
of messages in��#�.

For HMSCs, Definition 6 and Claim 1 suggest a straightforwardalgorithm for com-
puting the discord: given two messages�� � ����, �� � �����, we can consider each
simple path from� to �� (or each simple cycle, if� � ��), compute the discord along this
path, and output the maximum discord obtained in this way. This naive algorithm runs
in exponential time in the input size. In the next subsection, we show that this is per-
haps inevitable: we prove that in general the problem of computing�	
���� ��� ����
is coNP-hard. However, we will now provide an alternative way of verifying whether

10

�	
���� ��� ���� � �
, where

� � �������������������. As we will see later,
this can be used to construct an efficient algorithm for computing �	
���� ��� ����
in the important special case when the number of processes isconstant.

We will first define a related problem that will be useful for stating our results.

PATH WITH NO CHAIN : Given an HMSC� � �� � �� ����� ��� ���, a pair of
nodes� ��� � �

, and a pair of events� � ������� � �����, is there a path# from � to ��
in

�
such that in the MSC��#� there is no chain of events from� to ��? We will write���� ������ � % if such path exists and

���� ������ � � otherwise.

Proposition 2. Given an HMSC� � �� � �� ����� ��� ���, a pair of nodes� ��� � �
,

and a pair of messages�� � ��� ���� � ����, �� � ��� ���� � �����, we have

– �	
���� ��� ���� � � if and only if
���� ��� ���� � �.

– �	
���� ��� ���� � � if and only if
���� ��� ���� � %, ���� ��� ���� � �,

and
���� ��� ���� � �.

– �	
���� ��� ���� � ��� if and only if
���� ��� ���� � %and

���� ������� �
�.

– �	
���� ��� ���� � �
if and only if

���� ��� ���� � % and for any path# �
�� � � � � ���� in

�
, the MSC��#� contains a chain from�� to �� or a chain from��

to ��.
– �	
���� ��� ���� � ��� if and only if there exists a path# � �� � � � � ���� in

�
such that the MSC��#� contains no chain from�� to �� and no chain from�� to��, and

���� ������� � �.
– �	
���� ��� ���� � ��� if and only if

���� ��� ���� � %.
Proof. The analysis for�, �, and��

�

is straightforward.
If �	
���� ��� ���� � ���, then there is a path# � �� � � � � ���� that satis-

fies �	
���������� ���� � ���. Clearly,��#� contains no chain from�� to ��, so���� ��� ���� � %. Also, for any path#� from� to ��, we have�	
����������� ���� �
���������, so #� contains a chain from�� to ��. Hence,

���� ������� � �. Con-
versely, if

���� ��� ���� � %, then there is a path# from � to �� with no chain
from �� to ��, so it cannot be the case that�	
�������������� � �����. Hence,
�	
�������������� � ���. On the other hand,

���� ��� ���� � � means that any
path#� from � to �� contains a chain from�� to ��, so we have�	
��������������� ��
�����������. Other cases can be analyzed similarly. �

Note that to check if�	
���� ������� � �
for

� � ���������� ���, it suffices
to make a small number of calls to

����. However, to check if�	
���� ������� ��
for

� � �������, calling
���� is not enough. Indeed, to verify, e.g., whether

�	
���� ������� � �
, we have to check that any path between the corresponding

nodes containseitherone of two chains: a chain from�� to �� or a chain from�� to ��,
and this check cannot be simulated by calls to

����.

5.1 Computational hardness

We will now show that for HMSCs the problem of upper-bounding�	
���� ��� ����
is coNP-complete. Formally, we consider the following problem:

11

DISCORD������� ����: Given an HMSC�, a predicate
� � �������������������, and two messages����� in �, is it the case that�	
���� ��� ���� � �

?

Theorem 1. The problemDISCORD������� ���� is coNP-complete.

Proof. To see that DISCORD������� ���� is in coNP, observe that the complementary
problem of checking whether�	
���� ������� � �

is in NP: a certificate can be
provided by a path# such that�	
���������� ���� � �

. In particular, for
� � � a

certificate is a path with no chain from�� to ��, for
� � � it is a path with no chain from�� to ��, for

� � ��� it is a path with no chain from�� to ��, for
� � �

it is a path with
no chain from�� to �� and no chain from�� to ��, and for

� � ��� it is a path with no
chain from�� to ��.

The coNP-hardness proof is by reduction from 3SAT. Suppose that we are given
a 3CNF formula with a set of variables�� � � � � ��� and a set of clauses��� � � � ���.
Let �

� � �� � �� be the literals that appear in the�th clause, i.e.,� � �
� � �

� � �
� , �

 �
���� � � � ��� � ��� � � � � � ����. We construct an HMSC� as follows. Set

� � ������ ��� �
�� ��� �� �� � � � � ���� �� ��� ��	 � � � � ��	
�. The HMSC� has the following structure. Its
underlying graph

�
has a source node��, a sink node��, and� !� gadget subgraphs,

namely� variable gadgets��� � � � ��� and� clause gadgets�� � � � � ���. The variable
gadget�� consists of four vertices

�� , �� , �� , �� and four edges��� ��� �, ��� ��� �,
��� ��� �, ��� ��� �. The clause gadget�� consists of five vertices�

�� , �
�� , �

�� , �
�� , �

�� and
six edges���� ���� �, ���� ���� �, ���� ���� �, ���� ���� �, ���� ���� �, ���� ���� �. The source, the
vertex gadgets, the clause gadgets, and the sink are all connected in series as depicted
in Figure 5. More precisely, there is an edge from�� to the vertex

�
�, for all � �

%� � � � �� � % there is an edge from
�� to

���, there is an edge from
�� to �

�
�, for all

� � %� � � � �� � % there is an edge from�
�� to �

���, and finally there is an edge from
�
�

� to ��.

v0 v1

X 1 X n Y 1 YmX 2

Fig. 5. The high-level structure of the HMSC� used in the proof of Theorem 1.

It remains to define the MSCs that are placed in the vertices of
�

. The MSC in��
consists of a single message��� ���� from �� to ��. The MSCs in the vertices

�� , �� ,
�

� , �
� are empty for all� � %� � � � ��, � � %� � � � ��. For � � %� � � � ��, the MSC in

��
consists of a message from�� to ���, and the MSC in

�� consists of a message from
�� to � ���. For � � %� � � � ��, � � %�$��, the MSC in�

 contains a message from����
to �	� , where�

 is the�th literal of � . Finally, the MSC in�� has� ! % messages: a
message from each�	� , � � %� � � � ��, to ��, and a message�� � ��� ���� from �� to
�� that is sent after all messages from all�	� are received.

We claim that the original 3CNF formula is satisfiable if and only if the tuple
����������� constitutes a “no”-instance of DISCORD������� ����, i.e., there is
a path# from �� to �� such that the MSC��#� contains no chain from�� to ��.

12

P P2 xi

P P2 xi

iu0

iu1

iu2

iu3

(a)

P P

P P

P P

cj

cj

jc

l1

l2

l3

jw0

jw1

jw2

jw3

jw4

(b)

Fig. 6. (a) The gadget��; (b) The gadget��

Indeed, suppose that our formula is satisfiable, and let� � ��� � � � � ����, �� �
�� �� � be a satisfying assignment for it. Consider a path# that satisfies the follow-
ing conditions:

– # starts at�� and ends at��;
– # �

�� � ��� ��� ��� � if
�� � � and# �

�� � ��� ��� ��� � if
�� � �

;
– # �

� � ���� ��
 ��� � for some� � �%�$��� such that�

 is true under� , i.e.,

�

 � �� and

�� � �
or �

 � ��� and
�� � � . Note that such�

 is guaranteed to
exist since� has to satisfy� .

First, note that in the corresponding MSC��#� there is no chain from�� to any event
of any of the processes�	� , � � %� � � � ��. Indeed, the only message received by�	� in��#� is from some���� such that�

 is true under� . Since�

 is true under� , in ��#�

the process���� receives no messages whatsoever. As�� only receives messages from

�	� , � � %� � � � ��, we conclude that in��#� there is no chain from�� to ��.
Conversely, suppose that there is a path# such that in the corresponding MSC��#�

there is no chain from�� to ��. Consider a satisfying assignment� � ��� � � � � ����
such that

�� � � if # �
�� � ��� ��� ��� � and

�� � �
if # �

�� � ��� ��� ��� �.
Note that for any� � %� � � � ��, if # �

� � ���� ��
 ��� � for some� � %�$��, it
must be the case that���� receives no message from�� in ��#�, because otherwise there

would be a chain of messages from�� to ��. Hence, the literal�

 is true under� , i.e.,

� is satisfied. As this holds for any� � %� � � � ��, we have successfully constructed a
satisfying assignment for our instance of 3CNF.

�
Remark 2.Clearly, the proof of Theorem 1 implies that PATH WITH NO CHAIN is NP-
hard. Moreover, we can consider a weaker version of DISCORD, in which the Allen’s
logic predicate is not part of the input. Namely, for

� � �������������������, let
DISCORD� ��������� be the problem of checking whether�	
���� ��� ���� � �

.

13

Obviously, for
� � ��� this problem is trivially in P: the answer is always “yes”. The

proof of Theorem 1 shows that this problem is coNP-hard for
� � �. To show that it

is hard for
� � �, we can modify the reduction by changing the direction of�� (i.e.,

setting	 ���� � ��, 	 ���� � ��) and adding to the MSC in�� a message��� � ���������
from �� to �� with �� �� ���. Then in any path in� there is a chain from�� to ��,
and there is a path with no chain from�� to �� if and only if the 3CNF formula has a
satisfying assignment. Similarly, to show that DISCORD�� ����� ���� is coNP-hard,
we change the direction of��, to show that DISCORD� ����� ���� is coNP-hard,
we change the direction of��, and to show that DISCORD�� ��������� is coNP-
hard, we change the direction of both�� and��. We conclude that all five non-trivial
versions of the problem are coNP-hard.

5.2 Polynomial-time algorithms for bounded number of processes

In our hardness result, both the size of the graph
�

and the number of processes
�

are
unbounded. It turns out that this is necessary: if either of these parameters is constant,
there is an algorithm whose running time is polynomial in theother parameter.

This is easy to see if the size of the graph is constant. In particular, the naive al-
gorithm described in the beginning of this section will run in polynomial time: in a
graph with a constant number of vertices, there is a constantnumber of simple paths
and cycles, and one can compute the discord along a path in polynomial time.

The case when the number of processes is constant is considerably more compli-
cated. Our algorithm for this setting is based on Dijkstra’sshortest path algorithm com-
bined with dynamic programming approach. The underlying idea is that given a pair
of events� � ����, �� � ����� and a subset of processes

�
, we can check if there is a

path# from � to �� such that the set of processes reachable from� in ��#� is exactly
�

.
A generalization of this idea allows us to compute the discord of any pair of messages
in an HMSC in polynomial time for any fixed value of	� 	. Formally, we prove the
following result.

Theorem 2. It is possible to compute�	
���� ������� in time
����$��� �	� 	��, which

is polynomial in� � 	� 	and 	� 	 for any fixed value of	� 	.
We start by describing an algorithm for PATH WITH NO CHAIN . Next, we show

how to generalize it to compute�	
���� �������. Note that just like in Dijkstra’s
algorithm, we simultaneously check whether there is a path with no chain from a given
event� � � � ���� to all other events. Therefore, this algorithm can be easilyadapted
to compute the discords for all pairs of messages in� in time

����$��� �	� 	��.
Let � be a strict upper bound on the number of events on any process line in any

MSC in �. Re-number all events so that�
�� , � � %� � � � �� � %, is the�th event on the
process line� in the MSC��. For the purposes of the algorithm, we will introduce two
dummy events���	�� and��
��� on each process line of every MSC in�. The event���	��
precedes all events�
�� , and the event��
��� follows all events�
�� . It is important to
note that these are not send or receive events, so they have noeffect on the information
flow in �. However, we will occasionally talk about chains to and fromthese events,
where a chain is defined in the same way as for regular events. We say that a process�

14

is reachablefrom � along a path� � �� � � � � ���� if in the MSC �� � � � � ���� there is a
chain from� to ��
��� .

The outline of the algorithm is presented in Figure 7. First,for each MSC�� and all
� � %� � � � � 	� 	, the procedureComputeX() checks whether there is a chain from���	���
to all other events in this MSC. More precisely, for� � %� � � � �� � %, ComputeX()
sets� ���� ��� �� � % if in �� there is a chain from���	��� to �
�� and� ���� ��� �� � �
otherwise. Also, it sets� ���� ��� �� � % if in �� there is a chain from���	��� to ��
��� ,
and� ���� ��� �� � � otherwise. Note that for� �� � there can be no chain from���	�� to���	��� . By Corollary 1, we can implementComputeX() in time

��	� 	��.

������� ����� 	;
1. ComputeX();
2. ComputeY();
3. forall
� such that

���� � ��	 �
4. forall � � �
5. if ��� �
� � �

break;
6. forall �� � � �
7. if � �
��� �� �	 � �

break;
8. return ‘‘yes’’;

Fig. 7. The algorithm for
������� ����� 	, with ComputeY() given in Figure 8.

Further, for any
� � �

let � �� � �� be a variable that indicates whether there is a
path# in

�
from � to �� such that in��#� none of the processes in

�
is reachable from�. We set� �� � �� � % if such a path exists and� �� � �� � � otherwise. The values

of � �� � �� are computed by the procedureComputeY() given in Figure 8. We will
discuss how to implementComputeY() later on.

Now, assume that we have computed� �� � ��, � ���� ��� ��, for all
� � �

, � �
%� � � � ��, ��� � %� � � � � 	� 	, � � %� � � � ��. Then there is a path with no chain from� to�
�� if and only if the conditions in the lines 3–7 hold, i.e., there is a path# of the form
�� � � � � ���� ���� and a set

� � �
such that for any process�� that is reachable from�

along#� � �� � � � � ���� � (i.e., a process in
� � �

), there is no chain from���	��� to �
�� .
For a fixed event�
�� this condition can be verified in time�$�� �	� 	.

It remains to argue that the procedure� !"#$%&�� in Figure 8 correctly computes
the values of� �� � ��. The procedure starts by initializing the variables

&'� � �((lines
1–6). For� �� %, it sets

&'� � �(� � for all
� ��

. For � � %, it computes� �� � %� (recall
that� �� � %� � % if and only if there is no chain from� to ��
�

�� for any� � �
) and sets&'� � �(� � �� � ��. The algorithm then repeats a Dijkstra-like “relaxation” step� times.

During each step, the value of each
&'� � �(may be changed from 0 to 1.

The correctness of the algorithm follows from two simple claims.

Claim 2 If � �� � �� � �, we have
&'� � �(� �at any point in the execution of� !"#$%&��.

Proof. The proof is by induction on the execution of the algorithm. The claim is
clearly true after the initialization step. Now, suppose that at some point we change the

15

ComputeY();
1. forall
 � �� � � � ��
2. forall � � �
3. set ��� �
� � �

;
4. Set �� � ��� � there is no chain from � to ������� 	;
5. forall � � �
6. if � � �� then set ��� � �� � �

else set ��� � �� � �
;

7. Repeat � times
8. forall
 � �� � � � ��
9. forall � � �
10. if ��� �
� � �

break;
11. forall
� such that

���� � ��	 �
12. forall �� such that � � �� and ���� �
�� � �
13. forall �� �
14. forall �� � � ��
15. if X(i, j, K, l)=1 break;
16. Set ��� �
� � �

;
17. return;

Fig. 8.The implementation ofComputeY()

value of
&'� � �(from 0 to 1 for some

� � �. This means that we have discovered some
�� �� � such that���� ���� � �,

&'� � � ��(� %. By inductive assumption, this means that
there exists a path# from � to ��� such that in the MSC�� � � � � ���� � there is no chain
from � to any of the processes in

� �. Moreover, we also have� ���� ��� �� � � for any
�� � � � � � and any� � �

, i.e., in the MSC�� � � � � ���� ���� there is no chain from���	��� to ��
��� . Now, suppose that in�� � � � � ���� ���� there is a chain from� to some
� � �

. As there are no events that are sent in one MSC and are received in another
MSC, this chain would have to go through some��
��� �� , ���	��� , � � %� � � � � 	� 	. If �� � � �,
this means that there is a chain in�� � � � � ���� � from � to ��, a contradiction. On the
other hand, if�� � � �� �, there is a chain from���	��� to ��
��� , a contradiction again. We
conclude that� �� � �� � %. �

Claim 3 If for some
� � �, there exists a path�� � � � � ���� ���� of length� such that in the

MSC �� � � � � ���� ���� there is no chain from� to any of the processes in
�

, then after�
steps,ComputeY() sets

&'� � �(� %.
Proof. The proof is by induction on�. The claim is obviously true for� � %. Let

� � be
the set of all processes that are not reachable from� along ��� � � � � ���� �. By inductive
assumption, after��%steps we have

&'� � ��(� %. Also, by construction, in�� � � � � ���� �
there is a chain from� to ��
���� for any � � � � � �. Hence, we have� ���� ��� �� � �
for any�� � � � � �, � � �

. Therefore, during the�th step, our algorithm will set&'� � �(� %. �
It is not hard to verify that the running time of� !"#$%&�� is

��� 	� 	$��� �	� 	��.
Indeed, the running time of this procedure is dominated by the cycle in lines 8–16,
which is repeated� times. During each such cycle, we consider each edge of� exactly

16

once (in lines 8 and 11), for each such edge we consider two subsets of
�

, and for
each choice of these subsets we consider a pair of processes and do a constant-time
check for this pair. The overall running time of our algorithm can then be expressed as��� 	� 	$��� �	� 	� ! 	� 	�� � ����$��� �	� 	��.

Now, suppose that we are given a pair of messages�� � ��� ���� � ����, �� �
��� ���� � �����. By Proposition 2, we can check whether�	
���� ������� � �

for� � ������������� by making at most three calls to
���� ��. However, to decide

between�	
���� ������� � �
and�	
���� ��� ���� � ���, we need additional

tools. Fortunately, it turns out that one can modify
���� �� to solve this problem.

To verify whether�	
���� ������� � �
, we first compute

���� �������. If we
have

���� ������� � �, then�	
���� ������� � �
, so the answer is negative.

Otherwise,�	
���� ��� ���� �� �
if and only if

�
contains a path# from � to �� such

that in ��#� there is no chain from�� to �� and no chain from�� to ��. To find such
a path, we first compute� ���� ��� �� usingComputeX(). We then define� � �� �� � � ��
as follows: for any

� �� � � �
and any� � %� � � � ��, set� ��� �� � � �� � % if there is

a path# from � to �� such that in��#� none of the processes in
�

is reachable from�� and none of the processes in
� � is reachable from��. It is straightforward to modify

ComputeY() so that it computes� ��� �� � � �� instead of� �� � ��. The running time of
the modified version is

��� 	� 	$��� �	� 	��, as we have to consider all possiblepairs of
subsets of

�
in adjacent nodes.

Now, suppose that we have computed� ��� �� � � �� for all
� �� � � �

, � � %� � � � ��.
Assume that�� � ��� and�� � �
��� , �� � �
���� � We have�	
���� ��� ���� � �

if
and only if there exists a triple

� �� � � �� such that

(1) ���� ����� � �;
(2) � ��� �� � � ��� � %;
(3) for any�� � � ��

we have� ����� ��� �� � �;
(4) for any�� � � �� � we have� ����� � ��� � �� � �.

These conditions can be verified in time
���$��� �	� 	�. Hence, the overall running time

of our algorithm is
����$��� �	� 	��, which proves Theorem 2.

6 From Pairs of Messages to HMSCs

It is desirable to be able to characterize the discord of an HMSC with a single param-
eter rather than list the discords for all pairs of messages in this HMSC. To this end,
we extend the definition of discord from pairs of messages to entire HMSCs by defin-
ing the discord of an HMSC� to be the worst discord over all pairs of messages in
�. Formally, we set�	
������ � ������	
���� ��� ���� 	 �� � ������� ������� �� ���� � ���, where��

is the transitive closure of the edge set�.
According to this definition, one can compute�	
������ by computing the dis-

cords for all pairs of messages in�. However, in general, computing�	
���� ��� ����
is coNP-hard, so this method is not efficient. Quite surprisingly, it turns out that there
exists a different approach that allows us to compute�	
������ in polynomial time.
It is based on the fact that while it may be hard to check whether there exists a chain be-
tween two events, it is easy to prove that there is no chain between twoextremalevents,
for a suitable definition of extremality.

17

In the rest of the section, we describe polynomial-time algorithms for checking that
�	
������ � �

for
� � �����������������. To check whether�	
������ � �

,
we can simply run all these algorithms and return “yes” if allof them return “no”. We
analyze the efficiency of these algorithms in terms of� � 	� 	, 	� 	 and 	� 	; observe
that we can assume� � ��	� 	�, 	� 	� ��	� 	�.

For the cases
� � ���������, we will make use of a set�� � � � �

, con-
structed as follows:�� ���� � �� if and only if �� ���� � � or there exists a path
�� � ����� � � � � ��
�� ��
 � ��� such that for� � $� � � � �� � % the MSC��� � has
an empty message set. Note that�� is a subset of the transitive closure of�, i.e.,
�� ���� � �� implies that in

�
there is a path from� to ��.

To construct��, we can run the depth-first search from each node of
�

, backtracking
as soon as we discover a node whose MSC has a non-empty messageset. Clearly, this
algorithm finds a path from� to �� if and only if �� ���� � ��. Moreover, as the depth-
first search runs in time

��	� 	! 	� 	� � ��	� 	�, the total running time of this procedure
is
��� 	� 	�.

���������	
 � We will show that�	
������ � � if and only if for any�� ���� ��� and any�� � ����, �� � �����we have�	
���������������������� � �.
Indeed, if for some such����� we have�	
������������������ ���� �� �, then ob-

viously�	
������ �� �. Conversely, consider any pair of messages�� � ��� ���� �����, �� � ��� ���� � ����� and any path# � �� � �� � � � � ��
 � ���. We show by
induction on� that if our condition holds then�	
�������������� � �. The proof is
based on the fact that for any three time intervals

�����, we have
��� ��� �����. For � � $, the statement is obvious. Now, suppose� � $. If for each� �

$� � � � �� � %, the MSC��� � has an empty message set, then we have�� ���� � ��
and��#� � ������ ������, so�	
�������������� � �. Now suppose that for some
� � �$� � � � �� � %� the MSC��� � has a non-empty message set and consider some� � ����� � ��� �. Set#� � ���� � � � �� �, #�� � �� � � � � ��
�. By the induction hy-
pothesis,�	
����������� ��� � �, �	
�������������� � �, so in��#�� there is a
chain from�� to �, and in��#��� there is a chain from� to ��. We conclude that in��#�
there is a chain from�� to ��, i.e.,�	
�������������� � �.

This algorithm can be implemented in time
��� 	� 	�� as follows: we first construct�� (as shown above, this can be done in time

��� 	� 	�), and then for each�� ���� � ��
we compute the relation��

for the concatenated MSC������ ������ (this can be done
in time

��� 	� 	�� for all �� ���� � �� by Corollary 1) and use it to check the discord of
all pairs�� � ����, �� � ����� (again, by Corollary 1 this takes time

��� 	� 	��).
���������	
 � The algorithm and the analysis are similar to the previous case.
Namely,�	
������ � � if and only if �	
������ �� � (which can be verified in
polynomial time, as described above) and for any�� ���� � �� and any�� � ��� ���� �����, �� � ��� ���� � ����� we have�	
���������������������� � �����. The
running time of this algorithm is

��� 	� 	��.
The proof is based on the fact that for any path# � �� � �� � � � � ��
 � ���,

any �#� �#��� such that#� � ��� � � � � �� �, #�� � �� � � � � ��
� and any� � ����� ���� �, if �	
�������� ������ � ����� and �	
��������������� � ����� then

18

�	
�������������� � �����. To see this, note that�	
�������������� � �����
implies that��#��has chains from�� to � and from�� to �, and�	
��������������� �
����� implies that��#���has chains from� to �� and from� to ��. Hence, in��#� there
are chains from�� to �� and from�� to ��, i.e.,�	
���������� ���� � �����.

���������	
 ���
The algorithm and the analysis are similar to the previous two

cases. Namely,�	
������ � ��� if and only if �	
������ �� ��� (which can
be verified in polynomial time, as described above) and for any �� ���� � �� and any�� � ������� � ����, �� � ��� ���� � ����� we have�	
���������������������� �
���������. The running time of this algorithm is

��� 	� 	��.
The proof uses the fact that for any path# � �� � ��� � � � ��
 � ���, any �#� �#���

such that#� � ��� � � � � �� �, #�� � �� � � � � ��
� and any� � ����� � ��� �, if
�	
����������� ��� � ��������� and �	
�������������� � ��������� then
�	
�������������� � ���������. Indeed,�	
����������� ��� � ��������� im-
plies that��#�� contains a chain from�� to �, and�	
��������������� � ���������
implies that��#��� contains a chain from� to ��. Hence, in��#� there is a chain from�� to ��, i.e.,�	
�������������� � ���������.

���������	
 ��� If �	
������ � ���, there exists a pair of nodes� ��� � �
, a

pair of messages�� � ��� ���� � ����, �� � ��� ���� � ����� and a path# � �� ��� � � � � ��
 � ��� such that�	
���������� ���� � ���, i.e., in��#� there is no chain
from �� to ��. Let� � ����, �� � �����, and

�� � ���� � � � � ��
���.
Let � be a maximal send event in�� � ��� such there is a chain from�� to �, and let� be the corresponding receive. Set� � 	 ���, � � 	 ���. It is easy to see that in#

there is no chain from� to ��, or, equivalently,����������. Therefore, without loss
of generality we can assume�� � �����, i.e., �� is a maximal send event in�� � ���.
This implies that in�� � ��� there are no send events on� that happen after��, and there
are no send events on� that happen after�� (for any such event, there would be a chain
from �� to this event). Moreover, in�� there is no chain from any event of� or � to ��.

This suggests the following algorithm. For each pair� ��� � �
and each pair of

messages�� � ��� ���� � ����, �� � ��� ���� � ����� do the following. Set� �
	 ����, � � 	 ����. Let � �� ��� �� ��� be the HMSC obtained by deleting from� all
nodes other than� ��� that have send events on� or �. Output “yes” if all of the following
four conditions hold:

(1) in ���� there are no send events on� after��;
(2) in ���� there are no send events on� after��;
(3) in ����� there is no chain from any event of� or � to �� (in particular,	 ���� �� � ��);
(4) the HMSC� �� ��� �� ��� contains a path from� to ��.

If (1)–(4) are all true, then the pair��� ���� provides a witness that�	
������ �
���. Conversely, by the reasoning above, if�	
������ � ���, then there is a pair
������� that satisfies (1)–(4).

The running time of this algorithm can be bounded by
��	� 	��. To see this, note

that there are
��	� 	�� pairs of messages�� � ����, �� � �����. For each such pair,

19

conditions (1)–(3) can be verified in time
��	� 	� assuming that the relation��

for����� has been precomputed (by Corollary 1, we can precompute��
for all MSCs that

appear in� in time
��	� 	��). Condition (4) corresponds to solving a single instance

of reachability problem, so it can be checked in time
��	� 	� as well.

We can change the order of operations so that the algorithm runs in time
��	� 	� 	� 	��.

This is more efficient if	� 	� � 	� 	, which is likely to be the case in practice. First, we
compute the transitive closure of each MSC in�; by Corollary 1, this can be done in
time

��	� 	��. Then for each� � �
, each event� in ����, and each� � �, we use the

information about the transitive closure to check whether in ���� there is a chain from
any event of� to �. There are

��	� 	� events,	� 	 processes, and for each pair�� ���,� � ��, this computation takes
��	� 	� steps, so this can be done in time

��	� 		� 	��.
For any pair� �� � �

set�
� �� ��� � �� � � 	 ���� has no send events on� ���.

Consider a modified version of the depth-first search on
�

that backtracks as soon as it
reaches a node in

� �� � �� ���. This algorithm discovers a path from� to �� if and only if
the HMSC� �� ��� �� ��� contains a path from� to ��. From any given�, it runs in time��	� 	�. For each�� � �

we find the last send event on�, identify the corresponding
receive and check whether it is on� and there are no send events on� after it. This can
be done in time

��	� 	�. Then we run from�� the modified version of the depth-first
search described above. For any� discovered during this search and for each receive
event of� � ��� �, we check if it is not reachable from any event of� or � using the
precomputed information.

For each triple�� �� ���, we traverse each edge of� at most twice, and do a constant-
time computation for each event of�. Hence, the computation that has to be done for
each triple�� �� ��� takes

��	� 	� steps, and the total running time of our algorithm is��	� 		� 	� ! 	� 	�� 	� 	� � ��	� 	� 	� 	��, as claimed.

���������	
 ��� Suppose�	
������ � ���. Then there exists a pair of nodes� ��� � �
, a pair of messages�� � ��� ���� � ����, �� � ��� ���� � ����� and a path

� �� � ��� � � � ��
 � ��� such that�	
�������������� � ���, i.e., in ��#� there
is a chain from�� to ��, but no chain from�� to �� and no chain from�� to ��. Let
� � ����, �� � �����, and

�� � ���� � � � � ��
���.
Observe that in�� � ��� there is no chain from�� to any send event�. Indeed, suppose

such a chain exists, and let� be the receive that corresponds to this send. If in��#� there
is no chain from� to ��, we would have���������������, a contradiction. On the other
hand, a chain from�� to � together with a chain from� to �� gives a chain from�� to ��
in ��#�, a contradiction again. By a similar argument, in� �� ���� there is no chain from
any receive event� to ��.

Set� � 	 ����, � � 	 ����. It follows that in� there are no send events on� after��, in �� there are no receive events on� before��, and in
�� there are no sends on�

and no receives on�. Obviously, in� there is no chain from�� to any event of�, and
in �� there is no chain from any event of� to ��. Moreover, it cannot be the case that
� � �, � � 	 ���� or � � 	 ����.

Consequently, we have the following algorithm for checkingwhether�	
������ ����. First check that�	
������ �� ���. Then for each pair� ��� � �
, and each pair

of messages�� � ������� � ����, �� � ��� ���� � ����� do the following. Set

20

� � 	 ����, � � 	 ����. Let � �� ��� �� ��� be the HMSC obtained by deleting from�
all nodes other than� and�� that have send events on� or receive events on�. Output
“yes” if the following six conditions hold:

(1) we have� �� �, � �� 	 ����, � �� 	 ����;
(2) in � there are no send events on� after��;
(3) in �� there are no receive events on� before��;
(4) in � there is no chain from�� to any event of�;
(5) in �� there is no chain from any event of� to ��;
(6) the HMSC� �� ��� �� ��� contains a path from� to ��.

Suppose that for some� ��� � �
, �� � ����, �� � ����� the conditions (1)–(6)

are all true. By (6), there exists a path# � �� � �� � � � � ��
 � ��� in � �� ��� �� ���. Set���� � �, ����� � ��, �� � ���� � � � � ��
���. Suppose that��#� contains a chain from�� to ��. As � �� 	 ������, this chain must contain a receive event on�. By (3), there is
no such event in��, and by construction of� �� ��� �� ���, there can be no such event in��. Finally, by (4) there is no such event in�. Hence, in��#� there is no chain from��
to ��. Similarly, a chain from�� to �� must contain a send event on�, and there is no
such event in� (by (2)),�� (by (5)), or

�� (by construction of� �� ��� �� ���). Hence,
the pair ������� provides a witness that�	
������ � ���. Conversely, by the
reasoning above, if for some pair��� ���� we have�	
���� ������� � ���, then
our algorithm succeeds. As in the previous case, this algorithm can be implemented in
time

��	� 	�� or, by changing the order of operations, in
��	� 	� 	� 	��.

7 Conclusions

We proposed using Allen’s logic for detecting and measuringmessage order discrepan-
cy in HMSCs. We believe that Allen’s logic can be a versatile tool for other message
order-related problems in MSCs and HMSCs, such as, e.g., race conditions and message
overtake. Allen’s logic is very well studied from algorithmic perspective [14]; while in
this paper we did not use these results, they may be very useful for other applications
of Allen’s logic for message order analysis.

We introduced the notion of discord, which measures the difference between the
message order in an HMSC and the “ideal” message order for that HMSC. We have
shown a coNP-hardness result for computing the discord of a pair of messages in an
HMSC, as well as polynomial-time algorithms for restrictedversions of this problem.
In contrast, we showed how to find the worst-case discord of anHMSC in polynomial
time. We believe that the concept of discord will be useful inavoiding design errors
in HMSCs. In particular, it can be applied when one wants to partition a large HMSC
into smaller components: one should prefer partitions withsmall discord. Another po-
tential application of this work is in the area of MSC-based programming approaches,
such as, e.g., the “play-in, play-out” framework of [12], which assumes synchronous
MSC concatenation. Calculating discords allows one to quantify the potential for relax-
ing the synchronization assumption and check for possible hazards. This may increase
concurrency and efficiency of the implementation and thus can be useful in protocol
design.

21

7.1 Acknowledgements

Part of this work was done when the fourth author was visitingBar Ilan University
and the first author was a Lady Davis Fellow at Hebrew University of Jerusalem. This
research is partially supported by the ESF project Automatha, the ANR project DOTS,
and an NRF Research Fellowship.

References

1. J. F. Allen, Maintaining Knowledge about Temporal Intervals. Communications of ACM,
vol. 26:11, pp. 832–843, 1983.

2. R. Alur, G. Holzmann, D. Peled, An Analyzer for Message Sequence Charts.Software
— Concepts and Tools17, pp. 70–77, 1996.

3. R. Alur, K. Etessami, M. Yannakakis, Realizability and Verification of MSC Graphs.
Theoretical Computer Science331(1): pp. 97–114, 2005.

4. H. Ben-Abdallah, S. Leue, Syntactic Detection of ProcessDivergence and Non-local
Choice in Message Sequence Charts. InTACAS’97, LNCS 1217, pp. 259–274, 1997

5. D. Brand and P. Zafiropulo, On Communicating Finite-StateMachines. Journal of the
ACM, 30(2), pp. 323–342, 1983.

6. W. Damm, D. Harel, LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design19(1), pp. 45–80, 2001.

7. E. Elkind, B. Genest, D. Peled, Detecting Races in Ensembles of Message Sequence
Charts, InTACAS’07, LNCS 4424, 2007.

8. E. Elkind, B. Genest, D. Peled, P. Spoletini, Quantifyingthe Discord: Order Discrepancies
in Message Sequence Charts, InATVA’07, LNCS 4762, 2007.

9. R. W. Floyd, Algorithm 97 (Shortest Path), Communications of the ACM 1962, 356.
10. B. Genest, M. Minea, A. Muscholl and D. Peled. Specifyingand Verifying Partial Order

Properties using Template MSCs. InFOSSACS’04, LNCS 2987, pp. 195–210, 2004.
11. Elsa L. Gunter, Anca Muscholl, Doron Peled: Compositional message sequence charts.

STTT 5(1): 78-89, 2003.
12. D. Harel, R. Marelly, Come, Let’s Play: Scenario-Based Programming Using LSCs and

the Play-Engine. Springer Verlag, 2003.
13. ITU Z120 standard recommendation, 1996.
14. A. Krokhin, P. Jeavons, P. Jonsson, Reasoning about Temporal Relations: The Tractable

Subalgebras of Allen’s Interval Algebra. J. ACM 50(5), pp. 591–640, 2003.
15. M. Lohrey and A. Muscholl. Bounded MSC communication.Information and Computa-

tion 189, pp. 160–181, 2004.
16. A. Muscholl, D. Peled. Message Sequence Graphs and Decision Problems on

Mazurkiewicz Traces. InMFCS’99, pp. 81–91, 1999.
17. D. Peled. Specification and Verification of Message Sequence Charts. InFORTE’00, IFIP

CP 183, pp. 139-154, 2000.
18. S. Warshall, A Theorem on Boolean Matrices.Journal of the ACM9(1), pp. 11–12, 1962.

22

